ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

Synthesis and Characterization of Benzimidazole Derivatives and Evaluation of Antimicrobial Activity

Kamal Kant Vyas1, Sangeeta Rajpurohit2* and Yudhishthir Vaishnav1

1Department of Chemistry, J.N.V.U. Jodhpur- 342001, Rajasthan, India

2Organic Lab, Lachoo Memorial College, Jodhpur, 342001, Rajasthan, India.

Corresponding Author E-mail: rajpurohitsangeeta94@gmail.com

DOI : http://dx.doi.org/10.13005/ojc/390424

Article Publishing History
Article Received on : 09 Jun2023
Article Accepted on : 18 Aug 2023
Article Published : 29 Aug 2023
Article Metrics
Article Review Details
Reviewed by: Dr. Venkateswara Rao Anna
Second Review by: Dr. Aditya Shukla
Final Approval by: Dr. Naeem Uddin
ABSTRACT:

A series of benzimidazole derivatives were synthesized for this investigation. NMR and IR spectrum analysis as well as carbon, hydrogen, and nitrogen studies were used to characterize these novel synthesized derivatives. Antibacterial and antifungal tests were conducted on all of the newly synthesized compounds. Ciprofloxacin and fluconazole were utilized as reference medications in antibacterial and antifungal research, respectively. The microbiological assay revealed that the compounds show promising antibacterial and antifungal activity.

KEYWORDS:

Antifungal; Antibacterial; Benzimidazole

Download this article as: 

Copy the following to cite this article:

Vyas K. K, Rajpurohit S, Vaishnav Y. Synthesis and Characterization of Benzimidazole Derivatives and Evaluation of Antimicrobial Activity. Orient J Chem 2023;39(4).


Copy the following to cite this URL:

Vyas K. K, Rajpurohit S, Vaishnav Y. Synthesis and Characterization of Benzimidazole Derivatives and Evaluation of Antimicrobial Activity. Orient J Chem 2023;39(4). Available from: https://bit.ly/47V60Bd


Introduction

All the heterocyclic compounds are of great interest in pharmaceutical chemistry. Out of these heterocyclic compounds the benzofused heterocyclic compound, i.e. benzimidazole and its derivatives have wide variety of biological activities. The synthesis of benzimidazole derivatives is a topic of much research and discussion. The two carbon-nitrogen bonds in benzimidazole when disconnected give O-phenylenediamine and formic acid. Therefore benzimidazole synthesized by condensation of diamine and a carboxylic acid or carbonyl compound. Ammonium salt can be used as catalyst1. (Figure 1). Transition metal catalysts namely copper (II) acetate and lead tetra acetate can also be used. Antimicrobial activity2-6, antiinflammatory-analgesic7-9, anticancer10, CNS depressant11, androgen receptor antagonist12, antitubercular13,14 and anticonvulsant15-19 properties have been found for benzimidazole and their derivatives. Benzimidazole nucleus is present in vitamin-B12 (Merck index 2001), albendazole, mebendzole and thiabendazole. In this present study some novel derivatives of amino acid containing benzimidazole nucleus have been synthesized and their antimicrobial and antifungal activity have been established.

Figure 1: General synthesis of Benzimidazole derivatives

Click here to View Figure

Material and Method

Both the reagents and the solvents were obtained from commercial sources. The open capillary technique was used to get all of the melting points, without any adjustments being made. Recrystallization was used to improve the quality of the final products. Thin films mounted on KBr pellets were used to capture IR spectra using a PERKIN ELMER FT-IR Spectrophotometer. Chloroform was used to collect 1HNMR spectra, and the resulting chemical shift values are presented in ppm with respect to TMS (δ = 0) as the internal standard.

Experimental Section

Synthesis and Characterization

Three amino named Valine, Leucine and Isoleucine were used to synthesis of amino acid derivatives of benzimidazoles. In first step amino acid has been reacted with carbonyl compound (0.01 mol) and form parent compound. In second step parent compound reacted with differently substituted O-phenylenediamine (0.01 mol) in presence of NH4Cl and CHCl­3 as catalyst at 80-900C which results in the formation of various benzimidazole derivatives.

By using Valine

Scheme 1: By using Valine

Click here to View Scheme

By using Leucine

Scheme 2: By using Leucine.

Click here to View Figure

By using Isoleucine

Scheme 3: By using Isoleucine

Click here to View Scheme

In all total 12 derivatives were formed A (1-4), B (1-4) and C (1-4).

2-[4-(1H-1,3-benzimidazol-2-yl)anilino]-3-methylbutanoic acid (A 1)

Yield 78.88%, M. P. 463.40C, Mol. Wt. 309.36, IR (cm-1) – 2830.47- (-NH) stretching, 1718.75- (C=O) stretching, 1702.14- (C=N) stretching, 1669.56- (Ar C=C) stretching, 1574.54 – (-NH) bent, 1140.17- (C-N) stretching, 1H-NMR (CDCl3, 500 MHz, ppm): 7.57 (3 CH), 7.58 (4 CH), 7.24 (5 CH), 7.25 (6 CH), 7.53 (8 NH), 1.06 (16, 19 CH3), 5.12 (20 NH), 10.64 (23 OH), Anal. calcd. for C18H19N3O2 : N, 13.58; H, 6.19; C, 69.88; O, 10.34.

3-methyl-2-[4-(6-methyl-1H-1,3-benzimidazol-2-yl)anilino]butanoic acid (A 2)

Yield 89.34%, M. P. 487.190C, Mol. Wt. 323.39, IR (cm-1) – 2834.33- (-NH) stretching, 2778.63- (Ar-CH) stretching, 1713.53- (C=O) stretching, 1701.03- (C=N) stretching, 1673.51- (Ar C=C) stretching, 1570.1- (-NH) bent, 1132.14- (C-N) stretching, 1H-NMR (CDCl3, 500 MHz, ppm): 7.53 (3 CH), 7.55 (4 CH), 7.11 (5 CH), 7.49 (8 NH), 6.65 (10 CH), 7.5 (11 CH), 1.1 (16,19 CH3), 4.69 (20 NH), 10.1 (23 OH), Anal. calcd. for C19H21N3O2 : N, 12.99; H, 6.55; C, 70.57; O, 9.89.

2-[4-(6-methoxy-1H-1,3-benzimidazol-2-yl)anilino]-3-methylbutanoic acid (A 3)

Yield 83.89%, M. P. 509.420C, Mol. Wt. 339.39, IR (cm-1) – 2830.2- (-NH) stretching, 2769.51- (Ar-CH) stretching, 1751.66- (C=O) stretching, 1697.61- (C=N) stretching, 1668.41- (Ar C=C) stretching, 1580.68- (-NH) bent, 1149.26- (C-N) stretching, 1H-NMR (CDCl3, 500 MHz, ppm): 7.56 (3 CH), 7.27 (4 CH), 6.88 (5 CH), 7.45 (8 NH), 6.73 (10 CH),  1.07 (16,19 CH3), 5.08 (20 NH), 10.09 (23 OH), 3.83 (25 CH3), Anal. calcd. for C19H21N3O3 : N, 12.38; H, 6.24; C, 67.24; O, 14.14.

3-methyl-2-[4-(6-nitro-1H-1,3-benzimidazol-2-yl)anilino]butanoic acid (A 4)

Yield 81.79%, M. P. 619.530C, Mol. Wt. 354.36, IR (cm-1) – 2856.74- (-NH) stretching, 2783.21- (Ar-CH) stretching, 1738.4- (C=O) stretching, 1694.17- (C=N) stretching, 1664.08- (Ar C=C) stretching, 1569.06- (-NH) bent, 1450.33- (NO2) stretching, 1147.26- (C-N) stretching, 1H-NMR (CDCl3, 500 MHz, ppm): 7.84 (3 CH), 8.57 (4 CH), 8.08 (5 CH), 7.62 (8 NH), 6.74 (10 CH), 1.07 (16, 19 CH3), 5.22 (20 NH), 10.09 (23 OH), Anal. calcd. for C18H18N4O4 : N, 15.81; H, 5.12; C, 61.01; O, 18.06.

2-[4-(1H-1,3-benzimidazol-2-yl)anilino]-4-methylpentanoic acid (B 1)

Yield 91.09%, M. P. 474.670C, Mol. Wt. 323.39, IR (cm-1) – 2830.96- (-NH) stretching, 1718.95- (C=O) stretching, 1703.33- (C=N) stretching, 1673.39- (Ar C=C) stretching, 1580.44- (-NH) bent, 1142.62- (C-N) stretching, 1H-NMR (CDCl3, 500 MHz, ppm): 7.63 (3 CH), 7.6 (4 CH), 7.26 (5 CH), 7.26 (6 CH), 7.56 (8 NH), 6.75 (10 CH), 5.67 (17 NH), 9.6 (20 OH), 1.05 (23, 14 CH3),  Anal. calcd. for C19H21N3O2 : N, 12.99; H, 6.55; C, 70.57; O, 9.89.

4-methyl-2-[4-(6-methyl-1H-1,3-benzimidazol-2-yl)anilino]pentanoic acid (B 2)

Yield 79.74%, M. P. 498.460C, Mol. Wt. 337.42, IR (cm-1) – 2835.54- (-NH) stretching, 2767.08- (Ar-CH) stretching, 1722.05- (C=O) stretching, 1694.78- (C=N) stretching, 1581.81- (Ar C=C) stretching, 1520.43- (-NH) bent, 1141.24- (C-N) stretching, 1H-NMR (CDCl3, 500 MHz, ppm): 7.6 (3 CH), 7.57 (4 CH), 7.12 (5 CH), 7.55 (8 NH), 6.72 (10 CH), 5.14 (17 NH), 12.54 (20 OH), 1.03 (24, 25 CH3), Anal. calcd. for C20H23N3O2 : N, 12.45; H, 6.87; C, 71.19; O, 9.48.

2-[4-(6-methoxy-1H-1,3-benzimidazol-2-yl)anilino]-4-methylpentanoic acid (B 3)

Yield 81.65%, M. P. 520.690C, Mol. Wt. 353.41, IR (cm-1) – 2836.46- (-NH) stretching, 2773.7- (Ar-CH) stretching, 1720.63- (C=O) stretching, 1699.14- (C=N) stretching, 1579.86- (Ar C=C) stretching, 1527.86- (-NH) bent, 1181.29- (C-O-C) stretching, 1138.6- (C-N) stretching, 1H-NMR (CDCl3, 500 MHz, ppm): 7.62 (3 CH), 7.29 (4 CH), 6.89 (5 CH), 7.49 (8 NH), 6.72 (10 CH), 5.11 (17 NH), 12.54 (20 OH), 1.03 (25,26 CH3), Anal. calcd. for C20H23N3O3 : N, 11.89; H, 6.56; C, 67.97; O, 13.58.

4-methyl-2-[4-(6-nitro-1H-1,3-benzimidazol-2-yl)anilino]pentanoic acid (B 4)

Yield 68.99%, M. P. 657.80C, Mol. Wt. 368.39, IR (cm-1) – 2860.97- (-NH) stretching, 2766.97- (Ar-CH) stretching, 1722.04- (C=O) stretching, 1692.46- (C=N) stretching, 1581.48- (Ar C=C) stretching, 1520.57- (-NH) bent, 1441.29- (NO2) stretching, 1141.74- (C-N) stretching, 1H-NMR (CDCl3, 500 MHz, ppm): 7.9 (3 CH), 8.62 (4 CH), 8.12 (5 CH), 7.68 (8 NH), 6.73 (10 CH), 5.24 (17 NH), 12.52 (20 OH), 1.03 (26. 27 CH3), Anal. calcd. for C19H20N4O4 : N, 15.21; H, 5.47; C, 61.95; O, 17.37.

2-[4-(1H-1,3-benzimidazol-2-yl)anilino]-3-methylpentanoic acid (C 1)

Yield 86.92%, M. P. 474.670C, Mol. Wt. 323.39, IR (cm-1) – 2834.7- (-NH) stretching, 1716.61- (C=O) stretching, 1699.85- (C=N) stretching, 1672.65- (Ar C=C) stretching, 1580.22- (-NH) bent, 1148.65- (C-N) stretching, 1H-NMR (CDCl3, 500 MHz, ppm): 7.58 (3 CH), 7.58 (4 CH), 7.24 (5 CH), 7.25 (6 CH), 7.53 (8 NH), 6.72 (10 CH), 5.39 (17 NH), 10.66 (20 OH),  1.1 (24 CH3) Anal. calcd. for C19H21N2O2 : N, 12.99; H, 6.55; C, 70.57; O, 9.89.

3-methyl-2-[4-(6-methyl-1H-1,3-benzimidazol-2-yl)anilino]pentanoic acid (C 2)

Yield 76.29%, M. P. 498.460C, Mol. Wt. 337.42, IR (cm-1) – 2830.05- (-NH) stretching, 2773.62- (Ar-CH) stretching, 1716.19- (C=O) stretching, 1696.72- (C=N) stretching, 1675.66- (Ar C=C) stretching, 1576.09- (-NH) bent, 1143.18- (C-N) stretching, 1H-NMR (CDCl3, 500 MHz, ppm): 7.53 (3 CH), 7.55 (4 CH), 7.11 (5 CH), 7.51 (8 NH), 6.74 (10 CH), 4.91 (17 NH), 9.77 (20 OH),  1.09 (25 CH3), Anal. calcd. for C20H23N3O2 : N, 12.45; H, 6.87; C, 71.19; O, 9.48.

2-[4-(6-methoxy-1H-1,3-benzimidazol-2-yl)anilino]-3-methylpentanoic acid (C 3)

Yield 78.74%, M. P. 520.690C, Mol. Wt. 353.41, IR (cm-1) – 2832.77- (-NH) stretching, 2776.57- (Ar-CH) stretching, 1718.07- (C=O) stretching, 1701.43- (C=N) stretching, 1675.97- (Ar C=C) stretching, 1582.57- (-NH) bent, 1183.86- (C-O-C) stretching, 1140.18- (C-N) stretching, 1H-NMR (CDCl3, 500 MHz, ppm): 7.56 (3 CH), 7.27 (4 CH), 6.87 (5 CH), 7.41 (8 NH), 6.69 (10 CH), 4.91 (17 NH), 9.97 (20 OH),  1.09 (26 CH3), Anal. calcd. for C20H23N3O3 : N, 11.89; H, 6.56; C, 67.97; O, 13.58.

3-methyl-2-[4-(6-nitro-1H-1,3-benzimidazol-2-yl)anilino]pentanoic acid (C 4)

Yield 88.13%, M. P. 630.80C, Mol. Wt. 368.39, IR (cm-1) – 2857.99- (-NH) stretching, 2776.44- (Ar-CH) stretching, 1711.23- (C=O) stretching, 1695.05- (C=N) stretching, 1668.87- (Ar C=C) stretching, 1575.22- (-NH) bent, 1441.33- (NO2) stretching, 1146.81- (C-N) stretching, 1H-NMR (CDCl3, 500 MHz, ppm): 7.84 (3 CH), 8.56 (4 CH), 8.07 (5 CH), 7.6 (8 NH), 6.69 (10 CH), 5.72 (17 NH), 10.63 (20 OH),  1.12 (27 CH3), Anal. calcd. for C19H20N4O4 : N, 15.21; H, 5.47; C, 61.95; O, 17.37.

Figure 2: NMR Spectra of compound A (1).

Click here to View Figure

Figure 3: NMR Spectra of compound B (1).

Click here to View Figure

Figure 4: NMR Spectra of compound C (1).

Click here to View Figure

Antimicrobial Evaluation

For antibacterial investigations, two Gram +ve i.e. Staphylococcus aureus and Bacillus subtilis while, two Gram -ve bacteria i.e. Escherichia coli and Pseudomonas aureginosa were used.Two fungal species i.e. Aspergillus niger and Candida albicans were taken for antifungal examinations. The concentrations 100 µg/mL of the compounds were used. For antibacterial and antifungal studies, Ciprofloxacin and Fluconazole were used as standard drugs separately. The 20 µg/mL of concentration of each standard drug was used.

Table 1: Antibacterial activity of benzimidazole derivatives (Zone of inhibition, ZOI and % inhibition).

S. No

Comp Code

S. aureus

 

B. substilis

 

E. coli

 

P. aureginosa

ZOI ± SD

%

t-value#

ZOI ± SD

%

t-value#

ZOI ± SD

%

t-value#

ZOI ± SD

%

t-value#

Inhib

Inhib

Inhib

Inhib

1

A (1)

16.82±0.78

91.3

2.628

17.90±1.05

89.8

2.675

16.09±0.59

80.0

8.579*

12.26±0.60

68.1

14.50*

2

A (2) 

12.16±0.79

68.2

11.06*

13.10±0.38

67.6

22.11*

12.19±0.68

61.5

16.56*

11.32±0.50

58.5

22.63*

3

A (3)

16.32±1.51

88.8

2.035

17.91±1.13

90

2.460

16.86±1.51

81.5

2.746*

12.32±0.68

68.4

12.83*

4

A (4)

10.66±0.56

60.7

19.02*

11.82±0.23

61.7

36.40*

10.66±0.40

50.2

22.05*

10.00±0.38

52.0

31.47*

5

B (1) 

16.69±0.85

90.6

2.478

18.49±0.68

92.5

2.625

18.00±1.06

87.5

2.493

16.86±0.91

90.7

2.510

6

B (2)

16.79±0.84

91.1

2.416

18.12±0.93

90.8

2.614

14.86±0.65

73.4

12.10*

13.59±0.65

74.6

10.32*

7

B (3)

17.16±0.60

92

2.48

18.14±0.93

90.8

2.56

13.72±0.60

68.3

14.68*

11.42±0.68

60.2

17.23*

8

B (4)

10.06±0.34

57.7

29.34*

11.26±0.40

60.1

27.76*

10.76±0.33

55.1

34.42*

11.32±0.43

64.5

21.10*

9

C (1)

10.26±0.56

58.7

19.70*

11.52±0.27

60.3

34.81*

10.79±0.58

50.7

26.36*

8.31±0.31

43.8

43.66*

10

C (2)

10.46±0.63

54.8

20.07*

11.86±0.23

62

36.20*

10.42±0.40

50.1

35.97*

10.70±0.35

51.5

33.61*

11

C (3)

16.94±0.71

92

2.48

18.09±0.93

90.7

2.667

15.26±1.51

75.2

5.527*

16.69±1.18

90.7

2.194

12

C (4)

16.86±0.79

91.4

2.415

18.16±0.90

91.0

2.652

18.88±0.88

91.5

2.517

16.96±0.80

91.2

2.658

13

Cipro

18.16±0.27

100

0.000

19.66±0.23

100

0.000

20.32±0.27

100

0.000

19.31±0.27

100

0.000

14

DMF

 

Table 2: Antifungal activity of benzimidazole derivatives (Zone of inhibition, ZOI and % inhibition)

S. No

Compound

A. niger

 

C. albicans

ZOI ± SD

% Inhib

t-value#

ZOI ± SD

% Inhib

t-value#

1

A (1)

14.26±0.64

70.2

14.39*

13.32±0.73

61

14.59*

2

A (2)

10.12±0.68

46.5

24.23*

11.16±0.64

49

21.54*

3

A (3)

10.32±0.94

47.5

18.60*

10.48±0.38

41.1

30.02*

4

A (4)

8.82±0.80

42.1

24.73*

8.50±0.68

38

25.68*

5

B (1)

14.62±0.24

66.4

29.11*

15.19±0.25

64.5

17.74*

6

B (2)

11.49±0.40

52.7

32.00*

13.42±0.64

57.2

16.35*

7

B (3)

12.38±0.27

56.5

36.16*

12.26±0.80

52.3

17.32*

8

B (4)

19.49±1.48

87.7

2.526

20.92±1.51

88.0

2.394

9

C (1)

20.31±0.90

91.3

2.532

20.54±0.93

90.5

2.563

10

C (2)

19.43±1.43

87.5

2.671

20.06±1.13

88.6

2.535

11

C (3)

13.49±0.28

65.7

26.45*

12.71±0.64

58.3

15.80*

12

C (4)

10.41±0.31

52.2

36.58*

11.56±0.80

53.6

15.82*

13

Fluconazole

21.81±0.31

100

0.000

23.32±0.64

100

0.000

14

DMF

 

Results and Discussion

The primary focus of this study was the synthesis of a number of substituted benzimidazole derivatives (Scheme 1, 2, and 3). Excellent yields of 60-90% were obtained for all of the synthesized compounds. Spectroscopic (IR and 1 H-NMR) approaches were used to verify the structures of all freshly synthesized derivatives. All synthesized derivatives had analytical and spectral data that agreed completely with their postulated structures.

Antibacterial and antifungal properties were tested for all synthesized compounds. The inhibitory effects ranged from mild to strong across all of the substances. From what we can tell from the screening findings, several of these compounds have far stronger antibacterial and antifungal properties than the standard medications.

When compared to Ciprofloxacin, the inhibitory activity of compounds A (1), A (3), B (1), B (2), B (3), C (3), and C (4) was shown to be between 75% and 95% more effective against Staphylococcus aureus and Bacillus substilis. The inhibitory effects of compounds A (2) were moderate, at 65-74%, while those of compounds A (4), B (4), C (1), and C (2) were weak, at 50-64%.   

Inhibitory action against Escherichia coli was increased by 75-95% when comparing compounds A (1), A (3), B (1), B (2), C (3), and C (4) to Ciprofloxacin. Compound B (3) exhibited moderate activity (66-77 percent inhibition), whereas compounds A (2), A (4), B (4), C (1), and C (2) all shown inhibitory effects in the 50-64 percent range.   

Inhibitory activity against Pseudomonas aeruginosa was greatest for compounds B (1), B (2), C (3), and C (4) (Table 1), whereas the other compounds exhibited moderate to weak activity.  

Aspergillus niger and Candida albicans were shown to be susceptible to killing by some of the chemicals in the aforementioned series. Compounds B (4), C (1), and C (2) showed the greatest effectiveness (75-95% inhibition). Inhibition rates between 50% and 74% were observed with other drugs against the aforementioned fungal species (Table 2).

According to the results shown above, antimicrobial activity are modified by the presence of a heterocyclic nucleus.

Acknowledgement

We are thankful to HOD, Chemistry, Lachoo Memorial College, Jodhpur, India for providing us with valuable lab facilities to conduct our research work.

Conflict of Interest

The authors declare no conflict of interest in the present work.

References

  1. Nannapaneni D. T.; Gupta Atyam V. S. S. S.; Reddy M. I.; Sarva R. C.,J. Young Pharm. 2010, 2(3), 273.
    CrossRef
  2. Kumar B. V. S.; Vaidya S. D.; Kumar R. V.; Bhirud S.B.; Mane R.B., Eur. J. Med. Chem., 2006, 41(5), 599.
    CrossRef
  3. Afaf H. E.; Fahmy H. H.; Abdelwal S. H., Molecules, 2000, 5(12), 1429.
    CrossRef
  4. Kazimierczuk Z.; Upcroft J. A.; Upcroft P.; Gorska A.; Starosciak B.; Laudy A., Acta Biochim. Pol., 2002, 49(1), 185.
    CrossRef
  5. Shetgiri N. P.; Kokitkar S. V., Indian J. Chem., 2001, 40(B), 163.
  6. Ansari K. F.; Lal C., Eur. J. Med. Chem., 2009, 44(5), 2294.
    CrossRef
  7. Khan S. A.; Nandan A. M., Ind. J. Het. Chem., 1997, 7(1), 55.
    CrossRef
  8. Evans D.; Hicks T. A.; Williamson W. R. N.; Dawson W.; Meacock S. C. R.; Kitchen E. A., Eur. J. Med. Chem., 1996, 31(7-8), 635.
    CrossRef
  9. Taha Mamdouh A. M., J. Indian Chem. Soc., 2005, 82(2), 180.
  10. Demirayak S.; Mohsen U. A.; Karaburun A. C., Eur. J. Med. Chem., 2002, 37(3), 255.
    CrossRef
  11. Sharma P.; Mandloi A.; Pritmani S., Ind. J. Chem., 1999, 38B(11), 1289.
  12. Raymond A. N.; Guan J.; Vernon C. A.; James C. L.; George A.; Tifanie S.; Olivia L.; Scott G. L.; Zhihua S., Biorg. Med. Chem. Lett., 2007, 17(3), 784.
  13. Kaghthara P. R.; Shah N. S.; Doshi R. K.; Parekh H. H., Ind. J. Chem., 1999, 38B(05), 572.
  14. Foks H.; Pancechowska-ksepko D.; Kuzmierkiewicz W.; Zwolska Z.; Kopec E. A.; Janowiec M., Chem. Heterocycl. Compd., 2006, 42(5), 611.
    CrossRef
  15. Chmirri A.; Sarro A. D.; Sarro G. D.; Gitto R.; Zapalla M., J. Med. Chem., 1989, 32(1), 93.
    CrossRef
  16. Chmirri A.; Sarro A. D.; Sarro G. D.; Gitto R.; Zapalla M., IL Farmaco., 2002, 56(11), 821.
    CrossRef
  17. Vostrova L. N.; Voronina T. A.; Araseva T. L.; Gernega S. A.; Ivanov E. I.; Kirichenko A. M.; Yotrova M. Y., Pharm. Chem. J., 1986, 20(6), 404.
    CrossRef
  18. Singh J. M.; J. Med. Chem., 1969, 12(5), 962.
    CrossRef
  19. Singh J. M.; J. Med. Chem., 1970, 13(5), 1018.
    CrossRef

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

About The Author