ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

Thermo Acoustic Parameters of Tetrabutylammonium Borate and Perchlorate in Non-Aqueous Solvents

Manpreet Kaur

Department of Chemistry, DAV College, Sector-10, 160010, Chandigarh, India.

Corresponding Author E-mail: sohalmanpreetkaur@yahoo.in

DOI : http://dx.doi.org/10.13005/ojc/370330

Article Publishing History
Article Received on : 09-May-2021
Article Accepted on : 15-Jun-2021
Article Published : 21 Jun 2021
Article Metrics
ABSTRACT:

Interactions of electrolytes in a binary mixture can be determined by various techniques. Ultrasonic velocity measurements prove to be one of the important tools for measuring various acoustic properties at variable temperature. Thermo acoustic parameters like Isentropic compressibility (κs),Acoustic impedance (Z), Free volume (Vf), Absorption coefficient (Abscoeff), Intermolecular free length (Lf), Gibb’s free energy (ΔG), Relaxation time (τ), Rao’s constant (Rm), Internal pressure (πi), Wada’s constant (w), and Entropy (H) for Tetrabutylammonium tetraphenylborate (Bu4NBPh4) and Tetrabuty lammonium perchlorate (Bu4NClO4) was calculated using experimental ultrasonic velocities, viscosities and densities at three different temperatures (298K, 308 K and 318K) and 1 atmospheric pressure in non-aqueous solvents like Dimethylsulfoxide (DMSO), Pyridine (Py) and their binary mixtures at 0, 20, 40, 60, 80 and 100 mol% of Py at variable temperatures ranging from 298K to 318K. Both Bu4NBPh4, Bu4NClO4, showed an increase in the ultrasonic velocity values at all the temperatures. This shows that molecular interactions are taking place in both the electrolytes. These increases in the molecular interactions with increase in the concentration of electrolytes in the solvent mixture were discussed in terms of solvent structural effects. And results showed the greater molecular interaction in DMSO rich regions.

KEYWORDS:

Acoustic Studies; Density; Non-Aqueous Solvents; Molecular Interaction; Ultrasonic Velocity

Download this article as: 

Copy the following to cite this article:

Kaur M. Thermo Acoustic Parameters of Tetrabutylammonium Borate and Perchlorate in Non-Aqueous Solvents. Orient J Chem 2021;37(3).


Copy the following to cite this URL:

Kaur M. Thermo Acoustic Parameters of Tetrabutylammonium Borate and Perchlorate in Non-Aqueous Solvents. Orient J Chem 2021;37(3). Available from: https://bit.ly/35DgkiD


Introduction

The structure and interactions of electrolytes in a binary mixture can be determined using a variety of approaches and spectroscopic techniques. X-ray crystallography, chromatography, NMR, EPR, vibration and Raman spectroscopy, neutron and light scattering, circular dichroism (CD), infrared spectroscopy, and ultrasonic velocity measurements are among them. Ultrasonic velocity measurements have been discovered to be the most important method in the investigation of structure and molecular interactions occurring in solutions among these techniques.Ultrasonic wave propagation in a material has become a basic test for determining its properties 1. Many researchers have demonstrated the critical and fundamental function of molecular specifics of the solvent species in determining particular interactions, which are responsible for macroscopic thermodynamic and other associated properties in non-electrolyte solutions 2, 3. Materials are typically treated in fluid form in the chemical process industries, so their physical, chemical, and transport properties are essential 4,5. The ultrasonic technique is a fast and non-destructive way to characterize materials6. The ultrasonic velocity in a liquid is fundamentally related to the binding forces between atoms or molecules, and it has been successfully used to characterize the physico chemical activity of liquid mixtures in the field of interactions and structural aspect studies 7-9. The ultrasonic velocity, in combination with density and viscosity, provides a wealth of knowledge about ion interactions, dipoles, hydrogen bonding, multipolar and dispersive forces 10. Since intermolecular and intramolecular association, complex formation, dipolar interactions, and related structural changes affect the system’s compressibility, which causes corresponding variations in ultrasonic velocity, ultrasonic propagation parameters provide useful information about the behavior of liquid systems 11. The various acoustic parameters are used to interpret the type and frequency of molecular interactions in the system 12. Intermolecular interactions have an effect on the structural arrangement and form of molecules 13,14. In the present studies thermo acoustic parameters like Isentropic compressibility (κs),Acoustic impedance (Z), Free volume (Vf), Absorption coefficient (Abscoeff), Intermolecular free length (Lf), Gibb’s free energy (ΔG), Relaxation time (τ), Rao’s constant (Rm), Internal pressure (πi), Wada’s constant (w), and Entropy (H) for Tetrabutylammonium tetraphenylborate (Bu4NBPh4) and Tetrabutylammonium perchlorate (Bu4NClO4)was calculated using experimental velocities, viscosities and densities at three different temperatures (298K, 308 K and 318K) and 1 atmospheric pressure in non-aqueous solvents like Dimethyl sulfoxide (DMSO), Pyridine (Py) and their binary mixtures at 0, 20, 40, 60, 80 and 100 mol% of Py at variable temperatures ranging from 298K to 318K.

Materials and Methods

Apparatus

Using experimental densities, the necessary proportion of solvents were mixed with the preliminary conversion of the required mass of each solvent to a volume at 298 K.  The solvents were mixable throughout. An electronic balance (SAG 285, Mettler Toledo) with a precision of ±10-7 kg was used for the mass measurements. Each solvent were kept in an air tight container to avoid any kind of contamination.  Density and ultrasonic velocity were measured by DSA 5000M from Anton Parr at 298K using long tube of borosilicate glass (U shaped). The sample was then excited to oscillate at its characteristic frequency of 2MHz. Apparatus was calibrated at the beginning of every set of reading with distilled water and air. For calibration, the density & ultrasonic velocity of known liquids like water (ρ = 0.99705 g cm-3, u = 1496.68 ms-1) and acetonitrile (ρ = 0.77687 g cm-3, u = 1280.9 ms-1) were measured at 298K and it agreed well with literature values of ρ = 0.99707 g cm-3 [15], u = 1496.6 ms-1 [16] for water and ρ = 0.77685 g cm-3, u = 1280.8 ms-1 [17] for acetonitrile. Accuracy in the density value was ±1×10-5 g.cm-3 and for ultrasonic velocity was ±0.1 ms-1. All the experiments were performed in temperature controlled DSA apparatus (±0.01K). Viscosity was measured by SV-10 viscometer (A&D Co. Ltd.) at a frequency of 30 Hz. The apparatus was calibrated prior every reading with distilled water. Each set of reading was repeated twice for better reproducibility of result. The accuracy in the viscosity value was found to be ± 1%. Dielectric constant meter (DCL-01) (SES Instruments Pvt. Ltd., Roorkee, India) operating at 1 Mhz frequency was used to measure dielectric constant (ε) with an accuracy of ± 1% [18].

Solvent Purification

Dimethylsulfoxide (DMSO), (Merck) [19] with boiling point 181-189 0C was purified by repeated crystallisations. The crystallised solvent was further kept over 4A⁰ molecular sieves for 2-3 days with occasional shaking and fractionated through a long vertical column under reduced pressure and middle fraction with density 1.0960 g cm-3 and viscosity 1.990 mPa.s was collected and stored. Pyridine (Py), (Merck) [19] with boiling point of 114-115 0C was refluxed over KOH for 3 hours and was distilled at atmospheric pressure and middle fraction with density 0.9786 g cm-3 and viscosity  0.881 mPa.s was collected and stored.

Table 1: Source and Purity of Solvents

Solvent

Provenance

CAS-NO.

Molecular

Formula

Molar Mass

(g mol-1)

Grade

Densitya

(g cm-3)

Mass

Fraction Purity

Water

Content

Dimethylsulfoxide (DMSO)

E.Merck

67-68-5

C2H6OS

78.13

ACS

1.0953

0.998b

0.0002c

Pyridine (Py)

E.Merck

110-86-1

C5H5N

79.1

ACS, Reag.

0.9786

0.995b

0.0001c

Density at 298 K by Anton Parr density meter (DSA 5000 M) with a precision of 0.0004 g cm-3

From Gas Chromatography Analysis

Karl-Fischer Titration Method

Preparation of Tetrabutylammonium perchlorates and Tetrabutylammonium tetraphenyl borate

Tetrabutylammonium tetraphenylborate (Bu4NBPh4)was prepared by mixing the aqueous solutions of tetrabutylammonium bromide (Bu4NBr) and sodium tetraphenylborate (NaBPh4) in 1:1 molar ratio. The white powder of Bu4NBPh4 precipitated out which was filtered and dissolved in acetone and again was precipitated on adding distilled water in excess. Process of precipitation was repeated twice. The salt was dried under vacuum at 60 oC over P2O5 for 2 days.

Purity was checked by measuring its melting point. The measured melting point was 222-224 0C which agreed well with the reported value of 223-225 0C [19]. Tetrabutylammonium perchlorate (Bu4NClO4)was prepared by prepared by dissolving silver perchlorate monohydrate (AgClO4.H2O) (sisco research laboratories) and tetrabutyl ammonium bromide (Bu4NBr) in aqueous acetone mixtures in 1:1 molar ratio. After mixing, the solution was filtered, concentrated by evaporation and again filtered and heated till salt separated out. The process of dissolving in acetone and recrystallizing was repeated twice and salt was dried under P2O5 for 2 days at 60 oC.

Theory

The Isentropic compressibility (κs) and Acoustic parameters like Acoustic impedance (Z), Free volume (Vf), Absorption coefficient (Abscoeff), Internal pressure (πi), Gibb’s free energy (ΔG), Relaxation time (τ), Rao’s constant (Rm), Intermolecular free length (Lf), Wada’s constant (w), and Entropy (H) was calculated using experimental velocities, viscosities and densities at three different temperatures (298K, 308 K and 318K) and 1 atmospheric pressure.

Isentropic compressibility(κs) was measured by [20]

where ρ denotes density and u,  ultrasonic velocity.

The acoustic impedance (Z) of a medium was calculated by a relation[21]:

Intermolecular free length (Lf) [21] between the molecules in the liquid state was determined by the relation

where K is constant whose value is taken as 1.995 x 10-6 at 298K, 2.095 x10-6 at 308K and 2.115 x 10-6 at 318K.

Relaxation time (τ) was using the following relationship[22]:

where η is the viscosity coefficient.

Free Volume (Vf) has been calculated from the relation[21]:

where, Meff is the effective molecular mass, K is temperature dependent constant

Absorption coefficient (Abscoeff) of the medium was found by a relation[21]:

The internal pressure (πi) was calculated by the relation[21]

where b refers to cubic packing of solventtaken to be equal to 2, K is dimensionless constant having a value 4.281 x 109, T is absolute temperature, η is viscosity in Nm-2s,R is gas constant,  u is ultrasonic velocity in m s-1, Meff is effective molecular weight and ρ is density in kg m-3.

Gibbs free energy (ΔG) was determined from acoustic relaxation time (τ) [20]

where K is Boltzmann constant, ħ is planck constant and τ is relaxation time.

Molar sound velocity or Rao’s constant (Rm) has been evaluated from the relation[20]

Wada’s constant (w) has been calculated using isentropic compressibility values[20]

Enthalpy (H) has been calculated by the relation

Results and Discussions

In the present studies the Isentropic compressibility (κs) and Acoustic parameters like Acoustic impedance (Z), Free volume (Vf), Absorption coefficient (Abscoeff), Internal pressure (πi), Gibb’s free energy (ΔG), Relaxation time (τ), Rao’s constant (Rm), Intermolecular free length (Lf), Wada’s constant (w), and Entropy (H) was calculated using experimental velocities, viscosities and densities at three different temperatures (298K, 308 K and 318K) and 1 atmospheric pressure for Bu4NClO4 and Bu4NBPh4 in a binary mixtures of DMSO+Py at 0, 20, 40, 60, 80 and 100 mol% composition of Py.

Table 2: Density (ρ), viscosity (ƞ), and ultrasonic velocity(u) for DMSO and Pyat 298K.

Solvents

ρ/(g cm-3)

η/(mPa s)

u/(m s-1)

Expt.

Lit.

Expt.

Lit.

Expt.

Lit.

DMSO

1.0953

1.09530 18]; 1.09533 19]; 1.09537 23]

1.99

2.012 [24];
1.99 [18];

1486.49

1486.74 [19]

Py

0.9786

0.9782 [19, 25]

0.88

0.88 [19];
0.89 [26]

1418.14

1419.2 [19]

Table 3: Density (ρ), Viscosity (η) and ultrasonic velocity (u) for DMSO+Py binary mixture at various temperaturesa.

DMSO+Py

Mol % Py

ρ (g.cm-3)

η (mPa.s)

u (m.s-1)

 

298 K

308 K

318 K

298 K

308 K

318 K

298 K

308 K

318 K

0

1.0953

1.0852

1.0753

1.99

1.645

1.385

1486.49

1467.07

1434.18

20

1.0702

1.0633

1.0535

1.61

1.455

1.236

1471.21

1453.97

1419.78

40

1.0494

1.0441

1.0342

1.32

1.284

1.089

1457.83

1442.84

1408.32

60

1.0233

1.0197

1.0099

1.12

1.093

0.932

1444.98

1428.76

1392.62

80

1.0033

0.9972

0.9873

1.01

0.942

0.787

1432.41

1407.8

1370.3

100

0.9786

0.9695

0.9594

0.88

0.771

0.655

1418.14

1381.7

1341.87

aRef: [19]

Table 4: Concentration and calculated Acoustic parameters of Bu4NBPh4 in DMSO+Py at 298 K.

100 mol% Py

Conc mol.Kg-3

ρ g.cm-3

u m.s-1

κs.106 bar-1

KsՓ

Z. 106 Kg m-2s-1

Lf .10-5 m

RA

τ . 10-12 s

      ΔG . 1024 J mol-1

Abscoeff. 10-8 Npm-1s2

Vf . 10-5 m3 mol-1

    πi . 103 N m-2

Rm

W

    H. 10-3 KJ mol1

0.0389

0.9796

1424.01

50.34

152.67

1.410

0.0140

0.9988

5.79

3.484

114.174

1.68

4234.65

923.59

46.90

34.76

0.0814

0.9801

1430.62

49.85

155.59

1.436

0.0138

0.9949

5.59

3.479

110.231

1.69

4226.29

924.55

46.94

34.67

0.1239

0.9819

1434.84

49.46

157.88

1.455

0.0136

0.9927

5.45

3.475

107.469

1.70

4225.24

923.76

46.91

34.60

0.1664

0.9827

1440.29

49.05

159.71

1.478

0.0134

0.9888

5.29

3.470

104.314

1.70

4219.53

924.18

46.93

34.53

0.2089

0.9838

1444.78

48.69

161.13

1.499

0.0132

0.9855

5.15

3.466

101.554

1.71

4216.11

924.10

46.92

34.46

80 mol% Py

0.0373

1.0036

1437.53

48.21

167.79

1.459

0.0137

0.9954

6.41

3.501

126.4

1.35

4639.09

899.72

45.83

36.98

0.0798

1.0051

1440.39

47.95

178.55

1.484

0.0135

0.9918

6.2

3.495

122.259

1.36

4639.10

898.97

45.79

36.92

0.1223

1.0068

1442.97

47.71

181.75

1.509

0.0133

0.9884

6.01

3.490

118.512

1.36

4640.17

897.99

45.75

36.87

0.1648

1.0076

1445.36

47.51

187.87

1.533

0.0131

0.9843

5.83

3.485

114.926

1.36

4638.79

897.77

45.74

36.83

0.2073

1.0084

1447.48

47.33

192.02

1.552

0.0129

0.9812

5.69

3.482

112.202

1.37

4637.84

897.50

45.73

36.79

60 mol% Py

0.0355

1.0245

1447.78

46.56

171.43

1.501

0.0135

0.9966

6.79

3.510

133.854

1.18

4926.44

881.08

44.99

38.36

0.078

1.0257

1450.31

46.35

182.61

1.528

0.0132

0.9923

6.57

3.504

129.457

1.19

4925.98

880.56

44.97

38.32

0.1205

1.0265

1452.49

46.17

189.06

1.554

0.0130

0.9878

6.35

3.499

125.237

1.19

4924.84

880.31

44.96

38.28

0.163

1.0278

1453.74

46.04

193.34

1.578

0.0128

0.9842

6.16

3.494

121.471

1.21

4926.88

879.45

44.92

38.24

0.2055

1.0286

1455.46

45.89

195.59

1.602

0.0126

0.9804

5.99

3.490

118.019

1.22

4926.52

879.11

44.91

38.21

40 mol% Py

0.0338

1.0507

1458.83

44.72

189.64

1.533

0.1334

1.0010

7.87

3.533

155.204

0.93

5434.92

859.04

44.01

41.16

0.0763

1.0512

1459.71

44.65

205.31

1.534

0.1333

1.0013

7.86

3.533

154.961

0.93

5435.01

858.81

44.00

41.14

0.1188

1.0521

1460.34

44.57

207.12

1.536

0.1332

1.0020

7.84

3.533

154.683

0.93

5436.93

858.19

43.97

41.12

0.1613

1.0529

1460.88

44.5

208.57

1.538

0.1331

1.0026

7.83

3.532

154.441

0.93

5438.69

857.65

43.95

41.10

0.2038

1.0534

1461.11

44.47

211.93

1.539

0.1330

1.0031

7.83

3.532

154.336

0.93

5439.98

857.29

43.93

41.09

20 mol% Py

0.0322

1.0724

1469.78

43.17

200.41

1.576

0.1311

1.0024

9.27

3.561

182.741

0.70

6084.76

841.05

43.20

45.01

0.0747

1.0717

1471.55

43.09

208.29

1.577

0.1310

1.0013

9.25

3.559

182.402

0.71

6078.45

841.94

43.24

44.99

0.1172

1.0709

1473.12

43.03

212.29

1.578

0.1309

1.0002

9.24

3.559

182.148

0.72

6072.18

842.87

43.28

44.98

0.1597

1.0698

1474.43

42.99

216.12

1.577

0.1308

0.9989

9.23

3.559

181.979

0.73

6065.33

843.98

43.33

44.97

0.2022

1.0686

1475.98

42.95

218.56

1.577

0.1307

0.9974

9.22

3.558

181.809

0.73

6057.61

845.23

43.38

44.96

0 mol% Py

0.0306

1.0947

1486.89

41.32

218.67

1.628

0.1282

0.9994

10.96

3.586

216.193

0.51

6878.07

820.98

42.27

49.47

0.0731

1.0937

1487.93

41.3

217.15

1.627

0.1282

0.9982

10.96

3.586

216.088

0.52

6871.47

821.92

42.31

49.47

0.1156

1.0929

1489.04

41.26

214.47

1.627

0.1281

0.9972

10.95

3.586

215.878

0.53

6865.56

822.73

42.35

49.46

0.1581

1.0903

1493.24

41.13

211.81

1.628

0.1279

0.9939

10.91

3.585

215.198

0.54

6845.02

825.47

42.47

49.43

0.2006

1.0881

1496.71

41.02

210.44

1.629

0.1278

0.9912

10.88

3.585

214.623

0.55

6827.88

827.78

42.57

49.41

Standard Uncertainty: u(T) = ±0.01 K, u(mole %) = ±0.01, u(ρ) = ±0.0004 g•cm-3, u(P) = 0.1 MPa.

Table 5: Concentration and calculated Acoustic parameters of Bu4NBPh4 in DMSO+Py at 308 K.

100 mol% Py

Concmol.Kg-3

ρ
g.cm-3

u
m.s-1

κs.106 bar-1

KsՓ

Z. 106 Kg m-2s-1

Lf .10-5 m

RA

τ . 10-12 s

ΔG.1024 J mol-1

Abscoeff.108 Npm-1s2

Vf .105 m3 mol-1

    πi . 103 N m-2

Rm

W

H. 10-3 KJ mol-1

0.0389

0.9703

1387.18

53.56

171.01

1.345

0.1533

0.9995

5.50

3.843

108.573

1.96

4124.45

924.33

46.93

34.18

0.0814

0.9717

1391.48

53.15

180.47

1.352

0.1527

0.9999

5.46

3.842

107.742

1.97

4122.03

923.95

46.91

34.11

0.1239

0.9725

1395.09

52.83

191.66

1.356

0.1522

0.9998

5.43

3.841

107.093

1.98

4118.95

923.99

46.91

34.06

0.1664

0.9731

1399.17

52.49

195.48

1.361

0.1517

0.9995

5.39

3.840

106.404

1.99

4114.63

924.32

46.93

34.00

0.2089

0.9737

1403.22

52.16

197.45

1.366

0.1513

0.9991

5.36

3.839

105.735

1.99

4110.38

924.64

46.94

33.94

80 mol% Py

0.0373

0.9976

1412.84

50.22

175.12

1.409

0.1484

0.9992

6.30

3.833

124.381

1.48

4629.33

899.92

45.83

37.12

0.0798

1.0003

1414.14

49.99

185.83

1.414

0.1481

1.0016

6.27

3.832

123.811

1.48

4635.55

897.76

45.74

37.07

0.1223

1.0017

1416.47

49.76

191.76

1.418

0.1477

1.0024

6.24

3.831

123.242

1.48

4636.05

897.00

45.70

37.02

0.1648

1.0024

1419.02

49.54

198.06

1.422

0.1474

1.0025

6.22

3.831

122.697

1.49

4634.04

896.91

45.70

36.98

0.2073

1.0027

1421.86

49.33

202.29

1.425

0.1471

1.0021

6.19

3.830

122.177

1.49

4630.34

897.24

45.71

36.94

60 mol% Py

0.0355

1.0189

1432.98

47.79

200.75

1.460

0.1448

0.9982

6.96

3.825

137.336

1.20

5037.47

882.89

45.07

39.44

0.078

1.0196

1434.52

47.66

212.36

1.462

0.1446

0.9985

6.94

3.825

136.962

1.20

5037.07

882.60

45.06

39.41

0.1205

1.0208

1435.28

47.55

215.59

1.465

0.1444

0.9995

6.92

3.824

136.646

1.21

5039.69

881.71

45.02

39.39

0.163

1.0223

1435.72

47.46

218.61

1.467

0.1443

1.0009

6.91

3.823

136.387

1.21

5043.85

880.51

44.96

39.36

0.2055

1.0231

1436.87

47.34

218.98

1.470

0.1441

1.0014

6.89

3.822

136.043

1.21

5044.46

880.06

44.94

39.34

40 mol% Py

0.0338

1.0429

1446.54

45.82

207.88

1.508

0.1418

0.9979

7.84

3.819

154.684

0.958

5536.09

863.02

44.18

42.24

0.0763

1.0425

1448.49

45.72

217.42

1.510

0.1416

0.9971

7.82

3.818

154.347

0.960

5530.94

863.74

44.21

42.22

0.1188

1.0422

1449.28

45.68

226.3

1.510

0.1415

0.9967

7.82

3.813

154.212

0.961

5528.38

864.15

44.23

42.21

0.1613

1.0418

1450.33

45.63

229.43

1.510

0.1415

0.9960

7.81

3.811

154.043

0.962

5524.96

864.69

44.25

42.20

0.2038

1.0412

1451.28

45.59

232.69

1.511

0.1414

0.9952

7.80

3.810

153.908

0.963

5521.03

865.38

44.29

42.19

20 mol% Py

0.0322

1.0641

1453.99

44.45

213.18

1.548

0.1396

1.0007

8.62

3.814

170.044

0.796

5979.87

844.56

43.35

44.57

0.0747

1.0629

1456.33

44.36

220.01

1.548

0.1395

0.9990

8.60

3.8137

169.700

0.798

5970.57

845.97

43.41

44.56

0.1172

1.0606

1458.82

44.3

228.41

1.547

0.1394

0.9963

8.59

3.8134

169.470

0.800

5956.87

848.28

43.51

44.55

0.1597

1.0587

1460.74

44.27

233.24

1.546

0.1393

0.9941

8.58

3.8133

169.355

0.802

5945.84

850.18

43.60

44.55

0.2022

1.0556

1462.91

44.27

241.39

1.544

0.1393

0.9907

8.58

3.8133

169.355

0.804

5929.82

853.10

43.72

44.56

0 mol% Py

0.0306

1.0851

1467.18

42.81

220.72

1.592

0.1370

0.9998

9.38

3.8080

185.156

0.664

6468.52

824.56

42.42

46.93

0.0731

1.0846

1469.42

42.7

213.24

1.593

0.1368

0.9989

9.36

3.8076

184.680

0.665

6461.60

825.36

42.46

46.91

0.1156

1.0835

1472.22

42.58

209.72

1.595

0.1367

0.9972

9.33

3.8071

184.161

0.667

6451.09

826.73

42.52

46.88

0.1581

1.0832

1473.79

42.5

206.88

1.596

0.1365

0.9966

9.32

3.8068

183.815

0.668

6446.46

827.25

42.54

46.86

0.2006

1.0829

1475.34

42.43

206.76

1.597

0.1364

0.9960

9.30

3.8066

183.513

0.671

6441.88

827.77

42.56

46.84

Standard Uncertainty: u(T) = ±0.01 K, u(mole %) = ±0.01, u(ρ) = ±0.0004 g•cm-3, u(P) = 0.1 MPa.

Table 6: Concentration and calculated Acoustic parameters of Bu4NBPh4 in DMSO+Py at 318 K.

100 mol% Py

Conc mol.Kg-3

Ρ

g.cm-3

U

m.s-1

κs.106 bar-1

KsՓ

Z. 106 Kg m-2s-1

Lf .10-5 m

RA

τ . 10-12 s

ΔG . 1024 J mol-1

Abscoeff. 10-8 Npm-1s2

Vf . 10-5 m3 mol-1

πi . 103 N m-2

Rm

W

H. 10-3 KJ mol-1

0.0389

0.9603

1347.25

57.37

183.82

1.294

0.1602

0.9996

5.01

3.860

98.799

2.40

3955.30

924.91

46.96

33.12

0.0814

0.9614

1350.11

57.06

211.88

1.298

0.1598

1.0000

4.98

3.859

98.266

2.40

3954.12

924.51

46.94

33.08

0.1239

0.9627

1352.52

56.78

221.53

1.302

0.1594

1.0008

4.96

3.858

97.783

2.41

3954.16

923.81

46.91

33.03

0.1664

0.9632

1355.37

56.52

229.81

1.305

0.1590

1.0006

4.94

3.857

97.336

2.42

3951.37

923.98

46.92

32.99

0.2089

0.9641

1357.96

56.25

232.21

1.309

0.1586

1.0009

4.91

3.857

96.871

2.43

3950.06

923.70

46.90

32.95

80 mol% Py

0.0373

0.9881

1374.29

53.58

195.04

1.358

0.1548

0.9998

5.62

3.849

110.868

1.86

4401.43

900.23

45.85

35.64

0.0798

0.9898

1375.55

53.39

210.05

1.362

0.1545

1.0013

5.60

3.848

110.475

1.86

4404.46

898.96

45.79

35.60

0.1223

0.9919

1377.06

53.17

216.89

1.366

0.1542

1.0030

5.58

3.848

110.019

1.87

4408.27

897.39

45.72

35.56

0.1648

0.9922

1378.83

53.01

226.84

1.368

0.1540

1.0029

5.56

3.847

109.688

1.87

4406.33

897.50

45.73

35.53

0.2073

0.9927

1381.19

52.81

229.56

1.371

0.1537

1.0028

5.54

3.847

109.275

1.87

4404.04

897.56

45.73

35.49

60 mol% Py

0.0355

1.0103

1395.69

50.81

207.14

1.410

0.1508

0.9997

6.31

3.840

124.507

1.47

4839.03

882.61

45.06

38.22

0.078

1.0109

1397.76

50.63

220.37

1.413

0.1505

0.9998

6.29

3.840

124.066

1.47

4837.36

882.53

45.06

38.18

0.1205

1.0112

1399.52

50.49

228.29

1.415

0.1503

0.9996

6.27

3.839

123.723

1.48

4835.28

882.63

45.06

38.15

0.163

1.0125

1400.02

50.39

230.97

1.418

0.1501

1.0008

6.26

3.839

123.478

1.48

4838.56

881.61

45.02

38.13

0.2055

1.0136

1401.07

50.26

231.13

1.420

0.1499

1.0016

6.25

3.839

123.159

1.48

4840.25

880.87

44.98

38.10

40 mol% Py

0.0338

1.033

1412.29

48.53

217.07

1.459

0.1473

0.9979

7.05

3.833

138.952

1.18

5293.62

864.37

44.25

40.78

0.0763

1.0329

1413.81

48.44

231.85

1.460

0.1472

0.9974

7.03

3.833

138.695

1.185

5290.43

864.76

44.26

40.76

0.1188

1.0326

1414.93

48.37

238.28

1.461

0.1471

0.9969

7.02

3.833

138.494

1.187

5287.31

865.24

44.28

40.75

0.1613

1.0323

1416.16

48.3

241.16

1.462

0.1470

0.9963

7.01

3.832

138.294

1.188

5283.99

865.74

44.31

40.74

0.2038

1.0319

1417.69

48.22

241.89

1.463

0.1469

0.9956

7.00

3.832

138.065

1.190

5279.78

866.39

44.33

40.72

20 mol% Py

0.0322

1.0522

1422.98

46.94

220.44

1.497

0.1449

0.9980

7.74

3.828

152.542

0.985

5709.15

848.00

43.50

43.04

0.0747

1.0517

1424.16

46.88

233.88

1.498

0.1448

0.9973

7.73

3.828

152.347

0.986

5704.98

848.64

43.53

43.03

0.1172

1.0509

1425.83

46.81

236.89

1.498

0.1447

0.9961

7.71

3.827

152.120

0.988

5698.75

849.62

43.58

43.02

0.1597

1.0491

1427.27

46.79

244.34

1.497

0.1447

0.9941

7.71

3.827

152.055

0.989

5689.36

851.36

43.65

43.02

0.2022

1.0481

1428.61

46.75

246.38

1.497

0.1446

0.9928

7.70

3.827

151.925

0.991

5683.08

852.44

43.70

43.01

0 mol% Py

0.0306

1.0752

1434.78

45.18

228.18

1.543

0.1422

0.9998

8.34

3.822

164.522

0.831

6159.12

825.99

42.49

45.11

0.0731

1.0747

1436.61

45.09

222.27

1.544

0.1420

0.9989

8.33

3.821

164.194

0.833

6153.29

826.73

42.52

45.08

0.1156

1.0737

1439.39

44.95

219.62

1.545

0.1418

0.9973

8.30

3.821

163.684

0.835

6143.53

828.03

42.58

45.05

0.1581

1.0733

1441.18

44.86

218.45

1.547

0.1417

0.9965

8.28

3.821

163.357

0.837

6138.19

828.68

42.61

45.03

0.2006

1.0727

1443.22

44.76

218.02

1.548

0.1415

0.9955

8.27

3.820

162.993

0.839

6131.56

829.54

42.65

45.01

Standard Uncertainty: u(T) = ±0.01 K, u(mole %) = ±0.01, u(ρ) = ±0.0004 g•cm-3, u(P) = 0.1 MPa

Table 7: Concentration and calculated Acoustic parameters of Bu4NClO4 in DMSO+Py at 298 K.

100 mol% Py

                          Conc.   mol.Kg-3

ρ
g.cm-3

u
m.s-1

κs.106 bar-1

KsՓ

Z. 106Kg m-2s-1

Lf .10-5 m

RA

τ . 10-12 s

ΔG.1024

 J mol-1

Abscoeff. 10-8 Npm-1s2

Vf . 10-5 m3 mol-1

    πi . 103 N m-2

Rm

W

    H. 10-3KJ mol-1

0.0474

0.9799

1421.21

50.53

100.31

1.393

0.1418

1.0006

5.92

3.829

116.912

1.66

4261.32

918.69

46.66

34.82

0.0899

0.9813

1424.13

50.24

94.55

1.397

0.1414

1.0014

5.89

3.828

116.241

1.67

4261.00

918.01

46.63

34.76

0.1324

0.9827

1427.8

49.92

88.72

1.403

0.1410

1.0019

5.85

3.827

115.501

1.67

4259.57

917.49

46.61

34.70

0.1749

0.9842

1430.85

49.63

86.97

1.408

0.1405

1.0027

5.82

3.826

114.830

1.68

4259.35

916.74

46.57

34.65

0.2174

0.9853

1434.89

49.29

83.84

1.414

0.1401

1.0029

5.78

3.825

114.043

1.68

4256.52

916.58

46.57

34.59

80 mol% Py

0.0449

1.0044

1434.96

48.35

102.78

1.441

0.1387

1.0005

6.57

3.822

129.666

1.34

4661.976

895.78

45.63

37.02

0.0879

1.0049

1438.86

48.06

95.88

1.446

0.1383

1.0001

6.53

3.821

128.888

1.35

4657.199

896.15

45.65

36.96

0.1304

1.0054

1443.17

47.75

91.32

1.451

0.1379

0.9996

6.49

3.820

128.056

1.35

4651.782

896.59

45.67

36.90

0.1729

1.0069

1446.19

47.48

88.03

1.456

0.1375

1.0004

6.45

3.819

127.332

1.36

4651.543

895.88

45.64

36.85

0.2154

1.0074

1450.93

47.16

85.48

1.462

0.1370

0.9998

6.41

3.818

126.474

1.36

4645.476

896.41

45.66

36.78

60 mol% Py

0.0409

1.0233

1446.77

46.68

124.91

1.480

0.1363

0.9996

6.97

3.817

137.460

1.20

4879.534

888.84

45.38

38.34

0.0834

1.0239

1447.95

46.58

125.39

1.483

0.1362

0.9999

6.96

3.816

137.166

1.20

4879.452

888.56

45.37

38.32

0.1259

1.0242

1449.29

46.48

126.38

1.484

0.1360

0.9999

6.94

3.816

136.871

1.20

4878.148

888.57

45.37

38.30

0.1684

1.0248

1449.82

46.42

128.29

1.486

0.1359

1.0004

6.93

3.816

136.695

1.20

4879.161

888.16

45.35

38.28

0.2109

1.0254

1450.01

46.4

131.31

1.487

0.1359

1.0009

6.93

3.816

136.636

1.20

4880.746

887.68

45.33

38.27

40 mol% Py

0.0384

1.0501

1457.88

44.8

128.53

1.531

0.1335

1.0007

7.88

3.810

155.482

0.92

5471.896

854.33

43.77

41.22

0.0809

1.0496

1459.7

44.71

129.33

1.532

0.1334

0.9998

7.87

3.810

155.170

 0.92

5466.748

855.09

43.80

41.20

0.1234

1.0491

1461.55

44.63

130.22

1.533

0.1333

0.9989

7.85

3.809

154.892

0.93

5461.551

855.86

43.83

41.18

0.1659

1.0488

1461.97

44.61

133.68

1.533

0.1332

0.9985

7.85

3.808

154.823

0.93

5459.726

856.18

43.85

41.18

0.2084

1.0476

1463.34

44.58

137.11

1.533

0.1332

0.9970

7.85

3.807

154.718

0.93

5453.006

857.43

43.90

41.18

20 mol% Py

0.0359

1.0705

1471.26

43.15

129.04

1.575

0.1310

1.0003

9.26

3.804

182.656

0.69

6095.34

840.36

43.15

45.03

0.0784

1.0703

1471.77

43.11

130.08

1.575

0.1310

1.0000

9.25

3.803

182.487

0.69

6093.525

840.61

43.17

45.03

0.1209

1.0692

1473.33

43.09

134.73

1.575

0.1310

0.9986

9.25

3.802

182.402

0.70

6086.125

841.77

43.21

45.02

0.1634

1.0688

1473.86

43.07

135.29

1.575

0.1309

0.9981

9.25

3.801

182.318

0.70

6083.513

842.19

43.23

45.02

0.2059

1.0682

1474.7

43.05

136.01

1.575

0.1309

0.9973

9.24

3.800

182.233

0.70

6079.503

842.82

43.26

45.01

0 mol% Py

0.0334

1.0949

1486.97

41.31

130.39

1.628

0.1282

0.9995

10.96

3.797

216.141

0.51

6873.556

821.38

42.29

49.46

0.0759

1.0942

1487.52

41.3

131.64

1.628

0.1282

0.9988

10.96

3.795

216.088

0.51

6869.356

822.00

42.32

49.46

0.1184

1.0933

1488.44

41.29

132.64

1.627

0.1282

0.9977

10.96

3.794

216.036

0.51

6863.467

822.85

42.36

49.46

0.1609

1.0917

1489.63

41.28

135.74

1.626

0.1282

0.9960

10.95

3.793

215.984

0.51

6854.029

824.27

42.42

49.46

0.2034

1.0901

1490.94

41.26

136.55

1.625

0.1281

0.9943

10.95

3.791

215.879

0.51

6844.322

825.73

42.48

49.47

Table 8: Concentration and calculated Acoustic parameters of Bu4NClO4 in DMSO+Py at 308 K.

100 mol% Py

Conc. mol.Kg-3

ρ
g.cm-3

u
 m.s-1

κs.106 bar-1

KsՓ

Z. 106 Kg m-2s-1

Lf .10-5 m

RA

τ .

10-12 s

ΔG.1024 J mol-1

Abscoeff. 10-8 Npm-1s2

Vf . 10-5 m3 mol-1

    πi . 103 N m-2

Rm

W

    H. 10-3 KJ mol-1

0.0474

0.9704

1385.31

53.69

107.35

1.344

0.154

1.000

5.52

3.84

108.837

1.96

4127.52

923.83

46.91

34.21

0.0899

0.9723

1387.14

53.45

103.75

1.349

0.153

1.002

5.49

3.84

108.350

1.96

4130.178

922.43

46.85

34.16

0.1324

0.9747

1388.82

53.19

99.05

1.354

0.153

1.004

5.47

3.84

107.823

1.97

4134.469

920.53

46.77

34.11

0.1749

0.9761

1391.49

52.91

98.18

1.358

0.152

1.004

5.44

3.84

107.256

1.97

4134.455

919.80

46.74

34.06

0.2174

0.9772

1394.88

52.59

96.02

1.363

0.152

1.005

5.41

3.84

106.607

1.98

4132.53

919.51

46.72

34.01

80 mol% Py

0.0449

0.9979

1410.66

50.36

110.29

1.408

0.149

1.000

6.33

3.83

124.728

1.48

4633.839

899.19

45.80

37.15

0.0879

0.9987

1413.81

50.09

105.86

1.412

0.148

1.000

6.29

3.83

124.059

1.49

4631.148

899.14

45.80

37.10

0.1304

0.9999

1416.43

49.85

103.19

1.416

0.148

1.001

6.26

3.83

123.465

1.49

4630.568

898.61

45.78

37.05

0.1729

1.0005

1419.77

49.58

101.37

1.420

0.148

1.000

6.23

3.83

122.796

1.49

4626.968

898.78

45.79

37.00

0.2154

1.0012

1423.25

49.31

99.63

1.425

0.147

1.000

6.19

3.83

122.128

1.50

4623.463

898.88

45.79

36.95

60 mol% Py

0.0409

1.0205

1430.12

47.91

124.34

1.459

0.145

1.000

6.98

3.83

137.681

1.20

5047.789

880.92

44.99

39.47

0.0834

1.0217

1430.49

47.83

125.36

1.462

0.145

1.002

6.97

3.82

137.451

1.20

5051.092

879.96

44.94

39.45

0.1259

1.0223

1431.62

47.73

126.03

1.464

0.145

1.002

6.96

3.81

137.164

1.21

5051.074

879.68

44.93

39.42

0.1684

1.0238

1431.68

47.65

127.92

1.466

0.145

1.003

6.94

3.80

136.934

1.21

5055.908

878.40

44.88

39.40

0.2109

1.0242

1432.81

47.56

128.73

1.467

0.144

1.003

6.93

3.80

136.675

1.21

5055.23

878.29

44.87

39.38

40 mol% Py

0.0384

1.0433

1445.54

45.87

132.18

1.5081

0.1419

0.9986

7.85

3.82

154.854

0.957

5539.422

862.50

44.16

42.26

0.0809

1.0424

1447.71

45.77

133.55

1.5091

0.1417

0.9973

7.84

3.82

154.516

0.96

5532.085

863.68

44.21

42.24

0.1234

1.0417

1449.12

45.71

134.92

1.5095

0.1416

0.9963

7.83

3.82

154.314

0.961

5526.917

864.54

44.25

42.22

0.1659

1.0402

1450.98

45.66

139.75

1.5093

0.1416

0.9944

7.82

3.82

154.145

0.963

5518.07

866.15

44.32

42.22

0.2084

1.0399

1451.78

45.63

140.54

1.5097

0.1415

0.9939

7.81

3.82

154.044

0.964

5515.489

866.56

44.34

42.21

20 mol% Py

0.0359

1.0629

1454.92

44.45

134.23

1.546

0.140

0.999

8.62

3.81

170.045

0.798

5973.472

845.70

43.40

44.58

0.0784

1.0614

1456.97

44.38

138.76

1.546

0.140

0.998

8.61

3.81

169.777

0.799

5963.651

847.29

43.47

44.57

0.1209

1.0605

1457.89

44.36

142.02

1.546

0.140

0.996

8.61

3.81

169.700

0.800

5958.398

848.19

43.51

44.57

0.1634

1.0597

1458.65

44.35

143.71

1.546

0.140

0.996

8.60

3.81

169.662

0.801

5953.849

848.98

43.55

44.57

0.2059

1.0584

1459.79

44.33

145.27

1.545

0.139

0.994

8.60

3.81

169.586

0.802

5946.656

850.24

43.60

44.57

0 mol% Py

0.0334

1.0851

1467.15

42.81

134.99

1.592

0.137

1.000

9.39

3.81

185.157

0.664

6468.588

824.56

42.43

46.94

0.0759

1.0849

1467.41

42.8

135.11

1.592

0.137

1.000

9.39

3.81

185.113

0.665

6467.22

824.76

42.44

46.94

0.1184

1.0847

1467.72

42.79

136.85

1.592

0.137

0.999

9.39

3.81

185.070

0.665

6465.742

824.97

42.45

46.94

0.1609

1.084

1468.38

42.78

137.93

1.592

0.137

0.999

9.38

3.81

185.027

0.665

6461.507

825.63

42.48

46.94

0.2034

1.0831

1469.13

42.77

138.95

1.591

0.137

0.998

9.38

3.81

184.984

0.666

6456.282

826.46

42.51

46.94

Standard Uncertainty: u(T) = ±0.01 K, u(mole %) = ±0.01, u(ρ) = ±0.0004 g•cm-3, u(P) = 0.1 MPa.

Table 9: Concentration and calculated Acoustic parameters of Bu4NClO4 in DMSO+Py at 318 K.

100 mol% Py

Conc. mol.Kg-3

ρ g.cm-3

u m.s-1

κs.106 bar-1

KsՓ

Z. 106 Kg m-2s-1

Lf .10-5 m

RA

τ . 10-12 s

ΔG.1024 J mol-1

Abscoeff. 10-8 Npm-1s2

Vf . 10-5

m3 mol-1

    πi .103 N m-2

Rm

W

H. 10-3 KJ mol-1

0.0474

0.9625

1349.25

57.07

112.31

1.299

0.160

1.001

4.98

3.86

98.283

2.41

3958.40

923.26

46.89

33.07

0.0899

0.9638

1357.97

56.26

109.11

1.309

0.159

1.001

4.91

3.86

96.888

2.43

3949.22

923.99

46.92

32.95

0.1324

0.9651

1366.76

55.47

106.53

1.319

0.158

1.000

4.84

3.85

95.527

2.45

3940.04

924.73

46.95

32.83

0.1749

0.9662

1375.43

54.71

105.58

1.329

0.156

0.999

4.78

3.85

94.218

2.48

3930.59

925.63

46.99

32.72

0.2174

0.9675

1383.68

53.99

104.25

1.339

0.155

0.998

4.72

3.85

92.979

2.50

3922.37

926.23

47.01

32.60

80 mol% Py

0.0449

0.9878

1373.28

53.68

115.02

1.357

0.155

1.000

5.63

3.85

111.075

1.86

4402.16

900.29

45.85

35.66

0.0879

0.9884

1376.32

53.41

111.84

1.360

0.155

1.000

5.60

3.85

110.516

1.87

4399.07

900.40

45.86

35.61

0.1304

0.9907

1377.87

53.17

109.52

1.365

0.154

1.002

5.58

3.85

110.019

1.87

4403.42

898.65

45.78

35.56

0.1729

0.9916

1380.71

52.9

108.04

1.369

0.154

1.002

5.55

3.85

109.461

1.88

4401.55

898.45

45.77

35.51

0.2154

0.9925

1383.78

52.62

106.24

1.373

0.153

1.002

5.52

3.85

108.881

1.88

4399.32

898.30

45.76

35.46

60 mol% Py

0.0409

1.0105

1394.29

50.9

127.67

1.409

0.151

1.000

6.33

3.84

124.727

1.47

4842.10

882.14

45.04

38.23

0.0834

1.0113

1395.55

50.77

129.88

1.411

0.151

1.001

6.31

3.84

124.409

1.47

4842.47

881.71

45.02

38.21

0.1259

1.0122

1396.38

50.66

131.43

1.413

0.151

1.001

6.30

3.84

124.139

1.48

4843.90

881.10

45.00

38.18

0.1684

1.0137

1396.41

50.59

132.47

1.416

0.150

1.003

6.29

3.84

123.968

1.48

4848.64

879.81

44.94

38.17

0.2109

1.0146

1396.81

50.52

133.91

1.417

0.150

1.004

6.28

3.84

123.796

1.48

4850.81

879.11

44.91

38.15

40 mol% Py

0.0384

1.0331

1411.02

48.62

141.21

1.4577

0.1475

0.9983

7.06

3.83

139.210

1.18

5296.34

864.03

44.23

40.80

0.0809

1.0326

1411.96

48.58

148.31

1.4580

0.1474

0.9976

7.05

3.83

139.096

1.18

5292.87

864.64

44.26

40.79

0.1234

1.0317

1413.41

48.52

151.99

1.4582

0.1473

0.9964

7.05

3.83

138.924

1.19

5287.08

865.69

44.30

40.78

0.1659

1.0304

1414.66

48.49

156.17

1.4577

0.1473

0.9948

7.04

3.83

138.838

1.19

5280.31

867.03

44.36

40.78

0.2084

1.0293

1415.78

48.47

158.22

1.4573

0.1472

0.9935

7.04

3.83

138.781

1.19

5274.46

868.19

44.41

40.78

20 mol% Py

0.0359

1.0524

1421.13

47.05

155.28

1.496

0.145

0.999

7.75

3.83

152.900

0.983

5713.59

847.47

43.48

43.07

0.0784

1.0517

1421.87

47.03

155.38

1.495

0.145

0.998

7.75

3.83

152.835

0.984

5709.57

848.18

43.51

43.07

0.1209

1.0503

1422.98

47.02

157.82

1.495

0.145

0.996

7.75

3.83

152.802

0.985

5702.28

849.54

43.57

43.07

0.1634

1.0497

1423.56

47

158.36

1.494

0.145

0.996

7.75

3.83

152.737

0.986

5698.95

850.14

43.60

43.07

0.2059

1.0481

1424.75

46.98

160.34

1.493

0.145

0.994

7.74

3.83

152.672

0.987

5690.77

851.67

43.67

43.07

0 mol% Py

0.0334

1.0753

1427.92

45.61

145.03

1.5354

0.1428

1.0015

8.42

3.82

166.088

0.826

6174.28

824.59

42.43

45.21

0.0759

1.0747

1436.18

45.11

146.61

1.5435

0.1421

0.9990

8.33

3.82

164.267

0.833

6154.21

826.64

42.52

45.09

0.1184

1.0737

1436.83

45.1

148.94

1.5427

0.1420

0.9979

8.33

3.82

164.231

0.834

6149.00

827.54

42.56

45.09

0.1609

1.0724

1438.09

45.08

150.81

1.5422

0.1420

0.9964

8.32

3.82

164.158

0.835

6141.34

828.78

42.61

45.09

0.2034

1.0708

1440.02

45.03

153.68

1.5420

0.1419

0.9945

8.32

3.82

163.976

0.836

6131.12

830.39

42.69

45.09

Standard Uncertainty: u(T) = ±0.01 K, u(mole %) = ±0.01, u(ρ) = ±0.0004 g•cm-3, u(P) = 0.1 MPa.

The previous investigations of the solvation of Me4N+, Et4N+, Pr4N+ and Bu4N+ ions are limited to 2-methoxyethanol,water [27], N,N-dimethyl formamide, acetonitrile, DMSO and n-butyronirile and their binary mixtures [28, 29]. Since there is a limited data available for DMSO and Py, it is expected to be good solvents for a comparative study of the solvation behaviour of tetraalkylammonium ions. As evident from Tables 4-9, with the increase in the concentration of electrolytes (Bu4NBPh4, Bu4NClO4), the density shows an increase in trend and moreover ultrasonic velocity (u) increases. Increment in the ultrasonic velocity is related to compactness of medium as the number of molecules per unitvolume increases, thus the medium becomes denser. It has been further supported by the fact that the electrolytes show two types of behaviour either structure maker or structure breaker. Increase in ultrasonic velocity corresponds to structure making tendency of electrolytes and decrease in velocity refers to structure breaking tendency.

Both Bu4NBPh4, Bu4NClO4, shows an increase in the ultrasonic velocity values at all the temperatures. This shows that molecular interactions are taking place in both the electrolytes. This increase in the molecular interactions with increase in the concentration of electrolytes in the solvent mixture may be due to solvent structural effects. Density measurements further supports these molecular interactions. With the increase in density, the interactions between solvent-solvent and solute-solvent is also increased. This could be attributed to the reduction in the free space per unit volume as more and more solute molecules occupied it. Isentropic compressibility (кs) shows the decreasing trend. When the solute molecule is added to the solvent, there are large numbers of solvent molecules available to interact and surround the incoming solute molecules. But on addition of more solute molecules in the solvent, the availability of solvent molecules in the bulk decreases. Because addition of an ion to the solvent attracts the solvent molecules towards itself, by pulling the molecules from surroundings. The electrostatic forces between incoming ions and the solvent molecule results in decrease in the availability of solvent molecules for next incoming ions. This process is defined as compressibility. Every solvent has a limit for compression called limiting compressibility. The solvent’s compressibility is generally more than that of a solute and is inversely related to concentration. κs decreases with increase in concentration because as the concentration of solutes increases, a larger portion of solvent molecules being electrostatic attract towards solute molecules and there is reduction in the amount of solvent molecules in the bulk which inversely decreases. Bu4NBPh4, Bu4NClO4, both shows the same decreasing trend at all compositions of Py solvents and trend is followed at high temperatures also.

The Acoustic Impedance (Z), for the electrolyte is related to density and ultrasonic velocity of the medium. Z values increases with the increase in the concentration of Bu4NBPh4, Bu4NClO4, at 298 K, 308 K and 318 K. The value of Z further increases when we move to DMSO rich regions than in Py rich regions. This behaviour suggests the possibility of molecular interactions between solutes and solvent through hydrogen bonding. Intermolecular free length (Lf), decreases with increase in the concentration of electrolytes which indicates less number of solvent molecules available in the bulk but the value increases with the increase in temperature [30]. Thus intermolecular free length shows inverse relationships with the ultrasonic velocity. Lesser the intermolecular distance between the solvent and solute molecules, more will be the free length. Thus this leads to high ultrasonic velocity of the medium. Both Bu4NBPh4, Bu4NClO4, shows approximately same trend in the Lf values.

Relative association (RA), is further influenced either by the breaking up of the solvent structures on addition of solutes or by the relative solvation of the solutes. The former trend refers to decrease in the RA values and latter corresponds to increase in the RA values. These values show no regular trend in both the electrolytes studied. These values were found to be maximum at 80 mol% Py for Bu4NBPh4, which is greater than one. This indicates that Bu4NBPh4, is solvated to greater extent at 80 mol% Py. But both in Pure Py or pure DMSO, the RA values are less than one which indicates the breaking up of the solvent structures with addition of solute molecules. This trend remains same at all the temperatures studied. But the RA values for Bu4NClO4 is positive and greater than one which indicates that for Bu4NClO4, shows more molecular interactions in DMSO as well as in Py at all compositions and at all three temperatures. Relaxation time (τ) decreases with increase in the concentration of Bu4NBPh4, Bu4NClO4, and shows a decreasing trend as we move to Py rich regions. The relaxation time further shows a decreasing trend with increase in temperature. Relaxation time indicates the time taken by solute molecules to undergo any structural changes [31, 32]. Gibbs free energy (ΔG) measures the close packing of molecules which might be due to some kind of bonding (hydrogen or van der wall) between electrolyte and the solvent molecules. The decrease in the trend of free energy values suggest that less time is required for the cooperation process or rearrangement of molecules in the solvent [33]. Values of absorption coefficient (α/f2) decreases with increase in the concentration of electrolytes and also decreases with the increase in the temperature. This indicates that the interaction in Py rich regions is less for both the electrolytes and same trend is followed at high temperature also [34]. Thus it shows greater molecular interaction in DMSO rich regions and Entropy (H) follows the same pattern.

Internal Pressure (Πi) value decreases when the concentration of both Bu4NBPh4, Bu4NClO4, increases indicating that the molecular interactions is greater at lower concentration of solute and these interactions are more for DMSO than for Py [35]. It is also very interesting to see that free volume of the system increases as the internal pressure decreases. The higher value of free volume indicates weak solute-solute interactions and vice-versa. Decrease in the internal pressure might be attributed to the loosening of cohesive forces which leads to breaking up of solvent structure at Py rich regions for Bu4NBPh4 and Bu4NClO4. Rao constant (Rm) and Wada constant (W) did not show much change in the values with increase in the concentration of solute. But this increase in the Py rich region indicating the presence of higher number of molecules in same region which lead to compact packing of medium thus increasing the interaction.

Conclusions

Acoustic studies of tetrabutylammonium tetraphenylborate and tetrabutylammonium perchlorate in a mixture of dimethylsulfoxide and pyridine at 298 K, 308 K and 318 K were carried out for the present studies.Tetraalkylammonium salts exclusively find an application as electrolytes in developing super capacitors also known as electrical double layer capacitors (EDLCs). Results showed greater molecular interaction in DMSO rich regions for both Bu4NBPh4 and Bu4NClO4, at all temperatures. This increase in the molecular interactions with increase in the concentration of electrolytes in the solvent mixture may be attributed to solvent structural effects.

References

  1. Gill, D.S.; Anand, H.; Pathania, V., Z. Phys. Chem., 2004, 218, 857-865.
    CrossRef
  2. Gill, D.S.; Rodehueser, L.; Rubini, P.; Delpuech, J.J., J. Chem. Soc. Faraday Trans., 1995, 91, 2307.
    CrossRef
  3. Gill, D.S.; Kemp, U.; Dölle, A.; Zeidler, M.D., Ind. J. Chem. 2001, 40A, 693-699.
  4. Saravanakumar, K.; Baskaran, R.; Kubendran, T.R., Russ. J. Phys. Chem. A., 2012, 86(13),1947–1952.
    CrossRef
  5. Bedare, G.R.; Bhandakkar, V.D.; Suryavanshi, B.M., Euro. J. Appl. Eng. Sci. Res., 2012, 1 (1), 1-4.
    CrossRef
  6. Amrutia, R.R.; Mehta, N.M.; Karia, F.D.; Parsania. P.H., J. Sci. Ind. Res.,2006, 65, 905-911.
  7. Praharaj, M.K.; Satapathy, A.; Mishra. P.; Mishra, S., J. Chem. Pharma. Res.,2013, 5(1), 49-56.
  8. Bhandakkar, V.D.; Bhat, V.R.; Chimankarand, O.P.; Asole. A.W., Adv. Appl. Sci.  Res., 2014, 5(2), 80-85.
  9. Rawat, M.K.; Sangeeta., Ind. J.  Pure and Appl. Phys.,2008, 46(3), 187-192.
  10. Jasmine, E.; Rani, V.; Kannagi, K.; Padmavathy, R.; Radha, N., J. Bas. Appl. Phys.1., 2012, 96-101.
  11. Singh, P.K.; Bhatt, S.C., Appl. Phys. Res,.2010, 2(1), 35-41.
  12. Tabhane, P.; Chimankar, O.P.; Dudhe, C.M.; Tabhane; V.A., Der. Chemica. Sinica., 2012, 3(4), 944-947.
  13. Wadekar, M.P., J. Chem. Pharma. Res.,2013, 5(8), 37-41.
  14. Kaur, B.; Juglan, K. C., J. Poly.  Eng., 2013,33, 851-856.
    CrossRef
  15. Rodrıguez,. H.; Brennecke, J.F., J. Chem. Eng. Data.,2006, 51, 2145-2155.
    CrossRef
  16. Del Grosso, V.A.; Mader, C.W., J. Acoust. Soc. Am., 1972, 52, 1442–46.
    CrossRef
  17. Gill, D.S.; Rohitash.; Anand, H.; Puri, J.K.,J. Mol. Liq.,2002, 15, 98-99.
    CrossRef
  18. Pathania, V.; Kaur, M.; Vermani, B.K.; Veneeta,; Gill, D.S., J. Soln. Chem., 2021. https://doi.org/10.1007/s10953-021-01086-3
    CrossRef
  19. Kaur, M., IOP Conf. Ser.: Mater. Sci. Eng., 2021, 1033 012079
    CrossRef
  20. Mehra, R.; Malav, B.B., Arab. J. Chem., 2013, DOI: 10.1016/j.arabjc.2013.07.018
    CrossRef
  21. Godhani, D.R.; Dobariya, P.B.; Sanghani, A.M.; Mehta, J.P., Arab. J. Chem., 2012, 10, 422-430. http://dx.doi.org/10.1016/j.arabjc.2012.10.002
    CrossRef
  22. Dash, U.N.; Roy, G.S.; Talukdar, M.; Moharatha, D.,  Ind. J. of Pure & Appl. Phys., 2010, 48, 651-657.
  23. Markarian, S.A.; Asatryan, A.M.; Zatikyan, A.L., J. Chem. Thermodyn., 2005,37, 768–777.
    CrossRef
  24. Zhao, T.; Zhang, J.; Guo, B.; Zhang, F.; Sha, F.; Xie, X,; Wei, X., J. Mol. Liq., 2005, 207, 315-322.
    CrossRef
  25. Kinart, C.M.; Kinart, W.J.; Aewiklinska, A,; Kinart, Z., Phys. Chem. Chem. Phys. 2014, 52, 627-635.
    CrossRef
  26. Kijevcanin, M.L.; Zivkovic, E.M.; Djordjevic, B.D.; Radovic, R.; Jovanovic, J.; Serbanovic, S., J. Chem. Thermodyn., 2013, 56, 49-56.
    CrossRef
  27. Gill, D.S.; Kumari, A.; Kumar, S.; Jauhar, S.P., Z Naturforsch., 2005, 60A, 70-74.
    CrossRef
  28. Kratochvil, B.; Yeager, H.L., Topic in Current Chemistry., 1972, 27, 1.
  29. Anand, H.; Verma, R., Chem Sci Trans., 2018, 7(3), 488-498
  30. Shinde, B.R.; Jadhav, S.S.; Shinde, S.U.; Shengule, D.R.; Jadhav, K.M.,  J. Chem. Pharm. Res., 2011, 3(3), 432-438.
  31. Sharma, P.; Chauhan, S.; Chauhan, M.S.; Syal, V.K., Ind J Pure and Appl Phys, 2008, 46, 839-843.
  32. Ali, A.; Hyde, S.; Nain, A.K., Ind. J. Phys., 2000, 74 (B), 63-67.
  33. Naik, A.B.; Ind. J. Pure and Appl. Phys., 2015, 53, 27-34.
    CrossRef
  34. Kannappan, A.N.; Ali, S.J.A.; Mahaboob, A., Ind J Pure and Appl Phys., 2009, 47, 97.
  35. Kolhe, R.K.; Bhosale, B.B., Int. J. Scient. And Resc. Pub., 2017, 7, 494-511.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

About The Author