ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

Quantum mechanical investigation of bond gaps of π-acceptor complex alone and affected nanoring field

Mehrnoosh Khaleghian1*, Gholamreza Ghashami2

1 Department of Chemistry, Eslamshahr Branch, Islamic Azad University, Tehran, Iran 2 Department of Engineering, Eslamshahr Branch, Islamic Azad University, Tehran, Iran

DOI : http://dx.doi.org/10.13005/ojc/300247

Article Publishing History
Article Received on :
Article Accepted on :
Article Published : 26 May 2014
Article Metrics
ABSTRACT:

We studied non-bonded interaction of the [Co(CN)6]3- complex Situated B24N24 nanoring. Early, the geometry of [Co(CN)6]3- and B24N24 have been optimized at B3LYP method with Def2-SV(P)/ LANL2DZ(ECP) and EPR-II basis set respectively. To confirmation the structural stability of the B24N24-[Co(CN)6]3- nano system, delocalization of electrons between donor and acceptor bonds and LUMO and HOMO for the lowest energy have been computed by DFT/ B3LYP method. Then we investigated NBO data such as coefficients and hybrids of orbitals, second order perturbation theory analysis of fock matrix, and ΔE in different loops of the nanoring have been calculated at B3LYP method.

KEYWORDS:

DFT; ECP; EPR-II basis set; HOMO; LUMO; NICS

Download this article as: 

Copy the following to cite this article:

Khaleghian M, Ghashami G. Quantum mechanical investigation of bond gaps of π-acceptor complex alone and affected nanoring field. Orient J Chem 2014;30(2).


Copy the following to cite this URL:

Khaleghian M, Ghashami G. Quantum mechanical investigation of bond gaps of π-acceptor complex alone and affected nanoring field. Orient J Chem 2014;30(2). Available from: http://www.orientjchem.org/?p=3470


INTRODUCTION

There has been a noticeable regard in experimental researches of BnNm nanoring. BnNn have been provided by reaction of BCl3 with NH3 in a laser beam [1,2]. The experimental data of synthesis and various spectrometers are requirement to guess structural stabilities and consider physical chemistry properties of such molecules of B24C12N24 molecule [3] and the B12N12, B16N16 and B28N28 molecules [4-6]. In present work we have utilize single wall B24N24 borane nitride nanoring. The schematic of B24N24 is displayed in the Figure 1. After valence bond theory was corroborated, Molecular orbital theory had been prospered. Thus, we presentation the non-bonded interaction of the [Co(CN)6]3- Situated B24N24 nano ring. The basically purpose of this investigation was the study of the electromagnetic interactions within the B24N24-[Co(CN)6]3- system. For further evaluation about electromagnetic interactions, stability structure of [Co(CN)6]3- complex affected various loops of nanoring have been computed. For further structural data, bond gaps and the hybrids on atom have been reported to estimate the structural ability of the [Co(CN)6]3-  to make a stable B24N24– [Co(CN)6]3 system.

COMPUTATIONAL DETAILS    

To determination electromagnetic interactions of the [Co(CN)6]3- complex inclusive Co (III) and six π-acceptor ligands, the geometry of the [Co(CN)6]3- was optimized at DFT/B3LYP method with Def2-SV(P) basis set and LANL2DZ Effective Core Potential. Also, the geometry of the mix of B24N24 nanoring and [Co(CN)6]3- complex was optimized at DFT/B3LYP method with EPR-II basis set. Thermochemical properties were determined at B3LYP/EPR-II basis set to analyze the enthalpies and Gibbs free energies [7]. The natural bond orbital (NBO) calculations [8,9] has been used  to theoretical predictions the intermolecular orbital interactions in the [Co(CN)6]3- and B24N24-[Co(CN)6]3- [10] . So, NBO data including coefficients and hybrids of orbitals of atoms, donor-acceptor bonds and ΔE in [Co(CN)6]3- complex affected various loops of the B24N24 nanoring have been determined.  

RESULT AND DISCUTION

To calculate the non-bonded interaction of B24N24-[Co(CN)6]3- nano system, the structure of the B24N24 have been optimized at B3LYP/EPR-II basis set and structure of the  [Co(CN)6]3- complex including cyanide that known as six π-acceptor ligands, have been optimized at B3LYP/Def2-SV(P) basis set and LANL2DZ ECP. The non-bonded electromagnetic interactions of the [Co(CN)6]3-complex Situated nanoring have been investigated at B3LYP in different loops of the B24N24  nanoring. Optimized parameters of [Co(CN)6]3- consists bond lengths and bond angles have been reported in Table 1.

Table 1. Optimal quantities of [Co(CN)6]3-.

[Co(CN)6]3- Co(1)-C(2) 1.957632
Co(1)-C(3) 1.958069
Co(1)-C(4) 1.957556
Co(1)-C(5) 1.957584
Co(1)-C(6) 1.957485
Co(1)-C(7) 1.957629
C(2)-N(11) 1.180025
C(3)-N(8) 1.179911
C(4)-N(12) 1.179998
C(5)-N(10) 1.180055
C(6)-N(13) 1.179861
C(7)-N(9) 1.180024
C(2)-Co(1)-C(3) 90.02
C(2)-Co(1)-C(4) 90.0163
C(2)-Co(1)-C(5) 89.9842
C(2)-Co(1)-C(6) 89.9782
C(2)-Co(1)-C(7) 179.9811
C(3)-Co(1)-C(4) 89.817
C(3)-Co(1)-C(5) 90.1773
C(3)-Co(1)-C(6) 179.9773
C(3)-Co(1)-C(7) 89.9877
C(4)-Co(1)-C(5) 179.9942
C(4)-Co(1)-C(6) 89.9782
C(4)-Co(1)-C(7) 89.9665
C(5)-Co(1)-C(6) 89.8001
C(5)-Co(1)-C(7) 90.033
C(6)-Co(1)-C(7) 90.014

See Figure 1 for more details.

We can get all of the Co-C  bond lengths are the same in values and all of the C-N bond lengths are same to other, because the octahedral compounds that are Low-spin d6 electronic configuration such as Co (III) with six π-acceptor ligands no indicate the Jahn–Teller distortion. But the octahedral compounds that are High-spin d6 electronic configuration such as Co (III) with six π-donor ligands indicate the Jahn–Teller distortion  [11]. Pursuant the occupancy and energy values of Co (III) metal in Table 2,

Table 2. Natural atomic orbitals of [Co(CN)6]3-complex.

Natural atomic orbital
 Atom [CoF6]3-
Atomic Orbital Occupancy Energy   
  Co3+ (1)

4s

0.46228 2.90416
3dyz 1.84859 0.10792
3dxy 1.73218 0.11879

  3dz2

1.68785 0.12323
3dx2y2 1.41028 0.14943
3dxz 1.06674 0.18220
 C (2) 2s 1.25718 0.22394
2px 0.82429 0.33754
2py 0.98223 0.48570
2 pz 0.81132 0.32525
 C (3) 2s 1.25730 0.22404
2px 0.89856 0.40722
2py 0.81923 0.33271
2 pz 0.89995 0.40823
 C (4) 2s 1.25716 0.22399
2px 0.89507 0.40400
2py 0.81626 0.32990
2 pz 0.90656 0.41453
 C (5) 2s 1.25716 0.22389
2px 0.89526 0.40429
2py 0.81626 0.32996
2 pz 0.90628 0.41436
 C (6) 2s 1.25697 0.22387
2px 0.89884 0.40752
2py 0.81930 0.33276
2 pz 0.89969 0.40810
 C (7) 2s 1.25717 0.22396
2px 0.82428 0.33752
2py 0.98225 0.48576
2 pz 0.81131 0.32525
N (8) 2s 1.58723 -0.18862
2px 1.40270 0.20756
2py 1.24637 0.24158
2 pz 1.40643 0.20663
N (9) 2s 1.58725 -0.18838
2px 1.25623 0.23963
2py 1.56854 0.17157
2 pz 1.23059 0.24522
N (10) 2s 1.58726 -0.18837
2px 1.39603 0.20922
2py 1.24036 0.24311
2 pz 1.41899 0.20415
N (11) 2s 1.58725   -0.18841
2px 1.25623 0.23960
2py 1.56853 0.17156
2 pz 1.23061 0.24519
N (12) 2s 1.58724 -0.18845
2px 1.39563 0.20925
2py 1.24032 0.24305
2 pz 1.41942 0.20395
N (13) 2s 1.58716 -0.18836
2px 1.40311 0.20764
2py 1.24641 0.24176
2 pz 1.40595 0.20693

 

we can get  that 3dyz , 3dxy , 3dz2 orbitals include two electrons and the least value of energy. The other d orbitals and 4s orbital include no electron. Also, Pursuant the occupancy and energy values of 6 π-acceptor ligands it was demonstrated that 2s orbital of N atom participate to creation the σ molecular orbitals and one non bonding electron pairs of N situate in 2p orbital that has higher energy level. For instance, in N(8) and  N(13) that are in same position relative to the Co (III), 2py has a higher energy levels and 2px and 2pz have lower energy levels. In addition, pursuant Table 2 data, atom pairs N(8)-N(13), N(9)-N(11), N(10)-N(12) in [Co(CN)6]3- complex that are in same position relative to Co (III), have the same occupancy and energy levels (Fig. 1).

 

 Fig.1. Optimal structure of [Co(CN)6]3- stand alone and situated B24N24 nanoring. Fig 1:Optimal structure of [Co(CN)6]3- stand alone and situated B24N24 nanoring.
Click here to View Figure

 

The energy level difference of metal-ligands bonding in [Co(CN)6]3- complex have been reported in Table 3.

Table 3. Molecular orbital diagram of [Co(CN)6]3-complex.

 Compound Molecular orbital diagram
Natural Bond Orbitals Occupancy Energy (a.u.)
  [Co(CN)6]3- BD*( 1)Co 1- C 6 π* t1u 0.43225 1.40362
BD*( 1)Co 1- C 5 σ* t2g 0.43283 1.40319
BD*( 3) C 5- N10 n.b. 0.05113 0.50551
BD*( 3) C 6- N13 n.b. 0.05112 0.50548
BD*( 3) C 7- N 9 n.b. 0.05105 0.50547
BD*( 3) C 2- N11 n.b. 0.05105 0.50546
BD*( 3) C 3- N 8 n.b. 0.05107 0.50544
BD*( 3) C 4- N12 n.b. 0.05113 0.50543
LP ( 1) C 3 σ* a1g 1.50469 0.35364
LP ( 1) C 7 π t1u 1.50443 0.35360
LP ( 1) C 4 σ* eg 1.50444 0.35359
LP ( 1)Co 1 π t2g 1.91544 0.10051
BD ( 1)Co 1- C 5 σ eg 1.91189 -0.05029
BD ( 1)Co 1- C 2 σ t1u 1.91190   -0.05030
BD ( 1)Co 1- C 6 σ a1g 1.91188 -0.05039
Δoct 0.25308 a.u.

 

We can understand, the size of Δo is determined by the ligand field strength. (CN)ligand isa strong field ligand that increase Δo more than Fligand as weak field ligand. Determination of second order perturbation theory analysis of fock matrix of C and N atoms at the level of B3LYP/EPR-II basis set and Co (III) atom at the level of  B3LYP/ Def2-SV(P)/LANL2DZ (ECP) have been shown in Table 4. Also Bond orbital,

Table 4. Natural bond orbital (NBO) analysis of [Co(CN)6]3-.

compound Natural bond orbital (NBO) analysis
 [Co(CN)6]3- Donor NBO (i) Acceptor NBO (j) E(2)kcal/mol E(j)-E(i)a.u. F(i,j)a.u.
BD ( 1)Co 1- C 2 BD*( 1)Co 1- C 5 1.65 1.45 0.048
BD ( 1)Co 1- C 2 BD*( 1)Co 1- C 6 1.65 1.45 0.048
BD ( 1)Co 1- C 2 BD*( 3) C 6- N13 2.23 0.56 0.032
BD ( 1)Co 1- C 5 BD*( 1)Co 1- C 6 1.66 1.45 0.048
BD ( 1)Co 1- C 5 BD*( 3) C 2- N11 1.24 0.56 0.024
BD ( 1)Co 1- C 6 BD*( 1)Co 1- C 5 1.67 1.45 0.048
BD ( 1)Co 1- C 6 BD*( 3) C 2- N11 1.06 0.56 0.022
BD ( 1)Co 1- C 6 BD*( 3) C 5- N10 2.27 0.56 0.032
BD ( 2) C 6- N13 BD*( 3) C 5- N10 0.6 0.43 0.014
LP ( 1)Co 1 BD*( 3) C 6- N13 2.04 0.4 0.026
BD ( 1)Co 1- C 5 BD*( 3) C 3- N 8 2.25 0.56 0.032
LP ( 1)Co 1 BD*( 3) C 3- N 8 0.13 0.4 0.007
BD ( 1)Co 1- C 2 BD*( 3) C 4- N12 2.29 0.56 0.032
LP ( 1)Co 1 BD*( 3) C 4- N12 1.59 0.4 0.023
BD ( 1)Co 1- C 5 BD*( 3) C 7- N 9 1.3 0.56 0.024
BD ( 1)Co 1- C 6 BD*( 3) C 7- N 9 1.02 0.56 0.021
LP ( 1)Co 1 BD*( 2) C 7- N 9 3.73 0.4 0.035
LP ( 1) C 3 BD*( 1)Co 1- C 5 345.09 1.05 0.546
LP ( 1) C 3 BD*( 1)Co 1- C 6 585.34 1.05 0.711
LP ( 1) C 3 BD*( 3) C 2- N11 4.15 0.15 0.025
LP ( 1) C 3 BD*( 3) C 5- N10 10.16 0.15 0.04
LP ( 1) C 3 BD*( 3) C 7- N 9 3.82 0.15 0.024

 

Coefficients and Hybrids of [Co(CN)6]3- complex have been shown in Table 5.

Table 5. Bond orbital, Coefficients, Hybrids of [Co(CN)6]3- at NBO studies.

 

Compound Natural bond orbital (NBO) analysis
Bond orbital Coefficients/ Hybrids
[Co(C)6]3- BD ( 1)Co 1- C 2

 0.5127*Co 1(sp 0.00d 2.00 )+ 0.8586*C 2(sp 0.79d 0.00)

BD ( 1)Co 1- C 5  0.5127*Co 1(sp 0.00d 2.00 )+ 0.8585*C 5(sp 0.79d 0.00)
BD ( 1)Co 1- C 6  0.5128*Co 1(sp 0.00d 2.00 )+ 0.8585*C 6(sp 0.79d 0.00)
LP ( 1)Co 1 (sp 0.00d 1.00)
LP ( 1) C 3 (sp 1.10d 0.00)
BD*( 1)Co 1- C 5  0.8585*Co 1(sp 0.00d 2.00 )-0.5127*C 5(sp 0.79d 0.00)
BD*( 1)Co 1- C 6  0.8585*Co 1(sp 0.00d 2.00 )-0.5128*C 6(sp 0.79d 0.00)
BD*( 3) C 2- N11

 0.7800*C 2(sp 1.00d 0.00 )-0.6258*N11(sp 1.00d 0.00)

BD*( 3) C 3- N 8  0.7800*C 3(sp 1.00d 0.00 )-0.6258*N 8(sp 1.00d 0.00)
BD*( 3) C 4- N12  0.7800*C 4(sp 1.00d 0.00 )-0.6258*N12(sp 1.00d 0.00)
BD*( 3) C 5- N10  0.7800*C 5(sp 1.00d 0.00 )-0.6258*N10(sp 1.00d 0.00)
BD*( 3) C 6- N13  0.7800*C 6(sp 1.00d 0.00 )-0.6258*N13(sp 1.00d 0.00)
BD*( 3) C 7- N 9  0.7800*C 7(sp 1.00d 0.00 )-0.6258*N 9(sp 1.00d 0.00)

 

In accordance with data of  Table 5, we can get that the bonding and anti-bonding coefficients of orbitals of Co-C and Co-N bonds were 0.8 and 0.7 respectively. To calculation non-bonded interaction of the [Co(CN)6]3- complex Situated in nanoring field, we attend on the B24N24 nanoring and optimized structure of the B24N24-[Co(CN)6]3-  system have been displayed in Fig.1. The geometry of B24N24 nano ring has been optimized at B3LYP method with EPR-II basis set. According to the frequency calculation for B24N24 nano rings, thermochemical quantities were equal to ΔG= -97.6323205765 kcal/mol and ΔH= -166.384143925 kcal/mol, corroborated the structural stability of nano rings. Dipole moments of alone complex and complex affected various loops of nanoring have been shown in Table 6

Table 6. Changes in the relative energies (ΔE), dipole moment (r), nuclear repulsion energy and bond gap of alone [Co(CN)6]3- and affected various loops of B24N24 .

 

Compound Basis sets for Co3+
B24N24-[Co(CN)6]3- Def2-SV(P) , LANL2DZ ECP
band gap (Hartree) ΔE (Hartree) Dipole moment(Debye) NICS nuclear repulsion energy (Hartree)
 [Co(CN)6]3- 0.25308 -701.17098 0.0017 * 748.95533
loop 1-[Co(CN)6]3- 0.02448 -940.01508 4.9114 -10.1058 1219.24152
loop 2-[Co(CN)6]3- 0.0329 -940.03334 5.3568 -10.1189 1212.20610
loop 3-[Co(CN)6]3- 0.0237 -940.01497 5.0787 -10.1058 1219.24129
loop 4-[Co(CN)6]3- 0.03195 -940.03336 5.3016 -10.1189 1212.20822
loop 5-[Co(CN)6]3- 0.03372 -940.01429 5.5595 -10.1058 1219.25988
loop 6-[Co(CN)6]3- 0.03481 -940.03316 5.5523 -10.1189 1212.18374
loop 7-[Co(CN)6]3- 0.02262 -940.01477 4.6646 -10.1058 1219.25565
loop 8-[Co(CN)6]3- 0.0313 -940.03326 5.3537 -10.1189 1212.18442

 

The geometry of mix of B24N24 and [Co(CN)6]3- complex have been optimized at B3LYP method with EPR-II basis set for B,N,C atoms and Def2-SV(P) basis set and LANL2DZ ECP for Co (III). According to the electron paramagnetic resonance (EPR) calculate, it is noteworthy that the energy obtained from the mentioned basis set and ECP for alone B24N24 nanoring and alone [Co(CN)6]3- complex were equal to -1911.727563 and -701.1710148 (Hartree) respectively. To describes the non-bonded interaction of [Co(CN)6]3- affected eight various loops of B24N24 nano ring, we focus on quantities values such as the relative energies (ΔE), dipole moment (r), nuclear repulsion energy, NICS and bond gap that mentioned values have been displayed in Table 6. Atomic charge is the physical property of matter that causes it to experience a force when close to other electrically charged matter. So, total atomic charge of alone [Co(CN)6]3- complex atoms and under different loops of B24N24 nanoring, have been reported in Table 7

Table 7. Total atomic charges of alone [Co(CN)6]3- and affected various loops of B24N24 .

 

Compound Basis sets for Co3+
Def2-SV(P) , LANL2DZ ECP
Total atomic charges
[Co(CN)6]3- Co (1) C(2) C(3) C(4) C(5) C(6) C(7) N(8) N(9) N(10) N(11) N(12) N(13)
2.560 -0.343 -0.345 -0.344 -0.343 -0.342 -0.343 -0.582 -0.5829 -0.582 -0.582 -0.582 -0.583
B24N24-[Co(CN)6]3- Co (49) C(50) C(51) C(52) C(53) C(54) C(55) N(56) N(57) N(58) N(59) N(60) N(61)
loop 1-[Co(CN)6]3- 2.6770 -0.388 -0.267 -0.394 -0.378 -0.744 -0.388 -0.576 -0.551 -0.559 -0.551 -0.548 -0.131
loop 2-[Co(CN)6]3- 2.6006 -0.363 -0.370 -0.335 -0.457 -0.401 -0.363 -0.552 -0.551 -0.394 -0.551 -0.557 -0.504
loop 3-[Co(CN)6]3- 2.6786 -0.386 -0.379 -0.266 -0.743 -0.391 -0.387 -0.559 -0.551 -0.132 -0.553 -0.575 -0.550
loop 4-[Co(CN)6]3- 2.6020 -0.362 -0.457 -0.370 -0.401 -0.335 -0.362 -0.395 -0.552 -0.505 -0.552 -0.553 -0.557
loop 5-[Co(CN)6]3- 2.6802 -0.391 -0.747 -0.380 -0.395 -0.271 -0.390 -0.125 -0.545 -0.544 -0.541 -0.554 -0.570
loop 6-[Co(CN)6]3- 2.5993 -0.363 -0.402 -0.456 -0.336 -0.370 -0.363 -0.500 -0.550 -0.555 -0.550 -0.395 -0.550
loop 7-[Co(CN)6]3- 2.6779 -0.386 -0.392 -0.747 -0.268 -0.379 -0.385 -0.551 -0.555 -0.580 -0.553 -0.130 -0.559
loop 8-[Co(CN)6]3- 2.5979 -0.361 -0.334 -0.400 -0.367 -0.453 -0.361 -0.557 -0.553 -0.554 -0.553 -0.505 -0.397

 

Also, Bond Length, Total atomic charges and Dipole orientation of atoms of different loops of nanorings have been displayed in Table 8.

Table 8. Bond Length, Atomic charges and Dipole orientation of the sides of various loops of B24N24.

 

Compound Basis sets of Co (III)
B24N24-[Co(CN)6]3- Def2-SV(P) , LANL2DZ ECP
Bond ID Bond Length(Å) Total atomic charges Dipole orientation
θ
φ
  loop 1 B(1) r 1-2 1.303 0.029792 90.0174.2630
N(2) r 1-32 1.417 -0.059818
B(3) r 2-3 1.466 0.030860
N(32) r 3-34 1.466 -0.166730
B(33) r 32-33 1.417 0.029797
N(34) r 33-34 1.303 -0.059851
  loop 2  N(4) r 4-5 1.417 -0.143033 90.0147.1122
B(5) r 4-35 1.417 -0.003640
N(6) r 5-6 1.303 -0.036094
B(7) r 6-7 1.466 0.025729
B(35) r 7-36 1.466 -0.003627
N(36) r 35-36 1.303 -0.036107
  loop 3  N(8) r 8-9 1.417 -0.166571 90.094.6723
B(9) r 8-37 1.417 0.028774
N(10) r 9-10 1.303 -0.058331
B(11) r 10-11 1.466 0.023939
B(37) r 11-38 1.466 0.028554
N(38) r 37-38 1.303 -0.058119
  loop 4 N(12) r 12-13 1.417 -0.141968 90.057.3710
B(13) r 12-39 1.417 -0.003813
N(14) r 13-14 1.303 -0.035563
B(15) r 14-15 1.466 0.026477
B(39) r 15-40 1.466 -0.003821
N(40) r 39-40 1.303 -0.035568
  loop 5  N(16) r 16-17 1.417 -0.176228 90.03.9639
B(17) r 16-41 1.417 0.027328
N(18) r 17-18 1.303 -0.066071
B(19) r 18-19 1.466 0.025758
B(41) r 19-42 1.466 0.028672
N(42) r 41-42 1.303 -0.061409
  loop 6  N(20) r 20-21 1.417 -0.145945 90.033.7029
B(21) r 20-43 1.417 -0.004382
N(22) r 21-22 1.303 -0.038261
B(23) r 22-23 1.466 0.027356
B(43) r 23-44 1.466 -0.004393
N(44) r 43-44 1.303 -0.038252
  loop 7  N(24) r 24-25 1.417 -0.167045 90.082.9711
B(25) r 24-45 1.417 0.032748
N(26) r 25-26 1.303 -0.057311
B(27) r 26-27 1.466 0.030136
B(45) r 27-46 1.466 0.034124
N(46) r 45-46 1.303 -0.059718
  loop 8  N(28) r 28-29 1.417 -0.141699 90.0122.8949
B(29) r 28-47 1.417 -0.004621
N(30) r 29-30 1.303 -0.035262
B(31) r 30-31 1.466 0.025256
B(47) r 31-48 1.466 -0.004614
N(48) r 47-48 1.303 -0.035254

 

Magnetic Resonance parameters of [Co(CN)6]3- complexes under three CSGT, GIAO, IGAIM methods have been shown in Table 9.

Table 9. Nuclear Magnetic Resonance parameters of  [Co(CN)6]3- complex at three CSGT,GIAO,IGAIM methods.

 

Compound NMR parameters (ppm)
Isotropic anisotropy Δσ δ η Ω κ
[Co(CN)6]3- CSGTGIAOIGAIM
Co(1) -7827.8043 15.4186 15.4186 10.2791 0.734364 10.2791 -0.39844
-7827.8043 15.4186 15.4186 10.2791 0.734364 10.2791 -0.39844
-7860.7339 16.0271 16.0271 10.6848 0.851658 10.6848 -0.22248
C(2) 35.7915 349.7468 349.7469 233.1646 0.001602 233.1646 -1.4976
35.7915 349.7468 349.7469 233.1646 0.001602 233.1646 -1.4976
19.0814 373.804 373.804 249.2026 0.000786 249.2026 -1.49882
C(3) 35.8802 349.5784 349.5784 233.0522 0.000275 233.0522 -1.49959
35.8802 349.5784 349.5784 233.0522 0.000275 233.0522 -1.49959
19.1472 373.7295 373.7295 249.153 7.14E-05 249.153 -1.49989
C(4) 35.8283 349.6323 349.6323 233.0881 0.000297 233.0881 -1.49956
35.8283 349.6323 349.6323 233.0881 0.000297 233.0881 -1.49956
19.0861 373.7933 373.7934 249.1956 5.26E-05 249.1956 -1.49992
C(5) 35.808 349.6633 349.6633 233.1089 0.000288 233.1089 -1.49957
35.808 349.6633 349.6633 233.1089 0.000288 233.1089 -1.49957
19.064 373.8239 373.8239 249.216 8.83E-05 249.216 -1.49987
C(6) 35.8821 349.5573 349.5574 233.0382 0.000264 233.0382 -1.4996
35.8821 349.5573 349.5574 233.0382 0.000264 233.0382 -1.4996
19.1366 373.7248 373.7248 249.1499 0.000134 249.1499 -1.4998
C(7) 35.7907 349.7474 349.7474 233.165 0.001602 233.165 -1.4976
35.7907 349.7474 349.7474 233.165 0.001602 233.165 -1.4976
19.0811 373.804 373.804 249.2026 0.000786 249.2026 -1.49882
N(8) -33.9122 527.9381 527.9381 351.9587 0.000605 351.9587 -1.49909
-33.9122 527.9381 527.9381 351.9587 0.000605 351.9587 -1.49909
-43.2697 546.1166 546.1166 364.0778 6.54E-05 364.0778 -1.4999
N(9) -34.1079 528.12 528.12 352.08 0.001431 352.08 -1.49785
-34.1079 528.12 528.12 352.08 0.001431 352.08 -1.49785
-43.363 546.2229 546.2229 364.1486 0.000444 364.1486 -1.49933
N(10) -34.1006 528.0967 528.0967 352.0645 0.000689 352.0645 -1.49897
-34.1006 528.0967 528.0967 352.0645 0.000689 352.0645 -1.49897
-43.3832 546.2333 546.2334 364.1556 0.000105 364.1556 -1.49984
N(11) -34.1084 528.1192 528.1192 352.0794 0.00143 352.0794 -1.49786
-34.1084 528.1192 528.1192 352.0794 0.00143 352.0794 -1.49786
-43.3629 546.2218 546.2219 364.1479 0.000443 364.1479 -1.49934
N(12) -34.063 528.0556 528.0557 352.0371 0.00073 352.0371 -1.49891
-34.063 528.0556 528.0557 352.0371 0.00073 352.0371 -1.49891
-43.3477 546.193 546.193 364.1286 3.05E-05 364.1286 -1.49995
N(13) -33.9229 527.9167 527.9167 351.9444 0.000552 351.9444 -1.49917
-33.9229 527.9167 527.9167 351.9444 0.000552 351.9444 -1.49917
-43.2617 546.0694 546.0694 364.0463 7.72E-05 364.0463 -1.49988

 

CONCLUSION

In this study, Density functional theory calculations with EPR basis sets have been employed to determination non-bonded interaction. In accordance with Table 3, definition the magnitude of Δo under strong field ligands, such as (CN), equal to 0.25308 a.u. . In accordance with Table 1, [Co(CN)6]3- complex with strong field ligands no exhibit the Jahn–Teller distortion. It has been displayed at Table 5 that the bonding coefficients of s, p and d orbitals were 0.3 and anti-bonding coefficients of Co-C bonds were 0.8 and Co-N bonds were 0.7.  In accordance with NICS values of Table 6, it’s displayed that loops1,3 and 5 have similar NICS values and equal to -10.1058 and loops 2,4 and 6 have similar NICS values and equal to -10.1189. So, the more negative NICS values, the aromaticity and magnetism that loops most. According to different NMR methods of Table 9, characterize that CSGT and GIAO methods have similar quantity.

 ACKNOWLEDGMENT

The authors gratefully acknowledge the financial and other support of this research, provided by the Islamic Azad University, Eslamshahr Branch,Tehran,Iran.

REFERENCES

  1. Wu, H.S, Jiao, H.J.: What is the most stable B24N24 fullerene?. Chemical Physics Letters. 386, 369–372 (2004)
  2. Wu, HS, Xu, XH, Strout, D.L, Jiao, H.J .: The structure and stability of B36N36 cages: a computational study. J Mol Model. 12, 1–8 (2005)
  3. Rogers, K.M, Fowler, PW, Seifert, G.: Chemical versus steric frustration in boron nitride heterofullerene polyhedra. Chemical physics letters. 332, 43-50 (2000)
  4. Zhu, H.Y, Schmalz, T.G, Klein, D.J. : Alternant boron nitride cages: A theoretical study. International Journal of Quantum Chemistry. 63, 393–401 (1997)
  5. Manolopoulos, D.E, Fowler, P.W.: Structural proposals for endohedral metal-fullerene complexes. Chem Phys Lett. 187, 1–7 (1991)
  6. Zope, R.R, Dunlap, B.I.: Are hemispherical caps of boron–nitride nanotubes possible?.Chemical physics letters. 386,403–407(2004)
  7. Zhang.R., Huyskensd T.Z, Ceulemeans, A, Nguyen M.T.: Interaction of triplet uracil and thymine with water. Chemical Physics. 316, 35 – 44 (2005)
  8. Amiri. A, Monajjemi. M , Ketabi. S.: Quantum simulation on donor and acceptor II calix[4]arene substrate and alkali metal ions: the driven inclusion. Physics and Chemistry of Liquids. 45, 425-433(2007)
  9. Monajjemi, M.; Azad, M.T.; Haeri, H.H.; Zare, K.; Hamedani, Sh.: Ab initio conformational analysis of glutamic acid, chemical shift anisotropy and population studies. Journal of Chemical Research. 2003, 454-456 (2003)
  10. Reed, A. E, Weinhold, F.: A THEORETICAL-MODEL OF BONDING IN HYPERLITHIATED CARBON-COMPOUNDS. Journal of the American Chemical Society. 107, 1919-1921 (1985)
  11. Monajjemi, M.; Khaleghian, M.: EPR Study of Electronic Structure of [CoF6] and B18N18 Nano Ring Field Effects on Octahedral Complex. Journal of Cluster Science. 22, 673–692 (2011).


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.