

ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal

An international Open Tree Access, Feel neviewed nesearch southa

ISSN: 0970-020 X CODEN: OJCHEG 2014, Vol. 30, No. (2): Pg. 745-753

www.orientjchem.org

Quantum Mechanical Investigation of Bond Gaps of □-acceptor Ligand Alone and Affected Nanoring Field: EPR and NMR study

MEHRNOOSH KHALEGHIAN^{1*}, MOHAMMAD YARI¹, FATEMEH AZARAKHSHI² and GHOLAMREZA GHASHAMI³

¹Department of Chemistry, Islamshahr Branch, Islamic Azad University, Tehran, Iran. ²Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran. ³Department of Engineering, Islamshahr Branch, Islamic Azad University, Tehran, Iran. *Corresponding author E-mail: Mehr_khaleghian@iiau.ac.ir, Mehr_khaleghian@yahoo.com

http://dx.doi.org/10.13005/ojc/300247

(Received: March 03, 2014; Accepted: April 04, 2014)

ABSTRACT

We studied non-bonded interaction of the $[Co(CN)_{e}]^{3}$ complex Situated $B_{24}N_{24}$ nanoring. Early, the geometry of $[Co(CN)_{e}]^{3}$ and $B_{24}N_{24}$ have been optimized at B3LYP method with Def2-SV(P)/ LANL2DZ(ECP) and EPR-II basis set respectively. To confirmation the structural stability of the $B_{24}N_{24}$ -[Co(CN)_{e}]^{3} nano system, delocalization of electrons between donor and acceptor bonds and LUMO and HOMO for the lowest energy have been computed by DFT/ B3LYP method. Then we investigated NBO data such as coefficients and hybrids of orbitals, second order perturbation theory analysis of fock matrix, and "E in different loops of the nanoring have been calculated at B3LYP method.

Key words: DFT, ECP, EPR-II basis set, HOMO, LUMO, NICS.

INTRODUCTION

There has been a noticeable regard in experimental researches of $B_n N_m$ nanoring. $B_n N_n$ have been provided by reaction of BCl₃ with NH₃ in a laser beam^{1,2}. The experimental data of synthesis and various spectrometers are requirement to guess structural stabilities and consider physical chemistry properties of such molecules of $B_{24}C_{12}N_{24}$ molecule³ and the $B_{12}N_{12}$, $B_{16}N_{16}$ and $B_{28}N_{28}$ molecules⁴⁻⁶. In present work we have utilize single wall $B_{24}N_{24}$ borane nitride nanoring. The schematic of $B_{24}N_{24}$ is displayed in the Figure 1. After valence bond theory was corroborated, Molecular orbital

theory had been prospered. Thus, we presentation the non-bonded interaction of the $[Co(CN)_6]^{3-}$ Situated $B_{24}N_{24}$ nano ring. The basically purpose of this investigation was the study of the electromagnetic interactions within the $B_{24}N_{24}$ - $[Co(CN)_6]^{3-}$ system. For further evaluation about electromagnetic interactions, stability structure of $[Co(CN)_6]^{3-}$ complex affected various loops of nano ring have been computed. For further structural data, bond gaps and the hybrids on atom have been reported to estimate the structural ability of the $[Co(CN)_6]^{3-}$ to make a stable $B_{24}N_{24}^{-}$ $[Co(CN)_6]^{3-}$ system.

Computational details

To determination electromagnetic interactions of the $[Co(CN)_e]^{3-}$ complex inclusive Co (III) and six II-acceptor ligands, the geometry of the $[Co(CN)_e]^{3-}$ was optimized at DFT/B3LYP method with Def2-SV(P) basis set and LANL2DZ Effective Core Potential. Also, the geometry of the mix of $B_{24}N_{24}$ nanoring and $[Co(CN)_e]^{3-}$ complex was optimized at DFT/B3LYP method with EPR-II basis set. Thermochemical properties were determined at B3LYP/EPR-II basis set to analyze the enthalpies and Gibbs free energies⁷. The natural bond orbital (NBO) calculations^{8,9} has been used to theoretical predictions the intermolecular orbital interactions in the $[Co(CN)_e]^{3-}$ and $B_{24}N_{24}$ - $[Co(CN)_e]^{3-10}$. So, NBO data including coefficients and hybrids of orbitals of

atoms, donor-acceptor bonds and "E in $[\rm Co(CN)_6]^3$ - complex affected various loops of the $\rm B_{24}N_{24}$ nanoring have been determined.

RESULTS AND DISCUTION

To calculate the non-bonded interaction of $B_{24}N_{24}$ -[Co(CN)₆]³ nano system, the structure of the $B_{24}N_{24}$ have been optimized at B3LYP/EPR-II basis set and structure of the [Co(CN)₆]³ complex including cyanide that known as six Å-acceptor ligands, have been optimized at B3LYP/Def2-SV(P) basis set and LANL2DZ ECP. The non-bonded electromagnetic interactions of the [Co(CN)₆]³ complex complex Situated nanoring have been investigated at B3LYP in different loops of the $B_{24}N_{24}$ nanoring.

Compound	Bond ID	bond length	bond angle
[Co(CN) ₆] ³⁻	Co(1)-C(2)	1.957632	-
0	Co(1)-C(3)	1.958069	-
	Co(1)-C(4)	1.957556	-
	Co(1)-C(5)	1.957584	-
	Co(1)-C(6)	1.957485	-
	Co(1)-C(7)	1.957629	-
	C(2)-N(11)	1.180025	-
	C(3)-N(8)	1.179911	-
	C(4)-N(12)	1.179998	-
	C(5)-N(10)	1.180055	-
	C(6)-N(13)	1.179861	-
	C(7)-N(9)	1.180024	-
	C(2)-Co(1)-C(3)	-	90.02
	C(2)-Co(1)-C(4)	-	90.0163
	C(2)-Co(1)-C(5)	-	89.9842
	C(2)-Co(1)-C(6)	-	89.9782
	C(2)-Co(1)-C(7)	-	179.9811
	C(3)-Co(1)-C(4)	-	89.817
	C(3)-Co(1)-C(5)	-	90.1773
	C(3)-Co(1)-C(6)	-	179.9773
	C(3)-Co(1)-C(7)	-	89.9877
	C(4)-Co(1)-C(5)	-	179.9942
	C(4)-Co(1)-C(6)	-	89.9782
	C(4)-Co(1)-C(7)	-	89.9665
	C(5)-Co(1)-C(6)	-	89.8001
	C(5)-Co(1)-C(7)	-	90.033
	C(6)-Co(1)-C(7)	-	90.014

Table 1: Optimal quantities of [Co(CN)₆]³.

* See Figure 1 for more details

746

Table 2: Natural atomic orbitals of [Co(CN),]³⁻complex

Atom		Natural atom [CoF ₆] ³	ic orbital
	Atomic Orbital	Occupancy	Energy
Co ³⁺ (1)	4s	0.46228	2.90416
	3dyz	1.84859	0.10792
	3dxy	1.73218	0.11879
	3dz2	1.68785	0.12323
	3dx2y2	1.41028	0.14943
	3dxz	1.06674	0.18220
C (2)	2s	1.25718	0.22394
	2px	0.82429	0.33754
	2ру	0.98223	0.48570
	2 pz	0.81132	0.32525
C (3)	2s	1.25730	0.22404
. ,	2px	0.89856	0.40722
	2py	0.81923	0.33271
	2 pz	0.89995	0.40823
C (4)	2s	1.25716	0.22399
()	2px	0.89507	0.40400
	2pv	0.81626	0.32990
	2 pz	0.90656	0.41453
C (5)	2s	1.25716	0.22389
- (-)	2px	0.89526	0.40429
	2pv	0.81626	0.32996
	2 nz	0.90628	0 41436
C (6)	2s	1 25697	0 22387
0 (0)	2nx	0.89884	0 40752
	2nv	0.81930	0.33276
	2 nz	0.89969	0.40810
$C_{1}(7)$	2 92	1 25717	0.22396
0(7)	23 2nv	0.82/28	0.33752
	201	0.02420	0.48576
	2 py 2 pz	0.90225	0.40570
NI (9)	2 µ2	1 59702	0.32323
N (0)	25 20V	1.00720	-0.10002
	2µx 2pv	1.40270	0.20750
	2py	1.24037	0.24156
NL(0)	2 pz	1.40643	0.20663
N (9)	2S	1.58725	-0.18838
	2px 2px	1.25023	0.23963
	2py	1.56854	0.1/15/
	2 pz	1.23059	0.24522
N (10)	2S	1.58/26	-0.18837
	2px	1.39603	0.20922
	2ру	1.24036	0.24311
	2 pz	1.41899	0.20415

N (11)	2s	1.58725	-0.18841
	2рх	1.25623	0.23960
	2ру	1.56853	0.17156
	2 pz	1.23061	0.24519
N (12)	2s	1.58724	-0.18845
	2рх	1.39563	0.20925
	2ру	1.24032	0.24305
	2 pz	1.41942	0.20395
N (13)	2s	1.58716	-0.18836
	2рх	1.40311	0.20764
	2ру	1.24641	0.24176
	2 pz	1.40595	0.20693

Optimized parameters of [Co(CN)₆]³⁻ consists bond lengths and bond angles have been reported in Table 1. We can get all of the Co-C bond lengths are the same in values and all of the C-N bond lengths are same to other, because the octahedral compounds that are Low-spin d⁶ electronic configuration such as Co (III) with six Π-acceptor ligands no indicate the Jahn-Teller distortion. But the octahedral compounds that are High-spin d⁶ electronic configuration such as Co (III) with six σ donor ligands indicate the Jahn-Teller distortion¹¹. Pursuant the occupancy and energy values of Co (III) metal in Table 2, we can get that $3d_{yz}$, $3d_{xy}$, 3d₂₂ orbitals include two electrons and the least value of energy. The other d orbitals and 4s orbital include no electron. Also, Pursuant the occupancy and energy values of 6 IT-acceptor ligands it was demonstrated that 2s orbital of N atom participate to creation the $\boldsymbol{\sigma}$ molecular orbitals and one non bonding electron pairs of N situate in 2p orbital that has higher energy level. For instance, in N(8) and N(13) that are in same position relative to the Co (III), 2p, has a higher energy levels and 2p, and 2p, have lower energy levels. In addition, pursuant Table 2 data, atom pairs N(8)-N(13), N(9)-N(11), N(10)-N(12) in $[Co(CN)_{c}]^{3-}$ complex that are in same position relative to Co (III), have the same occupancy and energy levels (Fig. 1). The energy level difference of metal-ligands bonding in [Co(CN),]3complex have been reported in Table 3. We can understand, the size of $\ensuremath{"_{\rm o}}$ is determined by the ligand field strength. (CN)⁻ ligand is a strong field ligand that increase ", more than F-ligand as weak field ligand. Determination of second order perturbation theory analysis of fock matrix of C and N atoms at the level of B3LYP/EPR-II basis set and Co (III) atom at the level of B3LYP/ Def2-SV(P)/LANL2DZ (ECP)

Compound Molecular orbital diagram			orbital diagram	
	Natural Bond	Orbitals	Occupancy	Energy (a.u.)
[Co(CN) ₆] ³⁻	BD*(1)Co 1- C 6 BD*(3) C 5- N10 BD*(3) C 5- N10 BD*(3) C 6- N13 BD*(3) C 7- N 9 BD*(3) C 2- N11 BD*(3) C 2- N11 BD*(3) C 3- N 8 BD*(3) C 4- N12 LP (1) C 3 LP (1) C 7 LP (1) C 4 LP (1) C 4 LP (1)Co 1 BD (1)Co 1- C 5 BD (1)Co 1- C 2 BD (1)Co 1- C 6 Δ_{oct}	$ \begin{array}{l} \Pi^{*}_{t1u} \\ \sigma^{*}_{t2g} \\ n.b. \\ \sigma^{*}_{a1g} \\ \Pi_{t1u} \\ \sigma^{*}_{eg} \\ \Pi_{t2g} \\ \sigma_{eg} \\ \sigma_{t1u} \\ \sigma_{a1g} \end{array} $	0.43225 0.43283 0.05113 0.05112 0.05105 0.05105 0.05107 0.05113 1.50469 1.50443 1.50444 1.91544 1.91544 1.91189 1.91190 1.91188 0.25308 a.u.	1.40362 1.40319 0.50551 0.50548 0.50547 0.50546 0.50544 0.50543 0.35364 0.35360 0.35359 0.10051 -0.05029 -0.05030 -0.05039

Table 3: Molecular orbital diagram of [Co(CN)₆]³⁻complex.

Table 4: Natural bond orbital (NBO) analysis of $[Co(CN)_6]^{3-}$

Compound	Natural bond orbital (NBO) analysis					
[Co(CN) ₆]³-	Donor NBO (i)	Acceptor NBO (j)	E(2)kcal/mol	E(j)-E(i)a.u.	F(i,j)a.u.	
	BD (1)Co 1- C 2	BD*(1)Co 1- C 5	1.65	1.45	0.048	
	BD (1)Co 1- C 2	BD*(1)Co 1- C 6	1.65	1.45	0.048	
	BD (1)Co 1- C 2	BD*(3) C 6- N13	2.23	0.56	0.032	
	BD (1)Co 1- C 5	BD*(1)Co 1- C 6	1.66	1.45	0.048	
	BD (1)Co 1- C 5	BD*(3) C 2- N11	1.24	0.56	0.024	
	BD (1)Co 1- C 6	BD*(1)Co 1- C 5	1.67	1.45	0.048	
	BD (1)Co 1- C 6	BD*(3) C 2- N11	1.06	0.56	0.022	
	BD (1)Co 1- C 6	BD*(3) C 5- N10	2.27	0.56	0.032	
	BD (2) C 6- N13	BD*(3) C 5- N10	0.6	0.43	0.014	
	LP (1)Co 1	BD*(3) C 6- N13	2.04	0.4	0.026	
	BD (1)Co 1- C 5	BD*(3) C 3- N 8	2.25	0.56	0.032	
	LP (1)Co 1	BD*(3) C 3- N 8	0.13	0.4	0.007	
	BD (1)Co 1- C 2	BD*(3) C 4- N12	2.29	0.56	0.032	
	LP (1)Co 1	BD*(3) C 4- N12	1.59	0.4	0.023	
	BD (1)Co 1- C 5	BD*(3) C 7- N 9	1.3	0.56	0.024	
	BD (1)Co 1- C 6	BD*(3) C 7- N 9	1.02	0.56	0.021	
	LP (1)Co 1	BD*(2) C 7- N 9	3.73	0.4	0.035	
	LP (1) C 3	BD*(1)Co 1- C 5	345.09	1.05	0.546	
	LP (1) C 3	BD*(1)Co 1- C 6	585.34	1.05	0.711	
	LP (1) C 3	BD*(3) C 2- N11	4.15	0.15	0.025	
	LP (1) C 3	BD*(3) C 5- N10	10.16	0.15	0.04	
	LP (1) C 3	BD*(3) C 7- N 9	3.82	0.15	0.024	

748

have been shown in Table 4. Also Bond orbital, Coefficients and Hybrids of $[Co(CN)_6]^{3-}$ complex have been shown in Table 5. In accordance with data of Table 5, we can get that the bonding and anti-bonding coefficients of orbitals of Co-C and Co-N bonds were 0.8 and 0.7 respectively. To calculation non-bonded interaction of the $[Co(CN)_6]^{3-}$ complex Situated in nano ring field, we attend on the $B_{24}N_{24}$ nano ring and optimized structure of the $B_{24}N_{24}$ - $[Co(CN)_6]^{3-}$ system have been displayed in Fig.1. The geometry of $B_{24}N_{24}$ nano ring has been optimized at B3LYP method with EPR-II basis set. According to the frequency calculation for $B_{24}N_{24}$ nano rings, thermochemical quantities were equal to ΔG = -97.6323205765 kcal/mol and ΔH = -166.384143925 kcal/mol, corroborated the structural stability of nano rings. Dipole moments of alone complex and complex affected various loops of nanoring have been shown in Table 6. The geometry of mix of $B_{24}N_{24}$ and [Co(CN)₆]³⁻ complex have been optimized at B3LYP method with EPR-II basis set for B,N,C atoms and

Compound Natural bond orbital (NBO) analysis			
	Bond orbital	Coefficients/ Hybrids	
[Co(C) ₆] ³⁻	Bond orbital BD (1)Co 1- C 2 BD (1)Co 1- C 5 BD (1)Co 1- C 6 LP (1)Co 1 LP (1)Co 1 LP (1)Co 3 BD*(1)Co 1- C 5 BD*(1)Co 1- C 6 BD*(3) C 2- N11 BD*(3) C 3- N 8	Coefficients/ Hybrids $0.5127*Co 1(sp \ ^{0.00}d \ ^{2.00}) + 0.8586*C 2(sp \ ^{0.79}d \ ^{0.00})$ $0.5127*Co 1(sp \ ^{0.00}d \ ^{2.00}) + 0.8585*C 5(sp \ ^{0.79}d \ ^{0.00})$ $0.5128*Co 1(sp \ ^{0.00}d \ ^{2.00}) + 0.8585*C 6(sp \ ^{0.79}d \ ^{0.00})$ $(sp \ ^{0.00}d \ ^{1.00})$ $(sp \ ^{1.10}d \ ^{0.00})$ $0.8585*Co 1(sp \ ^{0.00}d \ ^{2.00}) - 0.5127*C 5(sp \ ^{0.79}d \ ^{0.00})$ $0.8585*Co 1(sp \ ^{0.00}d \ ^{2.00}) - 0.5128*C 6(sp \ ^{0.79}d \ ^{0.00})$ $0.7800*C 2(sp \ ^{1.00}d \ ^{0.00}) - 0.6258*N 11(sp \ ^{1.00}d \ ^{0.00})$	
	BD*(3) C 4- N12 BD*(3) C 5- N10 BD*(3) C 6- N13 BD*(3) C 7- N 9	0.7800*C 4(sp ^{1.00} d ^{0.00})-0.6258*N12(sp ^{1.00} d ^{0.00}) 0.7800*C 5(sp ^{1.00} d ^{0.00})-0.6258*N10(sp ^{1.00} d ^{0.00}) 0.7800*C 6(sp ^{1.00} d ^{0.00})-0.6258*N13(sp ^{1.00} d ^{0.00}) 0.7800*C 7(sp ^{1.00} d ^{0.00})-0.6258*N 9(sp ^{1.00} d ^{0.00})	

Table 6: Changes in the relative energies (ΔE), dipole moment (r), nuclear repulsion energy and bond gap of alone [Co(CN)₆]³⁻ and affected various loops of B₂₄N₂₄

Compound $B_{24}N_{24}$ -[Co(CN) ₆] ³⁻		Def	Basis sets for C 2-SV(P) , LANL2DZ I	Co³⁺ ECP	
	band gap (Hartree)	∆E (Hartree)	Dipole moment (Debye)	NICS	nuclear repulsion energy (Hartree)
[Co(CN) _e] ³⁻	0.25308	-701.17098	0.0017	*	748.95533
loop 1-[Co(CN) ₆] ³⁻	0.02448	-940.01508	4.9114	-10.1058	1219.24152
loop 2-[Co(CN) ₆] ³⁻	0.0329	-940.03334	5.3568	-10.1189	1212.20610
loop 3-[Co(CN) ₆] ³⁻	0.0237	-940.01497	5.0787	-10.1058	1219.24129
loop 4-[Co(CN) ₆] ³⁻	0.03195	-940.03336	5.3016	-10.1189	1212.20822
loop 5-[Co(CN) ₆] ³⁻	0.03372	-940.01429	5.5595	-10.1058	1219.25988
loop 6-[Co(CN) ₆] ³⁻	0.03481	-940.03316	5.5523	-10.1189	1212.18374
loop 7-[Co(CN) ₆] ³⁻	0.02262	-940.01477	4.6646	-10.1058	1219.25565
loop 8-[Co(CN) ₆] ³⁻	0.0313	-940.03326	5.3537	-10.1189	1212.18442

Compound						Basis Def2-SV(F Total a	sets for) , LANL itomic ch	Co³+ 2DZ ECP larges					
[Co(CN) ₆] ³⁻	Co (1)	C(2)	C(3)	C(4)	C(5)	C(6)	C(7)	N(8)	(6)N	N(10)	N(11)	N(12)	N(13)
	2.560	-0.343	-0.345	-0.344	-0.343	-0.342	-0.343	-0.582	-0.5829	-0.582	-0.582	-0.582	-0.583
B ₂₄ N ₂₄ -[Co(CN) ₆] ³⁻	Co (49)	C(50)	C(51)	C(52)	C(53)	C(54)	C(55)	N(56)	N(57)	N(58)	N(59)	N(60)	N(61)
loop 1-[Co(CN)] ³⁻	2.6770	-0.388	-0.267	-0.394	-0.378	-0.744	-0.388	-0.576	-0.551	-0.559	-0.551	-0.548	-0.131
loop 2-[Co(CN)] ³⁻	2.6006	-0.363	-0.370	-0.335	-0.457	-0.401	-0.363	-0.552	-0.551	-0.394	-0.551	-0.557	-0.504
loop 3-[Co(CN),] ³⁻	2.6786	-0.386	-0.379	-0.266	-0.743	-0.391	-0.387	-0.559	-0.551	-0.132	-0.553	-0.575	-0.550
loop 4-[Co(CN),] ³⁻	2.6020	-0.362	-0.457	-0.370	-0.401	-0.335	-0.362	-0.395	-0.552	-0.505	-0.552	-0.553	-0.557
loop 5-[Co(CN),] ³⁻	2.6802	-0.391	-0.747	-0.380	-0.395	-0.271	-0.390	-0.125	-0.545	-0.544	-0.541	-0.554	-0.570
loop 6-[Co(CN),] ³⁻	2.5993	-0.363	-0.402	-0.456	-0.336	-0.370	-0.363	-0.500	-0.550	-0.555	-0.550	-0.395	-0.550
loop 7-[Co(CN),] ³⁻	2.6779	-0.386	-0.392	-0.747	-0.268	-0.379	-0.385	-0.551	-0.555	-0.580	-0.553	-0.130	-0.559
loop 8-[Co(CN) ₆] ³⁻	2.5979	-0.361	-0.334	-0.400	-0.367	-0.453	-0.361	-0.557	-0.553	-0.554	-0.553	-0.505	-0.397

Def2-SV(P) basis set and LANL2DZ ECP for Co (III). According to the electron paramagnetic resonance (EPR) calculate, it is noteworthy that the energy obtained from the mentioned basis set and ECP for alone $B_{24}N_{24}$ nanoring and alone $[Co(CN)_6]^{3-}$ complex were equal to -1911.727563 and -701.1710148 (Hartree) respectively. To describes the non-bonded interaction of [Co(CN)₆]³⁻ affected eight various loops of B24N24 nano ring, we focus on quantities values such as the relative energies ("E), dipole moment (r), nuclear repulsion energy, NICS and bond gap that mentioned values have been displayed in Table 6. Atomic charge is the physical property of matter that causes it to experience a force when close to other electrically charged matter. So, total atomic charge of alone [Co(CN)₆]³⁻ complex atoms and under different loops of B₂₄N₂₄ nanoring, have been reported in Table 7. Also, Bond Length, Total atomic charges and Dipole orientation of atoms of different loops of nanorings have been displayed in Table 8. Magnetic Resonance parameters of [Co(CN),]3- complexes under three CSGT, GIAO, IGAIM methods have been shown in Table 9.

Fig. 1: Optimal structure of $[Co(CN)_6]^{3-}$ stand alone and situated $B_{24}N_{24}$ nanoring

Table 7. Total atomic charges of alone [Co(CN) $_{
m s} J^{3\cdot}$ and affected various loops of ${
m B}_{24} {
m N}_{24}$

Compound B ₂₄ N ₂₄ -[Co(CN) ₆] ³⁻		D	Basis sets c ef2-SV(P) , LA	of Co (III) NL2DZ ECP	
		Bond ID (Å)	Bond Length charges	Total atomic	Dipole orientation θ φ
loop 1	B(1) N(2) B(3) N(32) B(33) N(34)	r ₁₋₂ r ₁₋₃₂ r ₂₋₃ r ₃₋₃₄ r ₃₂₋₃₃ r ₃₂₋₃₃	1.303 1.417 1.466 1.466 1.417 1.303	0.029792 -0.059818 0.030860 -0.166730 0.029797 -0.059851	90.0174.2630
loop 2	N(4) B(5) N(6) B(7) B(35) N(36)	r ₄₋₅ r ₄₋₅ r ₄₋₃₅ r ₅₋₆ r ₆₋₇ r ₇₋₃₆ r ₃₅₋₃₆	1.417 1.417 1.303 1.466 1.466 1.303	-0.143033 -0.003640 -0.036094 0.025729 -0.003627 -0.036107	90.0147.1122
loop 3	N(8) B(9) N(10) B(11) B(37) N(38)	r ₈₋₉ r ₈₋₃₇ r ₉₋₁₀ r ₁₀₋₁₁ r ₁₁₋₃₈ r ₃₇₋₃₈	1.417 1.417 1.303 1.466 1.466 1.303	-0.166571 0.028774 -0.058331 0.023939 0.028554 -0.058119	90.094.6723
loop 4	N(12) B(13) N(14) B(15) B(39) N(40)	r ₁₂₋₁₃ r ₁₂₋₃₉ r ₁₃₋₁₄ r ₁₄₋₁₅ r ₁₅₋₄₀ r ₂₀₋₄₀	1.417 1.417 1.303 1.466 1.466 1.303	-0.141968 -0.003813 -0.035563 0.026477 -0.003821 -0.035568	90.057.3710
loop 5	N(16) B(17) N(18) B(19) B(41) N(42)	r ₁₆₋₁₇ r ₁₆₋₁₇ r ₁₆₋₄₁ r ₁₇₋₁₈ r ₁₈₋₁₉ r ₁₉₋₄₂ r ₄₁₋₄₂	1.417 1.417 1.303 1.466 1.466 1.303	-0.176228 0.027328 -0.066071 0.025758 0.028672 -0.061409	90.03.9639
loop 6	N(20) B(21) N(22) B(23) B(43) N(44)	$\begin{array}{c} r_{20-21} \\ r_{20-43} \\ r_{21-22} \\ r_{22-23} \\ r_{23-44} \\ r_{43-44} \end{array}$	1.417 1.417 1.303 1.466 1.466 1.303	-0.145945 -0.004382 -0.038261 0.027356 -0.004393 -0.038252	90.033.7029
loop 7	N(24) B(25) N(26) B(27) B(45) N(46)	r ₂₄₋₂₅ r ₂₄₋₂₅ r ₂₄₋₄₅ r ₂₅₋₂₆ r ₂₆₋₂₇ r ₂₇₋₄₆ r ₄₅₋₄₆	1.417 1.417 1.303 1.466 1.466 1.303	-0.167045 0.032748 -0.057311 0.030136 0.034124 -0.059718	90.082.9711
loop 8	N(28) B(29) N(30) B(31) B(47) N(48)	r 28-29 r 28-29 r 29-47 r 29-30 r 30-31 r 31-48 r 47-48	1.417 1.417 1.303 1.466 1.466 1.303	-0.141699 -0.004621 -0.035262 0.025256 -0.004614 -0.035254	90.0122.8949

Table 8: Bond Length, Atomic charges & Dipole orientation of the sides of various loops of $B_{24}N_{24}$.

Compound			NMR p	arameters ((ppm)		
[Co(CN) ₆] ³⁻	Isotropic	anisotropy	Δσ	δ CSGT GIAOI GAIM	η	Ω	ê
Co(1)	-7827.8043	15.4186	15.4186	10.2791	0.734364	10.2791	-0.39844
	-7827.8043	15.4186	15.4186	10.2791	0.734364	10.2791	-0.39844
	-7860.7339	16.0271	16.0271	10.6848	0.851658	10.6848	-0.22248
C(2)	35.7915	349.7468	349.7469	233.1646	0.001602	233.1646	-1.4976
	35.7915	349.7468	349.7469	233.1646	0.001602	233.1646	-1.4976
	19.0814	373.804	373.804	249.2026	0.000786	249.2026	-1.49882
C(3)	35.8802	349.5784	349.5784	233.0522	0.000275	233.0522	-1.49959
	35.8802	349.5784	349.5784	233.0522	0.000275	233.0522	-1.49959
	19.1472	373.7295	373.7295	249.153	7.14E-05	249.153	-1.49989
C(4)	35.8283	349.6323	349.6323	233.0881	0.000297	233.0881	-1.49956
	35.8283	349.6323	349.6323	233.0881	0.000297	233.0881	-1.49956
	19.0861	373.7933	373.7934	249.1956	5.26E-05	249.1956	-1.49992
C(5)	35.808	349.6633	349.6633	233.1089	0.000288	233.1089	-1.49957
	35.808	349.6633	349.6633	233.1089	0.000288	233.1089	-1.49957
	19.064	373.8239	373.8239	249.216	8.83E-05	249.216	-1.49987
C(6)	35.8821	349.5573	349.5574	233.0382	0.000264	233.0382	-1.4996
	35.8821	349.5573	349.5574	233.0382	0.000264	233.0382	-1.4996
	19.1366	373.7248	373.7248	249.1499	0.000134	249.1499	-1.4998
C(7)	35.7907	349.7474	349.7474	233.165	0.001602	233.165	-1.4976
	35.7907	349.7474	349.7474	233.165	0.001602	233.165	-1.4976
	19.0811	373.804	373.804	249.2026	0.000786	249.2026	-1.49882
N(8)	-33.9122	527.9381	527.9381	351.9587	0.000605	351.9587	-1.49909
	-33.9122	527.9381	527.9381	351.9587	0.000605	351.9587	-1.49909
	-43.2697	546.1166	546.1166	364.0778	6.54E-05	364.0778	-1.4999
N(9)	-34.1079	528.12	528.12	352.08	0.001431	352.08	-1.49785
	-34.1079	528.12	528.12	352.08	0.001431	352.08	-1.49785
	-43.363	546.2229	546.2229	364.1486	0.000444	364.1486	-1.49933
N(10)	-34.1006	528.0967	528.0967	352.0645	0.000689	352.0645	-1.49897
	-34.1006	528.0967	528.0967	352.0645	0.000689	352.0645	-1.49897
	-43.3832	546.2333	546.2334	364.1556	0.000105	364.1556	-1.49984
N(11)	-34.1084	528.1192	528.1192	352.0794	0.00143	352.0794	-1.49786
	-34.1084	528.1192	528.1192	352.0794	0.00143	352.0794	-1.49786
	-43.3629	546.2218	546.2219	364.1479	0.000443	364.1479	-1.49934
N(12)	-34.063	528.0556	528.0557	352.0371	0.00073	352.0371	-1.49891
	-34.063	528.0556	528.0557	352.0371	0.00073	352.0371	-1.49891
	-43.3477	546.193	546.193	364.1286	3.05E-05	364.1286	-1.49995
N(13)	-33.9229	527.9167	527.9167	351.9444	0.000552	351.9444	-1.49917
	-33.9229	527.9167	527.9167	351.9444	0.000552	351.9444	-1.49917
	-43.2617	546.0694	546.0694	364.0463	7.72E-05	364.0463	-1.49988

•	Table 9: Nuclear Magnetic Resonance parameters of $[Co(CN)_{e}]^{3}$
	complex at three CSGT,GIAO,IGAIM methods

CONCLUSION

In this study, Density functional theory calculations with EPR basis sets have been employed to determination non-bonded interaction. In accordance with Table 3, definition the magnitude of ", under strong field ligands, such as (CN), equal to 0.25308 a.u. In accordance with Table 1, $[Co(CN)_6]^{3-}$ complex with strong field ligands no exhibit the Jahn–Teller distortion. It has been displayed at Table 5 that the bonding coefficients of s, p and d orbitals were 0.3 and anti-bonding coefficients of Co-C bonds were 0.8 and Co-N bonds were 0.7. In accordance with NICS values of Table 6, it's displayed that loops1,3 and 5 have

similar NICS values and equal to -10.1058 and loops 2,4 and 6 have similar NICS values and equal to -10.1189. So, the more negative NICS values, the aromaticity and magnetism that loops most. According to different NMR methods of Table 9, characterize that CSGT and GIAO methods have similar quantity.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial and other support of this research, provided by the Islamic Azad University, Eslamshahr Branch, Tehran, Iran.

REFERENCES

- Wu, H.S.; Jiao, H.J. Chem. Phys. Lett. 2004, 386, 369–372
- Wu, H.S.; Xu, X.H.; Strout, D.L.; Jiao, H.J. J Mol Model. 2005, 12, 1–8
- 3. Rogers, K.M.; Fowler, P.W.; Seifert, G. *Chem. Phys. Lett.* **2000**, 332, 43-50
- 4. Zhu, H.Y.; Schmalz, T.G.; Klein, D.J. *Int. J. Quantum Chem.* **1997**, *63*, 393–401
- 5. Manolopoulos, D.E.; Fowler, P.W. *Chem Phys Lett.* **1991**, *187*, 1–7
- Zope, R.R.; Dunlap, B.I. Chem. Phys. Lett. 2004, 386,403–407

- Zhang.R.; Huyskensd T.Z.; Ceulemeans, A. Chem. Phys. 2005, 316, 35 – 44
- Amiri. A.; Monajjemi. M.; Ketabi. S. *Phys. Chem.* Liq. **2007**, *45*, 425-433
- Monajjemi, M.; Azad, M.T.; Haeri, H.H.; Zare, K.; Hamedani, Sh. *J. Chem. Res.* 2003, 2003, 454-456.
- Reed, A. E.; Weinhold, F. J. Am. Chem. Soc.1985, 107, 1919-1921
- Monajjemi, M.; Khaleghian, M. J. Cluster Sci. 2011, 22, 673–692