A Comprehensive Review on Medicinal Plants against Lung Cancer

BALAMURUGAN PANDIYAN1, SANGILIMUTHU ALAGAR YADAV**, KARPAGAVALLI M2, GAYATHIRI E3, SUVATHIKA GNANASELVAN1 and SOWMYA PRIYA MANOHARAN1

*1Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore–641 021, Tamil Nadu, India.
2Karpagam College of Pharmacy, Coimbatore-641032, Tamil Nadu, India.
3Department of Botany, Gurunanak College, Chennai, Tamilnadu, India.
**Corresponding author E-mail: smuthu.al@gmail.com

http://dx.doi.org/10.13005/ojc/380320

(Received: April 20, 2022; Accepted: June 10, 2022)

ABSTRACT

Lung cancer is a disease with a high probability of occurrence as well as a high mortality rate. Despite the fact that numerous therapies are available, a huge number of patients die each year as a result of cancer. The rising research direction in health care pharmacy paves the way for the development of an effective and side effect-free anticancer medicine. Chemical entities found in plants are extremely useful in cancer studies. Most notary bioactive phytochemicals are preferred because they act differently only on cancer cells exclusively and not normal cells. Carcinogenesis is a multi-step process that involves numerous signaling events. Phytochemicals have a pleiotropic activity which can target these events in a variety of ways, making them an excellent choice for anticancer medication therapy. Efforts are underway to create lead candidates derived from phytochemicals that can reduce the progression of cancer without inducing any side effects. The purpose of this review is to provide information on medicinal plants that have anticancer effect against lung cancer.

Keywords: Medicinal plant, Secondary metabolites, Antitumor activity, Lung cancer and Phytochemicals.

INTRODUCTION

Cancer is a deadly disease characterized by aberrant cell proliferation. It is the leading cause of death and morbidity worldwide, with the number of cases increasing over time1. This disease is the second biggest cause of death in affluent countries, after cardiovascular disease2-3. Uncontrolled proliferation and dedifferentiation of a normal cell characterize the cancer phenomena4. Changes in various cellular signaling pathways link cancer to a category of hereditary illnesses5. The illusion of uncontrollable cell expansion reductions in apoptosis is one of the main alterations that determine malignant development6. The lifestyle changes are the most common cause of cancer, there is an urgent need to find a better cure for the condition. Because of the high mortality and occurrence, it has become...
significant public health and economic issue that needs comprehensive prevention7.

Lung cancer is often diagnosed malignancies in the world. Lung cancer, like all malignancies, has the best chance of being cured if diagnosed early in the disease's progression8. The most recurrent cancer in the world is lung cancer, with 6.3 percent of people developing lung or bronchial cancer at some point in their lives9. Dynamic tobacco smoking, secondhand tobacco smoke outflow (aloof smoking), line and stogie smoking, indoor and outside air contamination, atomic openness, nickel, chromium, and arsenic have been considered as the causing agents for huge cases10. Tobacco use is the leading cause of lung cancer, and males are more likely than women to develop the disease11. Non-small cell lung carcinoma (NSCLC), which includes Squamous Cell Lung Carcinoma (SCLC), Adenocarcinoma, and Large Cell Carcinoma, for 80% of lung cancer cases, while Small Cell Lung Carcinoma accounts for 20%12. In addition, there has been an upsurge in research into tumor-associated biomarkers, with the goal of lowering lung cancer mortality rates through early identification and prognosis13. A cancer underdeveloped cell model has also been considered, as it provides new insights into the limitations of current cancer treatments14. The discovery of multiple sub-atomic pathways that influence the formation, mobility, and visibility of lung cancer is leading to the creation of new therapeutic techniques15. Clinical evidence supports selective suppression of the Vascular Endothelial Growth Factor (VEGF) or Epidermal Growth Factor (EGF) signaling pathways in the treatment of advanced Non-Small Cell Lung Carcinoma (NSCLC)16.

Plant-derived chemicals are more tolerant and non-toxic to normal human cells; hence medicinal plants have a number of advantages over artificial products17. Radiotherapy and chemotherapy, which are now used to treat cancer, have a variety of side effects such as neurological, cardiac, renal, and pulmonary toxicity, which can have a major impact on an individual's health18. As a result, an alternate technique must be developed that includes a less toxic and more potent anticancer medicine than which is available on the market. Several research have been conducted on naturally occurring chemicals that have been shown to exhibit cytotoxicity effects, indicating that they have the potential to kill cancer cells19. Because of these benefits, medicinal plants are in high demand, and various species have been studied and selected for use in the creation of cancer treatments20 as shown in the Fig. 1. Medicinal plants contain wide spread varieties of secondary metabolites which contain flavonoids, flavones, anthocyanins, lignans, coumarins, isocatechins and catechins21. These bioactive antioxidant and anticancer compounds of medicinal plants are mainly responsible to reduce the cancer effects. The cumulative side effects and high-cost medication has its impact on the focus of research for herbal medicines22. The review also focused on bioactive compounds in plant parts responsible for anticancer activity with their pharmacological potential.

![Fig. 1. Pictorial Representation of both healthy Lung cell and Lung cancer cell along with its Causes and Treatment Effects of Lung Cancer](image)

Natural Lead Molecules towards Treatment of Cancer

Despite the availability of numerous drugs for cancer treatment, Cancer is still the second biggest cause of mortality worldwide23. Chemotherapy and newer cancer treatments have been linked to a slew of side effects in patients. Millions of people are diagnosed with cancer each year and die as a result of their sickness24. Cancer affects over 3500 million people worldwide each year, accounting for more than 2-3 percent of all fatalities25. Though Chemo preventive medicines are particularly effective in the treatment of cancer, due to their toxicity, their usage is limited26. Because of the negative side effects of chemotherapy and nuclear cancer treatment, new and improved treatments are urgently needed27. Cancers can be avoided by following a healthy
lifestyle, refraining from smoking, successfully treating inflammatory conditions, and taking vitamin supplements to promote immune function, as the old adage says28. Chemotherapy sole major treatment option for advanced-stage malignancies is extremely hazardous to normal tissues29. The discovery of Podophyllotoxin in the late 1960s started a search for natural cancer treatments, and lead to the discovery of anticancer drugs like vincristine, vinblastine, camptothecin and taxol30.

Nature's disease-fighting qualities can be found in over a thousand plants. The effect of a synthetic variation of the chemotherapy medicine, Etoposide has been discovered in small cell lung and testicular malignancies. It is possible to develop a modern cancer prevention medicine based on medicinally active herbs and their mechanisms of action that were previously unknown. Potent chemicals extracted from medicinal plants have been used to make a variety of medicines over the years31. For the medication development and manufacturing process, the following three testing procedures are used:

1. Isolation and characterization of active molecules based on bioactivity,
2. Rational drug design-based alteration and
3. Synthesis of analogues and mechanism of action studies32.

So, for several phytochemicals have been stated to reduce the development of cancer cells. Vincristine affects causes spiral aggregation through tubulin self-microtuble assemblies38. Docetaxel has the ability to inhibit topoisomerase; however, it also damages DNA39. Synthetic chemistry involves the use of technical combinatorial chemistry in the generation of novel leads, as well as drugs derived from natural ingredients40. Nature is an enticing source of potential therapeutic candidate chemicals due to the vast chemical complexity present in millions of species of plants. Many plant-derived chemicals are currently being employed in cancer therapy with great effectiveness41.

Plant Compounds with Anticancer Properties

While folk medicine has been practiced for thousands of years in Asian and African tribes, the use of medicinal plants is fast spreading throughout the rest of the world42. Certain countries, according to the World Health Organization (WHO), rely on plant-based medicine as their primary supply of pharmaceuticals, while industrialized countries benefit from the medical benefits of naturally produced compounds43. Fig. 3 illustrates the anticancer chemicals and its structure isolated from terrestrial plants includes Polyphenols, Flavonoids and Brassinosteroids44.
Polyphenols

Polyphenols, which are natural antioxidants, are included in a person's diet, they are thought to increase protection and reduce cancer risk. Polyphenols are thought to cause apoptosis, which means they have anticancer properties. Polyphenols are understood to trigger apoptosis by inhibiting the mobilization of copper ions bound to chromatin, resulting in DNA breakage. Plant polyphenols have the ability to stop cancer cells from growing by interfering with proteins prevalent in cancer cells. The food sources including almonds, grapes, and red wine have been reported to contain polyphenolic named resveratrol and Gallocatechins, which are antioxidants, are found in green tea. These polyphenols may control acetylation, methylation, or phosphorylation by directly interacting with cancer agents. Curcumin has been shown to cure tumor cells in various cells, including the suppression of Tumor Necrosis Factor (TNF) production when subjected to diverse stimuli.

Flavonoids

Flavonoids are polyphenolic chemicals that make up a diverse range of plant-derived metabolites, over 10,000 structures identified. Flavonoids are phenol-like active agents in plants that are garnering interest in research due to their possible health advantages. Radicals have been shown to scavenge radicals, and flavonoids have been proven to have cytotoxicity. Flavonoids have anticancer properties in persons with Hepatitis-2, which causes hepatoma (H-G), and in women with breast cancer (MCF-7). MLF(4'-Methoxy licoflavanone) found to be cytotoxic in HL-60 cells (human leukemia) via the intrinsic and extrinsic death pathways of apoptosis. When apoptotic proteins are triggered, mitochondrial membranes lose their potential, and cancer cells' mitochondria become unable to function. Flavonoids from ferns have also been demonstrated to have anticancer properties at very low doses in other investigations. Polyphenols, as earlier stated, may alter the impact of proteins substances that may be employed to enhance cellular survival. STAT proteins (Signal Transducers and Activators of Transcription) support both cell survival and development. Members of this protein family are dephosphorylated by MLF (4'-Methoxy licoflavanone) and AIF (Alpinumi soflavone) which decreases cancer cell survival. This inhibitory mechanism, which prevents the formation of new blood vessels and cell development, normally limits Nuclear factor-B (NF-B) production and survival.

Brassinosteroids

Plant brassinosteroids control cell
development and differentiation, as well as the elongation of stem cells and root cells\(^6\). Plant senescence is also monitored using brassinosteroids. They are necessary for plant development and production\(^6\). Another naturally occurring substance with medical relevance in the fight against cancer is brassinosteroids\(^6\). Two natural brassinosteroids have been employed in cancer cell research to demonstrate their anticancer effects. In laboratory trials, a mixture of anticancer chemicals known as 28-homobrassinolide (or 28-homoCS) and 24-epibrassinolide (or 24-epiBL) was found to be effective against a wide spectrum of cancer cell types at low doses\(^6,6\). Cancer cells lack the ability to undergo apoptosis and hence exist in a permanent state of proliferation, whereas brassinosteroids can cause reactions that inhibit cell development and accelerate cell death\(^6\). T-phastictumourlines, multiple myeloma MLC, and osteosarcoma HAG have all received brassinosteroids. It also studied against the breast cancer cell lines consisting estrogen and human epidermal growth factor 2 (HER2) proteins\(^6\).

Although most research has focused on the Androgen receptor, which is prevalent in breast cancer cells, it appears to have a structure comparable to the estrogen receptor in prostate cancer (LNCaP and DU-145 cell lines)\(^6\). All hormone-responsive and hormone-responsive cancer cells are inhibited by Brainers. Brassinosteroids has the potential to be cytotoxic, producing DNA damage and halting the cell cycle. G1 cell cycle protein participation was considerably reduced in 28-homoCS and 24-epiBL-treated breast cancer cells. At this point in the cell cycle, cells go through either repair or apoptosis; brassinosteroids cause cells to go into apoptosis\(^6\). In the case of brassinosteroids, the combination of apoptotic proteins that promote survival and those that destroy cells is essential in prostate cancer cell lines\(^6\). Bax becomes hyper proliferative after radiation treatment, but Bcl-2 is inversely controlled\(^7\). In addition to their anticancer capabilities, brassinosteroids cause a variety of reactions in both normal and cancer cells\(^7\). Brassinosteroids derived agents are of concern for therapeutical qualities since they are not cytotoxic to human cells and are cancer cell selective, which is a critical criterion in anticancer treatment\(^7\).

Plants Used for Lung Cancer and Other Cancer Treatment

Cancer affects more than 4 million people and Lung cancer affects 2.1 million in the country each year\(^7\). Continual research is being carried out over the world to identify effective cancer treatments, such as chemotherapy, which entails high-risk quantities of chemical drugs that can lead to high toxic events\(^7\). Medicinal plants use antioxidant and anticancer chemicals that are thought to reduce or destroy cancerous cells to treat and cure cancer. Certain plants may also contain constants that can be employed in nature to prevent the spread of cancer or reduce the risk of getting various types of cancer\(^7\). Any descriptions of plants that may be utilised to treat cancer, as well as their respective developments, are listed in Table 1 and Table 2.

<table>
<thead>
<tr>
<th>Name of Secondary metabolites</th>
<th>Chemical structure</th>
<th>Plant source and its family</th>
<th>Treatment of cancer and type</th>
<th>Mode of function and action</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irinotecan</td>
<td></td>
<td>Camptotheca acuminate (Nyssaceae)</td>
<td>To treat Colorectal and Lung tumors.</td>
<td>During reticence of DNA genetic material topoisomerase I</td>
<td>[76]</td>
</tr>
<tr>
<td>Compound</td>
<td>Source</td>
<td>Effect</td>
<td>Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxol</td>
<td>Taxus brevifolia and Taxus baccata (Taxaceae)</td>
<td>Lung cancer, Act as Anti-mitotic agent</td>
<td>[77]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vincristine</td>
<td>Catharanthus roseus (Apocynaceae)</td>
<td>Blood Leukemia, lymphomas, breast carcinoma, lung tumor and pediatric solid tumors, Inhibit cells accumulation by process in mitotic block.</td>
<td>[78]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinblastine</td>
<td>Catharanthus roseus (Apocynaceae)</td>
<td>Used to treat renal cancer, breast, lung, and lymphoma, During mitotic block, it can inhibit cell proliferation.</td>
<td>[79]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vindesine</td>
<td>Catharanthus roseus (Apocynaceae)</td>
<td>Lung, kaposi's sarcoma, leukemias, lymphomas, breast and Advanced testicular cancer, Blocking mitosis.</td>
<td>[80]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinorelbine</td>
<td>Catharanthus roseus (Apocynaceae)</td>
<td>Lung, kaposi's sarcoma, leukemias, lymphomas, breast and Advanced testicular cancer, Blocking mitosis.</td>
<td>[81]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topotecan</td>
<td>Camptotheca acuminata (Nyssaceae)</td>
<td>Extra Ovarian carcinoma, lung carcinoma and pediatric tumors, For the period of impede of DNA Over winding that enzymes' name as topoisomerase I.</td>
<td>[82]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Docetaxel (Pacitaxel's semi-synthetic derivative)</td>
<td>Taxus brevifolia, Taxus baccata (Taxaceae)</td>
<td>Cancer for Breast and lung cancer, Prevent or avert cell mitosis through binding toward microtubules.</td>
<td>[83]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berberine</td>
<td>Arcangelisia flavia (Menispermaceae) and Hydrastis canadensis L. (Ranunculaceae)</td>
<td>Breast, osteosarcoma, prostate, lung, and liver cancer, Inhibits cell proliferation through mitochondria apoptotic pathway</td>
<td>[84]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betaapachone</td>
<td>Tabebuia avellanedae (Bignoniaceae)</td>
<td>Pancreatic, breast, prostate cancer, promyelocytic leukemia and lung cancer, Topoisomerase I and II inhibition</td>
<td>[85]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emodin</td>
<td>Rheum rhabarbarum (Polygonaceae)</td>
<td>Leukemia, lung, ovarian and liver cancer, Apoptosis induction</td>
<td>[86]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavopiridol</td>
<td>Amoora rohituka and Dyssoxylum binectoriflerum (Meliaceae)</td>
<td>Non-Hodgkin’s lymphoma, non-small cell lung, renal cell carcinoma, chronic lymphocytic leukemia &colorectal cancer, Inhibits the advancement of the cell cycle in the G1 or G2 phases.</td>
<td>[87]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: List of Natural Medicinally Significant Plants towards Lung Cancer and Other Cancer Therapy

<table>
<thead>
<tr>
<th>Name of plant</th>
<th>Name of Species</th>
<th>Common name of plant</th>
<th>Name of Compound</th>
<th>Function and Mechanism of action</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pink-wheel flower</td>
<td>Catharanthus roseus</td>
<td>Pink Periwinkle, Rose Periwinkle and Madagascar periwinkle.</td>
<td>Vincaleukoblastine, Vincristine, E1dsine or Vindesine, Navibine or Vinoreline.</td>
<td>Blood Leukemia, lymphomas, breast carcinoma, lung tumor, pediatric solid cancers and others</td>
<td>[88]</td>
</tr>
<tr>
<td>Pink trumpet Tree</td>
<td>Handroanthus impetiginosa</td>
<td>Pink Lapacho and iperoxo.</td>
<td>Lapachone, Lapachic acid</td>
<td>It be promote like a cure and used for a numeral of human being ailment, as well as cancer.</td>
<td>[89]</td>
</tr>
<tr>
<td>Yew plant</td>
<td>Taxus baccata var.</td>
<td>Common yew and European yew.</td>
<td>Taxotere or Dooctaxel, Pacitaxel or Taxol.</td>
<td>Lung and breast cancer.</td>
<td>[90]</td>
</tr>
<tr>
<td>Marijuana</td>
<td>Cannabis sativa</td>
<td>Ganja, Cannabis and Hemp.</td>
<td>Delta, Tetra-hydrocannabinoids, cannabinoids</td>
<td>Modulates tumor growth</td>
<td>[91]</td>
</tr>
<tr>
<td>Evergreen timber tree</td>
<td>Taxus brevifolia</td>
<td>Pacific yew or Western yew</td>
<td>Taxol</td>
<td>Lung cancer, Pancreatic cancer, and Breast cancer are all treated.</td>
<td>[92]</td>
</tr>
<tr>
<td>Ground lemon</td>
<td>Podophyllum Peltatum</td>
<td>Mayapple, American mandrake and Indian apple.</td>
<td>Podophyloxbxin or Podofilox, trans- Etoposide, Podophyllonic Acid and trans- Etoposide</td>
<td>Teniposidum Treatment of lung and testicular tumor.</td>
<td>[93]</td>
</tr>
<tr>
<td>Stinking Tree</td>
<td>Nothapodytes foetida</td>
<td>Nothapodytes Tree.</td>
<td>Acetylcamptothecin or camptothecin ACetate, Camptothecine and Scopolectol</td>
<td>In that tree is used into the production of anti-leukemia and anti-tumoral drugs.</td>
<td>[94]</td>
</tr>
</tbody>
</table>

CONCLUSION

The natural world is a one-of-a-kind source of structures with high phytochemical diversity, many of which have fascinating biological functions and medicinal capabilities. In light of the global rise in various malignancies, an intensive search for innovative lead compounds aimed at expanding curative remedial is crucial. It is difficult to find out the novel functionality as well as composition concerning the possessions of phytochemicals. This is mostly due to the occurrence of a large number of antileukemia and anti-tumoral drugs.

ACKNOWLEDGEMENT

The authors would like to thank the Karpagam Academy of Higher Education and DST-FIST (SR/FST/LS-1/2018/187) for supporting us to carry out this work.

Conflict of Interest

We wish to confirm that there is no conflict of interest associated with the present publication.
REFERENCES

10. Alberg, A.J.; Brock, M.V.; Ford, J.G.; Samet, J.M.; Spivack, S.D, Chest, 2013, 143(5), e1S-e29S.

