

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Access, Peer Reviewed Research Journal

ISSN: 0970-020 X CODEN: OJCHEG 2021, Vol. 37, No.(4): Pg.763-769

www.orientjchem.org

Synthesis and Spectral Studies of Ru(II) complexes with Macrocyclic Ligands

ASHISH RAJAK^{1#}, ARPIT SRIVASTAVA¹, RAMAKANT¹, SUBHASH CHANDRA SHRIVASTAVA^{1*}, RANJEET SINGH CHAUHAN², UDAY SINGH PATEL³ and SHEKHAR SRIVASTAVA¹

¹Department of Chemistry, University of Allahabad, Prayagraj-211002 UP, India. ²Department of Chemistry, Gochar Mahavidyalaya, Rampur Maniharan, Saharanpur-247451 UP, India. ³Department of Chemistry, D A V (P G) College Knapur-208001 UP, India. *Corresponding author E-mail: subhash.chem.au@gmail.com, kumarashish8574@gmail.com

http://dx.doi.org/10.13005/ojc/370401

(Received: June 26, 2021; Accepted: July 27, 2021)

ABSTRACT

Fifteen Ru(II) complexes of the type [RuCl₂(L)] (where L=N₄ donor macrocyclic ligands) have been synthesised by reaction of [(RuCl₂(DMSO)₄] with fifteen macrocyclic Schiff base ligands containing N₄ donors groups. The prepared fifteen [RuCl₂(L)] complexes were characterised by elemental analyses, molar conductivity, UV-Visible, IR, X-ray photoelectron spectra (XPS) and magnetic susceptibility measurements and an octahedral geometry was proposed for all these complexes.

Keywords: N₄ macrocyclic shiff base complexes, Ru(II) complexes, elemental analysis, UV-Visible, Magnetic susceptibility measurement, X-ray photoelectron spectra (XPS).

INTRODUCTION

During past few decades the chemistry of macrocyclic of metal have been developed very extensively due to its applications in coordination chemistry^{1,2}; bioinorganic chemistry³ catalysis⁴⁻⁶; organometallic chemistry⁷ and biocoordination chemistry⁸. Many macrocyclic ligands e-g. Robson type tetraiminodiphenol macrocyclic ligands^{9,10}; N_4S_2 donor macrocyclic ligands¹¹; crown ethers; porphyrins; saturated and unsaturated polyamine ⁶⁻¹²; polyazamacrocycles¹⁸; have been synthesised. A number of schiff base macrocyclic ligands have been reported¹⁴. In which many macrocyclic ligands have been synthesised by the template condensation reaction¹⁵. Several transition metal ion complexes in living organisms work as enzymes or carriers in macrocyclic ligand environment¹⁶ and used as modelling on the active sites of metalloenzymes¹⁷.

Various macrocyclic metal complexes have been used as detecting tumor lesions¹⁸ as in labeling monoclonal antibodies with radioactive models¹⁹ as in

This is an 💍 Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC- BY). Published by Oriental Scientific Publishing Company © 2018

metal ion separation²⁰ as anticancerous²¹ as toxicity against bacterial fungal growth²² as photosenstizer²³; in photosynthesis and dioxygen transport²⁴; catalyst²⁵⁻²⁷ as pharmalogical agent;^{28,29} cancer diagonsis³⁰⁻³² as therapeutic radiotherapeutic³³ as antitumour³⁴ as potential medical applications³⁵ as environmental importance³⁶ as RNA cleavage catalyst³⁷ and as NMR shift and relaxation agents³⁸.

Few comprehensive reviews on macrocyclic ligands, their metal complexes and applications have been also published in last few years³⁹.

Many ruthenium (II) & (III) Schiff base and macrocyclic Schiff base complexes have been extensively studied in last few years due to their importance as biochemical and analytical reagents⁴⁰. But ruthenium (II) macrocyclic Schiff base complexes are less known e.g. Spectroscopic data studies and structures of trans-Ru(II) and Ru(III) bis (cyanide) complexes sustained by tetradentate macrocyclic tertiary amine ligand⁴¹; N-macrocyclic complexes of Ru(II) & Ru(III); tetraaza macrocyclic Ru(II) complexes: synthesis, spectral and catalytic studies42; the versatile Ru II/Ru III teraaza macrocyclic complexes and their nitrosyl derivative43; Ru(II) & (III) complexes with cyclam and related species44; Ru(II)/(III) and oxovanadiun (IV) complexes with macrocyclic schiff base complexes; Ru(II) complexes of a new tetrapyrazolic macrocyclic; some new polynucleating ligands containing Ru(II) complexes incorporating terpyridyl and macrocyclic aza-crown binding sites. Recently some reviews on macrocyclic ligands have been also published⁴⁵.

Shankar *et al.*,⁴⁶ have been synthesised various ruthenium (II) complexes with macrocyclic Schiff base ligands derived from orthophthaldehyde and different diamines. Characterised and used as catalysts for the reduction of pralidoxime to its amino derivatives.

 complex through template synthesis in 2:2:1 molar ratio respectively.

EXPERIMENTAL

 $RuCl_3.3H_2O$ (Johnson Matthey & Co, Ltd; triphenylphosphine Merck, Mumbai); ethanol (Merck, Mumbai); dichloromethane (Aldrich) and acetone (Aldrich) were AR Grade and used after purification and dried. Solvents were distilled from relevent drying agents immediately in advance of use. [RuCl₂ (PPh₃)₄] was prepared by published method.

Melting points were determined by using in sealed capillary tube on Melting point apparatus. The C and H were determined by CDRI, LUCKNOW, INDIA. Nitrogen and chlorine were determined by Kjeldahl's and Volhard's methos respectively. Molar conductivity was measured on Elico-CM 82 conductivity bridge in acetone at room temperature. IR spectra were recorded on Perkin-Elmer 1000 IR spectrometer using KBr/CsI pellets. Electronic spectral measurements were recorded on Elico SL159 spectrophotometer in the range 300-1000 nm. Magnetic measurements were carrid out a Cahn 2000 electo balance by Faraday Method using Hg[Co(SCN),] as calibrant. Pascal constants were used for diamagnetic corrections. Kratos analytical Axis Supra ESCA i.e. X-ray photoelectron spectroscopy i.e. XPS instrument equipped with monochromatised Alka (1486.6 eV) source is used. All the peaks were rectified for charging with reference to C1S peak 284.8 eV and counterd with Shirley background and a union of Gayssian and Lorentzian lineshapes, using ESCApe software.

Prepration of [RuCl₂.L¹⁻¹⁵] complexes

2,5- diformylfuran or furil or phenanthrene 9,10-dione was mixed in dry ethanolic solution of $NH_2(CH_2)_nNH_2$ (2 mmol) (where (2 mmol) n=2 or 3 or 4 or 5 or 6) and refluxed for 2 h for preparation of ligands L₁ to L₁₅). In this resulting each solution poured [RuCl₂(PPh₃)₄ (1mmol) i.e. 1:1 molar ratio and again refluxed for about 2 hours. The resulting precipitate was filtered and recrystallised by benzene: pet-ether (9:1) ratio (Figures 1-3).

 $L^{6}=n=2; L^{7}=n=3; L^{8}=n=4; L^{9}=n=5; L^{10}=n=6$ Fig. 2. preparation of [RuCl₂(L⁶⁻¹⁰)] complexes

Fifteen tetraaza macrocyclic complexes containing Ru(II) were synthesised by interaction of $[RuCl_2(PPh_3)_4]$ with fifteen macrocyclic Schiff base ligands (L₁ to L₁₅). The complex were soluble in DMF, DMSO and chloroform. The elemental analysis (C, H, N and Cl) were consistent within ±0.5% with the suggested structure of the complexes. The molar conductance values were found to below (12.0-20.0 ohm⁻¹ cm² mol⁻¹) recommending the non electrolytic nature of the complexes⁴⁷.

In these entire [RuCl₂L¹⁻¹⁵] complexes IR band due to $v_{C=N}$ was shifted towards lower side about 20-40 cm⁻¹ with respect to the ligand spectra and was obtained in the range of 1600-1580 cm⁻¹. A low intensity band in the region of 520-500 cm⁻¹ were observed due to v_{Ru-N} vibration confirm that ligands coordinate to Ru metal ion through nitrogen of C=N group in all these complexes⁴⁸. Only one band was observed in the range of 320-300 cm⁻¹ in IR spectra of all these complexes indicating the presence of two chloride ions in trans position around ruthenium ion⁴⁹. All the Characteristic IR bands were also observed due to aromatic rings in the expected region in all these [RuCl₂L¹⁻¹⁵] complexes⁴⁹. The ground state of Ru(II) t_{2g}^{6} electronic configuration is ${}^{1}A_{1g}$. For octahedral Ru(II) complexes four electronic transition are possible i.e ${}^{1}A_{1g} \rightarrow {}^{3}T_{2g}$; ${}^{1}A_{1g} \rightarrow {}^{1}T_{1g}$ and ${}^{1}A_{1g} \rightarrow {}^{1}T_{2g}$. In each complexes of [RuCl₂ (L¹⁻¹⁵)] two electronic bands were observed in the region 200-530 nm. These electronic bands have been assigned to the spin allowed ${}^{1}A_{1g} - {}^{1}T_{1g}$ transition at lower wavelength (460-520 nm) based on molar extinction coefficient.

The another high intensity band at 280-290 nm region has been assigned due to charge transfer transition originated from the excitation of an electron from the metal ${}^{12}_{g}$ level to the unfilled molecular orbital derived from the π^* level of the ligands. All these [RuCl₂L¹⁻¹⁵] complexes have shown negative magnetic susceptibility and magnetic moment values below then 1.0 BM at room temperature corresponding to diamagnetic nature.

Sr. No	Complexes	% found (Calculated)				^M Ohm ⁻¹ cm ² mol- ¹	
		С	Н	N	CI		
1	[RuCl _s .L ¹)]	41.4	3.2	11.6	15	10	
	- 2	-41.5	-3.3	-11.8	-15		
2	[RuCl ₂ .L ²)]	43.4	4	11	14.2	12	
	2	-43.5	-4	-11.2	-14.3		
3	[RuCl ₂ .L ³)]	42.6	4.4	10.6	13.4	18	
	2	-42.7	-4.5	-10.6	-13.5		
4	[RuCl ₂ .L⁴)]	47.6	5	10	12.6	16	
	2	-47.8	-5	-10.1	-12.8		
5	[RuCl _₂ .L⁵)]	50.4	5.4	9.4	12	10	
	2	-50.5	-5.4	-9.4	-12		
6	[RuCl ₂ .L ⁶)]	54.2	3.6	10.5	13.4	12	
	2	-54.4	-3.7	-10.5	-13.4		
7	[RuCl ₂ .L ⁷)]	56	4.2	10	12.6	14	
	2	-56	-4.3	-10	-12.7		
8	[RuCl ₂ .L ⁸)]	69	5.6	11.4	14.6	16	
	2	-69.2	-5.7	-11.5	-14.6		
9	[RuCl ₂ .L ⁹)]	30.6	4	7	9	12	
	2	-30.7	-4.4	-7.1	-9		
10	[RuCl ₂ .L ¹⁰)]	59.8	3.2	11.6	15	18	
	2	-59.9	-3.3	-11.8	-15		
11	[RuCl ₂ .L ¹¹)]	68	4.8	7	9	20	
	2	-68	-4.9	-7.1	-9		
12	[RuCl ₂ .L ¹²)]	68.6	4.6	9.2	11.8	18	
	2	-68.8	-4.7	-9.4	-11.9		
13	[RuCl ₂ .L ¹³)]	69.4	5	9	11.2	16	
	2	-69.5	-5.1	-9	-11.4		
14	[RuCl ₂ .L ¹⁴)]	71.2	4	8.6	11	14	
	2	-71.3	-4.4	-8.7	-11.1		
15	[RuCl ₂ .L ¹⁵)]	75	4.2	8.6	11	12	
	2	-75.1	-4.3	-8.7	-11.1		

Table 1: Physical and Analytical data of [RuCl₂L¹⁻¹⁵)] Complexes

Table 2: Infrared Spectral data of [RuCl₂(L¹⁻¹⁵)] Complexes

Sr. No	Complex	V _{C=N}	Selected IR bands (cm $V_{\rm Ru-N}$	I ⁻¹) V _{Ru-Cl}
1	[RuCl _a ,L ¹)]	1580	520	320
2	[RuClL ²)]	1570	515	310
3	[RuClL ³)]	1575	518	305
4	[RuCl_L]	1580	515	316
5	[RuClL])	1570	500	300
6	[RuCl [.L])]	1580	510	315
7	[RuCl_,L_)]	1580	505	305
8	[RuCl,L)]	1580	500	320
9	[RuCl͡₅.Lຶ)]	1600	515	315
10	[RuCl ₂ .L ₁₀)]	1600	518	320
11	[RuCl L])	1590	510	320
12	[RuCl͡s.Lˈi̯s)]	1580	508	315
13	[RuCl_L_])]	1600	515	310
14	[RuClL_]]	1580	520	305
15	[RuCl ₂ .L ₁₅)]	1580	515	320

Sr. No	Ligand & Complexes	Ru	13P1/2.3/2	N _{1s}	Cl
		Ru3P _{1/2}	Ru3P _{3/2}	13	20
1	L,			400.6	
2	L,			400.6	
3	L ₃			400.6	
4	L₄			400.6	
5	L ₅			400.6	
6	L			400.6	
7	L ₇			400.6	
8	L ₈			400.6	
9	L ₉			400.6	
10	L ₁₁			400.6	
11	L ₁₁			400.6	
12	L ₁₂			400.6	
13	L ₁₃			400.6	
14	L ₁₄			400.6	
15	L ₁₅			400.6	
16	[RuCl ₂ (PPh ₃) ₄]	482.8	460.8		201.6
17	[RuCl ₂ .L ¹)]	482	460	402.8	202.8
18	[RuCl ₂ .L ²)]	482	460	402.8	202.8
19	[RuCl ₂ .L ³)]	482	460	402.8	202.8
20	[RuCl ₂ .L⁴)]	482	460	402.8	202.8
21	[RuCl ₂ .L⁵)]	482	460	402.8	202.8
22	[RuCl ₂ .L ⁶)]	482	460	402.8	202.8
23	[RuCl ₂ .L ⁷)]	482	460	402.8	202.8
24	[RuCl ₂ .L ⁸)]	482	460	402.8	202.8
25	[RuCl ₂ .L ⁹)]	482	460	402.8	202.8
26	[RuCl ₂ .L ¹⁰)]	482	460	402.8	202.8
27	[RuCl ₂ .L ¹¹)]	482	460	402.8	202.8
28	[RuCl ₂ .L ¹²)]	482	460	402.8	202.8
29	[RuCl ₂ .L ¹³)]	482	460	402.8	202.8
30	[RuCl ₂ .L ¹⁴)]	482	460	402.8	202.8
31	[RuCl ₂ .L ¹⁵)]	482	460	402.8	202.8

Table 3: $Ru3p_{_{1/2,3/2}}$; $N_{_{1s}}$ and $Cl_{_{2p}}$ binding energies (eV) in ligand; $[RuCl_2(L^{_{1-15})}]$ complexes

The binding energies (eV) of prepared ligands i.e. L^{1.15}; [RuCl₂(PPh₃)₄] and [RuCl₂(L^{1.15})] in Table 1 (Figs. 4-6) for Ru3p_{1/2,3/2}, N_{1s} and Cl2p photoelectron peaks. It was observed that Ru3p_{1/2,3/2} binding energies in starting material [RuCl₂(PPh₃)₄] were higher (BE = ~ 482.8 eV and

460.8 eV for Ru3p_{1/2} and Ru3p_{3/2}) than in prepared [RuCl₂L¹⁻¹⁵] complexes (Ru3p_{1/2} BE = 482.0 eV and Ru3P_{3/2} BE 460.0 eV); suggesting that electron density in ruthenium metal ion is more in prepared [RuCl₂L¹⁻¹⁵] complexes than in [RuCl₂(PPh₃)₄] due to coordination⁵⁰ (Figures 4-6).

Fig. 4. Ru3p_{1/2} binding energies (eV) in [RuCl₂(L¹⁻¹⁵)] complexes

Fig. 5. Ru₂p^{3/2} binding energies (eV) in [RuCl₂(L¹⁻¹⁶)] complexes prepared [RuCl₂(L¹⁻¹⁵)] metal complexes

The N_{1s} photoelectron spectra of all these [RuCl₂(L^{1.15})] complexes have shown only one signal symmetrical photoelectron peak towards higher binding energies side (BE = ~ 402.8 eV) than N1S photoelectron peak of each ligand (~ BE = 400.6 eV) suggesting all four nitrogen atoms of each ligand is coordinated with ruthenium (II) metal ion.⁵⁰ (Fig. 6) & Table 1) The Ru₃S photoelectron peak in all these prepared [RuCl₂(L^{1.15}] metal complexes. have shown symmetrical peak at 584.6 i.e. have not shown multiple splitting diamagnetic nature⁵⁰. The Cl_{2p} photoelectron spectra of all these [RuL₂(L^{1.15}] complexes have shown one sharp peak at BE ~

- 1. Kumar, R.; Singh, R. *Russ J Coord Chem.,* **2006**, *32*(3), 192-198.
- Chaudhary, A.; Bansal, N.; Gajraj, A.; Singh, R.V. *J inorg biochem.*, **2003**, *96*(2-3), 393-400.
- Zhong, Z.J.; You, X.Z.; Mak, T.C. *Polyhedron.*, 1994, 13(14), 2157-2161.
- 4. Reddy, P.M.; Ho, Y.P; Shanker, K.; Rohini, R. *Eur J Med chem.*, **2009**, *44*(6), 2621-2625.
- Reddy, P.M.; Prasad, A.V; Shanker, K.; Ravinder, V. Spectrochim Acta A Mol Biomol Spectrosc., 2007, 68(3), 1000-1006.
- Reddy, P.M.; Prasad, A.V.; Rohini, R.; Ravinder, V. Spectrochim Acta A Mol Biomol Spectrosc., 2008, 70(3), 704-712.
- Akine, S.; Sunaga, S.; Taniguchi, T.; Miyazaki, H.; Nabeshima, T. *Inorg Chem.*, 2007, 46(8), 2959-2961.
- 8. Anacona, J.R.; Bastardo, E.; Camus, *J. Transit Met Chem.*, **1999**, *24*(4), 478-480.
- 9. Nazmutdinov, R.R.; Roznyatovskaya, N.V.;

202.4-202.0 eV; suggesting inner sphere chlorine atom in trans position⁵⁰.

CONCLUSION

In the present paper, fiffteen Ru(II) complexes of the type $[RuCI_2L^{1-15}]$ have been synthesized and characterized with fifteen tetraaza macrocyclic ligands. On account of analytical and spectral statistics octahedral geometry were provisionally proposed for all of these complexes.

ACKNOWLEDGEMENT

The author Ashish Rajak is thankful to Chemistry Department, University of Allahabad, Prayagraj for affording financial assistance to the research work and instrumental facilities and Arpit Srivastava, Ramakant and SCS are gratified to UGC-CSIR, New Delhi, India for providing the financial support as UGC JRF (Ref. no-191620091263), UGC-SRF (Ref. no-354/CSIR-UGC NET DEC. 2017) and UGC-SRF (Ref. no-19/06/2016(i)EU-V) respectively.

Conflicts of interest

The authors declare no conflict of interest in the present research work.

REFERENCES

Glukhov, D.V.; Manyurov, I.; Mazin, V.M.; Tsirlina, G.A.; Probst, M. *Inorg Chem.*, **2008**, *47*(15), 6659-6673.

- Hodacová, J.; Buděšínský, M. Org Lett., 2007, 9(26), 5641-5643.
- 11. Constable, E.C.; King, A.C.; Palmer, C.A. *Inorganica Chim Acta.*, **1991**, *184*(1), 43-45.
- 12. Gokel, G.W.; Leevy, W.M.; Weber, M.E. *Chem Rev.*, **2004**, *104*(5), 2723-2750.
- López-Deber, M.; Bastida de la Calle, R.; Macías, A.; Pérez-Lourido, P.; Rodríguez, A.; Valencia Matarranz, L. *Z Anorg Allg Chem.*, 2007, <u>633</u>(11-12), 1842-1846.
- Bértolo, E.; Bastida, R.; De Blas, A.; Fenton, D.E.; Lodeiro, C.; Macías, A.; Rodríguez, A.; Rodríguez-Blas, T. *J Incl Phenom Macrocycl Chem.*, **1999**, *35*(1), 191-198.
- 15. Salavati-Niasari, M.; Davar, F. *Inorg Chem Commun.*, **2006**, *9*(2), 175-179.
- 16. Saleh, A.A. *J Coord Chem.*, **2005**, *58*(3), 255-270.

- Emara, A.A.; Abou-Hussen, A.A. Spectrochim Acta A Mol Biomol Spectrosc., 2006, 64(4), 1010-1024.
- Kosmas, C.; Snook, D.; Gooden, C.; Courtenay-Luck, N.S.; McCall, M.J.; Meares, C.F.; Epenetos, A.A. *Cancer Res.*, **1992**, *52*(4), 904-911.
- Mewis, R.E.; Archibald, S. J. Coord Chem Rev., 2010, 254(15-16), 1686-1712.
- Adam, K.R.; Antolovich, M.; Baldwin, D.S.; Duckworth, P.A.; Leong, A.J.; Lindoy, L.F.; McPartlin, M.; Tasker, P.A. *J Chem Soc., Dalton Trans.*, **1993**, *1*(7), 1013-1017.
- EI-Boraey, H.A.; EI-Gammal, O.A. Spectrochim Acta A Mol Biomol Spectrosc., 2015, 138, 553-62.
- 22. Tyagi, M.; Chandra, S.; Akhtar, J.; Chand, D. Spectrochim Acta A Mol Biomol Spectrosc., **2014**, *118*, 1056-1061.
- 23. Bonnett, R. Chem Soc Rev., **1995**, 24(1), 19-33.
- 24. Champness, N.R.; Frampton, C.S.; Reid, G.; Tocher, D. *J Chem Soc., Dalton Trans.*, **1994**, *20*, 3031-3037.
- Makki, M.S.; Abdel-Rahman, R.M.; El-Shahawi, M.S. *Comptes Rendus Chimie.*, **2012**, *15*(7), 617-626.
- 26. Canales. J.; Ramirez, J.; Estiu, G.; Costamagna, *J. Polyhedron.*, **2000**, *19*(22-23), 2373-2381.
- Bencini, A.; Bianchi, A.; Giorgi, C.; Paoletti, P.; Valtancoli, B.; Fusi, V.; García-España, E.; Llinares, J.M.; Ramírez, *J. A. Inorg Chem.*, 1996, *35*(5), 1114-1120.
- Singh, R.V.; Dwivedi, R.; Joshi, S.C. *Transit* Met Chem., **2004**, *29*(1), 70-74.
- 29. Jain, M.; Gaur, S.; Diwedi, S.C.; Joshi, S.C.; Singh. R.V.; Bansal, A. Phosphorus, Sulfur, and *Silicon and the Related Elements.*, **2004**, *179*(8), 1517-1537.
- Maldonado, C.R.; Salassa, L.; Gomez-Blanco, N.; Mareque-Rivas, J. C. *Coord Chem Rev.*, **2013**, *257*(19-20), 2668-2688.
- Majkowska-Pilip, A.; Bilewicz, A. J Inorg Biochem., 2011, 105(2), 313-320.
- 32. El-Boraey, H.A.; El-Din, A.A. Spectrochim Acta A Mol Biomol Spectrosc., **2014**, 132,

663-671.

- Blain, S.; Appriou, P.; Chaumeil, H.; Handel, H. Analytica Chim Acta., 1990, 232, 331-336.
- Chaudhary, A.; Singh, R.V. Phosphorus, Sulfur, and Silicon and the Related Elements., 2007, 182(11), 2647-2665.
- Buster, D.C.; Castro, M.M.; Geraldes, C.F.; Malloy, C.R.; Sherry, AD.; Siemers, T.C. Magnetic resonance in medicine., 1990, 15(1), 25-32.
- Choi, K.Y.; Chun, K.M.; Suh, I.H. *Polyhedron.*, 2001, 20(1-2), 57-65.
- 37. Baker, B.F.; Khalili, H.; Wei, N.; Morrow, J.R.; *JAm Chem Soc.*, **1997**, *119*(38), 8749-8755.
- Buster, D.C.; Gaughan G.T.; Hagan, J.N. U.S. Patent 4885363; 1987.
- Ochiai E. Coord Chem Rev., 2010, 254 (15-16), 1812-1814.
- Prabhakaran, R.; Geetha, A.; Thilagavathi, M.; Karvembu, R.; Krishnan, V.; Bertagnolli, H.; Natarajan, K. *J Inorg biochem.*, **2004**, *98*(12), 2131-2140.
- Wong, C.Y.; Lee, F.W.; Che, C.M.; Cheng, Y.F.; Phillips, D.L.; Zhu, N. *Inorg Chem.*, 2008, 47(22), 10308-10316.
- Shanker, K.; Reddy, P.; Ravinder, V. Int J Chem Tech Res., 2009, 1, 300-307.
- Doro, F.G.; Ferreira, K.Q.; da Rocha, Z.N.; Caramori, G.F., Gomes, A.J.; T founi, E. *Coord Chem Rev.*, **2016**, *306*, 652-677.
- Tfouni, E.; Ferreira, K.Q.; Doro, F.G.; da Silva, R.S.; da Rocha, Z.N. *Coord Chem Rev.*, **2005**, *249*(3-4), 405-418.
- 45. Rawling, T.; McDonagh, A. *Coord Chem Rev.*, **2007**, *251*(9-10), 1128-1157.
- Shanker, K.; Reddy, P.; Ravinder, V. Int J Chem Tech Res., 2009, 1, 300-307.
- 47. Jolly, W.L. Coord Chem Rev., 1974, 13(1), 47-81.
- Shakir, M.; Nasman, O.S.; Varkey, S.P. Polyhedron., 1996, 15(2), 309-314.
- Reddy, P.M.; Prasad, A.V.; Shanker, K.; Ravinder, V. Spectrochim Acta A Mol Biomol Spectrosc., 2007, 68(3), 1000-1006.
- 50. Sriastava S. *Appl Spectrosc Rev.*, **1986**, *22*(4), 401-535.