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ABSTRACT

Hierarchical porous flower-like ZnO structures containing ZnO nanorods were successfully 
synthesized by precipitation process. The structure containing high aspect ratio nanorods was 
revealed by scanning electron microscopy (SEM). The EDS analysis revealed the ZnO nanostructures 
formation as confirmed by the Zn and O peaks. The Fourier-transform infrared spectroscopy (FTIR) 
spectrum indicated the Zn–O bond vibrational frequency. The typical hexagonal wurtzite ZnO 
nanostructure with 15 nm crystallite size and the characteristic parameters was perceived from the 
X-ray diffraction (XRD) data. A 10.13 m².g-1 surface area, 10.05 cm3/g pore volume and 18.25 nm 
pore diameter were estimated using nitrogen adsorption analysis. Bandgap energy of 3.229 eV was 
calculated from the optical analysis data. Under ultraviolet light irradiation, the prepared nanoparticles 
has effectively decolorized the methylene blue dye. The reaction obeyed the pseudo-first-order 
kinetics, and the degradation mechanism was proposed using radicals scavengers to determine the 
species involved in the photodegradation process such as isopropanol, p-benzoquinone, and dimethyl 
sulfoxide. The reactive oxygen atom in the mechanism of photodegradation, and the recyclability of 
ZnO photocatalysts were studied. 
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INTRODUCTION

Recently, semiconductor nanomaterials 
have been the focal point of various research 
aspects due to their attractive and fascinating optical 
and electrical properties. Such interesting qualities 
may mainly be attributed to their size reduction1. 
In particular, ZnO nanostructures with a large 

bandgap (>3.35 eV), great excitonic energy (60 
meV) and are mechanically and thermally stable at 
ambient conditions. These excellent properties have 
drawn substantial interest for applications such as 
electronic and optoelectronic devices and lasers2,3 
chemical sensing4, bio-sensing5, biological markers6, 
dye-sensitized solar7 and electrochemical cells8. 
Different routes are adopted for ZnO nanostructures 
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preparation, including chemical vapor deposition9, 
pyrolysis10,11, high-temperature decomposition12, 
hydrothermal13, sol-gel14,15 and precipitation16-18. 
Precipitation at low temperature is an inexpensive, 
scalable facile method for large types of ZnO 
nanostructures fabrication. Precipitation procedures 
have been successfully employed in prior works to 
synthesize various ZnO assemblies19.

 Whether anionic and cationic, industrial 
dyes are extensively employed in textile; leather 
processing20. Being toxic, carcinogenic and 
mutagenic to aquatic biological systems, these dyes 
should be treated before discarding in the runoffs21. 
Still, many types of azo dyes including MB are quite 
persistent and challenging to degradation methods22. 
Consequently, their interesting photocatalytic and 
catalytic detoxification have drawn substantial 
concern in eco-friendly remediation23. The 
photocatalytic demineralization of these hazardous 
organic dyes is an ecologically preferred approach, 
as no additional chemicals are needed, and thus, 
no pollution by-products are produced24. During the 
photodegradation process, where incident radiation 
with enough energy shines on a semiconductor, it 
excites electrons from the valence to the conduction 
band, generating an electron deficiency or hole (h+). 
Oxygen molecules in the aqueous medium react with 
the electrons to breed strong reducing O2.- ions while 
the adsorbed water molecules and hydroxide ions 
react with the (h+) to generate the strong oxidizing 
•OH radicals, that are considered the primary 
radicals for the photocatalytic degradation25.

 In the present work, ZnO nanorods were 
synthesized through a precipitation process. The 
nanostructure produced was having 15 nm size, 
3.229 eV bandgap energy, and 10.13 m².g-1 surface 
area. The photocatalyst's ability to decolorize organic 
dyes was tested using the MB, where the process 
fitted well with the first order kinetics with a rate 
constant of 5.9 x 10-3 min-1.

ExpERIMENTAL

Nanoparticles preparation
 The method reported by Kumar et al.,26 
was followed where an aqueous solution of  1 molar 
zinc sulfate (200 mL) was added to 2 molar sodium 
hydroxide solution(200 mL) dropwise under strong 
stirring for 12 hours. The colored precipitate obtained 

was filtered after several times washing (10 times) 
with deionized water. The precipitate was firstly dried 
for 2 h then calcined at 300°C for 2 hours.

Characterization of the nanoparticles
 The crystalline structure of the powders 
was investigated by X-ray powder diffraction (XRD) 
using Bruker high-resolution diffractometer equipped 
with Cu-Ka radiation (1.5418 Å), operating at 40 kV 
and 40 mA. Morphological images were recorded 
by field emission scanning electron microscopy 
(FE-SEM) using high-resolution Jeol JSM 7600F 
and transmission electron microscopy (TEM) using 
JEOL, JEM-2100. The Brunauer–Emmett–Teller 
(BET) specific surface area was assessed via N2 
adsorption–desorption isotherms by employed 
ASAP 2020 Micromeritics device. The optical 
properties were determined by means of diffuse 
reflectance spectroscopy (DRS) using JASECO 
V-770 spectrophotometer in the wavelength range 
300-800 nm. Vibration and bending modes of the 
all samples were documented by means of Fourier 
Transform Infrared (FTIR) spectra (JASCO FI-IR 460 
spectrometer) in the range 400-4000 cm-1.

photodegradation using Methylene Blue
 For the degradation MB as a typical 
contaminant dye, 10 mg/L was used to inspect the 
ZnO photocatalytic activity. Prior to commencing the 
experiment, 0.050 g of ZnO were dispersed in 150 
mL of  MB solution and stirred in the dark for 60 min 
to reach equilibrium. Afterwards, the photocatalytic 
evolution was monitored under 265 nm ultraviolet 
illumination. Throughout the photocatalytic course, 
(6 mL) of the solution was withdrawn at various times 
interludes, then centrifuged to clear the solution 
and then its absorbance was examined between 
200 and 700 nm using UV–Vis spectrophotometer. 
The photocatalytic degradation percentage was 
computed the equation27. 

 (1)

 Knowing that Co and Ct are the initial 
concentration (10 mg/L) and time t MB concentration, 
respectively.

Trapping of Reactive Oxygen Species (ROS)
 To study the photocatalytic degradation 
mechanism of MB over the surface of ZnO 
nanoparticles, scavenging reagents were used to 
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determine the responsible reactive oxygen species 
by using isopropyl alcohol (IPA) for scavenging 
hydroxyl radicals (HO-.)27,28, p-benzoquinone (PBQ) 
for scavenging superoxide radicals (O2

-.)27,28, 
disodium ethylenediaminetetra acetic acid (Na2EDTA) 
for scavenging photogenerated holes (h+)29, and 
dimethyl sulfoxide for scavenging photogenerated 
electrons (e-)29. The decrease in photocatalytic 
activity, produced by scavenging reagent, would 
signify the reactive oxygen species responsible for the 
photodegradation. (50.0 mmol/L) concentrations were 
used except for PBQ, which its optimum concentration 
was 1.0 mmol/L for 10.0 mg/L of MB29.

RESULTS AND DISCUSSION

xRD analysis
 The XRD pattern of the fabricated NPs 
(Fig. 1) displays an archetypal XRD configuration of 
ZnO crystal pattern as inveterated by 2Ө ≈ 31.58, 
34.24, 36.10, 47.32, 56.38, 62.64, 67.82 and 68.98ᵒ 
that serially correspond to the (100), (002), (101), 
(10 2), (110), (103), (200), (112 and, (201) Miller 
indices indexed to the hexagonal wurtzite ZnO30 and 
in agreement with the pdf #36-1451 card for ZnO31. 
The purity of the prepared sample is confirmed by the 
absence of any peak due to impurity. The sharp peaks 
displayed in the pattern designates the synthesis of 
a highly crystalline material in the nanometer range. 

size of ZnO was determined using the most intense 
peak and was found to be 15.32 nm. The lattice 
parameters and the spacing between planes as 
designed as a, c and d respectively were calculated 
using equations 3-5.33-35

 (3a)

    (3b)

    
(4)

   (5)

 Where Ө100 and Ө002  correspond the Miller 
indices (100) and (002) correspondingly, the a and 
c values are inconsistent with the ZnO (JCPDS) 
card36, connoting the synthesis of the nano-size ZnO. 
Moreover the d-spacing calculated via the theoretical 
formula (4) and Bragg’s law (5) are almost identical 
(Table 1). The length of the Zn–O bond was obtained 
from the formula (6).

   (6)

 Here (µ) is a factor that describes the 
magnitude of the atom displacement from its 
neighbor alongside the c axis, as articulated by (7):

  (7)

 The obtained Zn-O bond value (Table 1) is 
around the previously reported 1.9767 A° value37,38. 
The strain-induced broadening in nanopowder due 
to crystal imperfection and distortion was calculated 
using the formula.39

  (8)

 The micro-strain (εz) along the c-axis was 
estimated using the expression.40

   (9)

 The terms c and c0 (5.2066 Å) stand for the 
computed typical lattice parameters in that order. For 
the ZnO, the micro-strain is equal to 0.51% which is 
tensile strain type that may stimulate the crystallite’s 
orientation along the z-axis41.

Fig. 1. xRD patterns of ZnONps

 The crystallite sizes (D) of the ZnO NPs was 
computed according to Scherrer’s formula.32 

 (2)

 The terms, Ө and β are respectively 
assigned to the CuKα line (1.5406 Aᵒ), the XRD 
diffraction angle and th (FWHM). The crystallite 
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Table 1: The ZnO Nps data obtained from the xRD analysis

Parameter β 2Ө101 D(nm) a(Aᵒ) c(Aᵒ) c/a d(Aᵒ) d*(Aᵒ) u Zn-O(Aᵒ) ε

Values 0.5481 36.1 15.32 3.2687 5.2335 1.6011 2.4861 2.4903 0.38 1.9889 0.0025
 ±0.0003 ±1.44 ±0.75 ±0.163 ±0.210  ±0.124 ±0.125 ±0.011 ±0.080 ±0.0001

SEM analysis
 The sample’s SEM micrograph displayed 
in Fig.(2a)shows a large hierarchical porous 
flower-like structure consisting of several flake-like 
structures under low magnification. At medium 
magnification (Fig. 2b), several scattered rod-like 
nano-structures were covering the flakes' surface. 

The detailed micrograph Fig. 2c exhibits high 
aspect ratio (8.5) nanorods. The (EDS) spectrum 
(Fig. 2d), snapped from a dense NPs region 
divulges strong peaks assigned to Zn, O atoms, 
whereas weaker signal form S discernible as well. 
The existence of the S element may have come 
from the sulfate in the zinc precursor.

Fig. 2. SEM images at different magnifications (a, b and c) and EDS of ZnO NPs (d)

FTIR bonding analysis
 FTIR spectra of the ZnO have been recorded 
to inspect the nature of bonds in the prepared 
materials, in the range 400–4000 cm−1 (Fig. 3). The 
peaks at 3462 cm−1 and 1647 cm−1 are respectively 
due to O–H stretching and O–H bending vibrations 
of water molecule42. This is due to water molecules' 
existence on the nanostructures' surface. The band 
positioned at 2376 cm−1 may indicates CO2 molecules 
in the air43. The peak at 418 cm−1 corresponds to 
Zn-O symmetric bending vibration, and the peak at 
604 cm−1 is due to the weak vibration of Zn-O44. The 
other peak at 785 cm−1 attributed to Zn-S symmetric 
bending45, confirming the EDS finding.

Fig. 3. FTIR spectrum of ZnO Nps

Nitrogen adsorption isotherms
 The isotherm profile delivers evidence 
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about surface consistency, and it could be generally 
characterized as displayed in Fig. 4 the nitrogen 
adsorption-desorption isotherm for the ZnO sample 
is type II, as categorized by IUPAC and Brunauer-
Emmet-Teller (BET). The isotherm shows a type H3 
hysteresis loop, distinctive of accumulated particles 
with mesoporous solids and free monolayer-
multilayer adsorption. This hysteresis at P/P0range 
0.5 and 1 is attributed to condensation in the 
mesopores related to the inter-particle cavities of the 
ZnO structure46. The point, at the start of the linear 
central part of the chart, shows the step where the 
monolayer coverage is completed and multilayer 
adsorption starts47. The specific surface of 10.13 
m².g-1 estimatedapplying the BET conventional 
method is a characteristic of a material with a 
crystallized material48,49. 10.05 cm3/g and 18.25 nm, 
are the pore volume and pore diameter, respectively. 
The particle size distribution Fig. 4 reveals that the 
average around 30 nm, which is consistent with the 
isotherm analysis data. 

n = 1/2). The Eg for the NPs (3.229eV) is less than 
the standard 3.37 eV value for ZnO53.

Fig. 4. Adsorption isotherms and pore size distribution

Optical properties and bandgap determination
 To examine the optical properties of the 
ZnO NPs its UV-Visible spectrum was verified 
and plotted in Fig. 5. The graph exhibits a sharp 
absorption edge rising at 400 nm, which is shifted 
to a higher wavelength relative to the standard 
ZnO peak50,51. The diffuse reflectance spectroscopy 
(DRS) analysis and (αhv)2 versus hv plots were 
carried out probe the band energy of ZnO NPs Fig. 
5, which was found to be 3.229 eV as estimated 
applying theTauc equation.52 

  (10)

 Here h,ν,α, and Eg are Planck’s constant, 
frequency, absorption coefficient and bandgap 
energy. A is a constant, and n represents the electron 
transition type (for directly allowed transitions,  

Fig. 5. UV-Vis absorbance and Tauc plots of ZnO Nps

Methylene Blue (MB) photodegradation
 The UV-photodegradation of 10 mg/L 
Methylene Blue (MB) dye solution was done to 
monitor the photocatalytic actions of the ZnO NPs. 
30 mg of nanomaterials were sonicated in 100 mL of 
MB solution. Prior to commencing photocatalysis, the 
solution was stirred for 40 min in the dark to achieve 
equilibrium. Then, the photocatalytic evolution was 
probed under ultraviolet irradiation at l=265 nm. 
Throughout the photocatalysis course, 5 mL of the 
solution was pipetted at different times intervals, 
centrifuged to eliminate suspended nanoparticles, 
and its absorbance was examined between 500 
and 800 nm using UV–Vis spectrophotometer. The 
proportion of the photocatalytic degradation was 
assessed using the relation.27 

  (11)

 Where Ao and At are the initial and time t 
MB absorbance, respectively.

 The photocatalytic action of the ZnO 
nanostructures was scrutinized by photodegrading 
the MB organic contaminant dye. The process 
was observed by determining the MB absorbance 
at λmax = 662 54 and different UV radiation time 
intervals Fig. 6. A gradual decrease in absorbance 
is evidence of enhanced catalytic efficiency of the 
ZnO Fig. 6. The data reveals a catalytic competence 
by the ZnO photocatalyst Fig. 7 a, which is higher 
than that shown by BaTiO3 nanoparticles that 
showed comparable results but with a lower MB 
concentration54. The result is in general similar to 
many previously reported findings for Ag/ZnO55 
ZnO/NiFe2O4

56 and SrFe12O19
57 for the degradation 

of MB. The MB photocatalytic degradation kinetics is 
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demonstrated in Fig. 7 b, where the data was plotted 
according to the pseudo-first kinetics model.

   (12)

 The graph demonstrates pseudo-first-
order kinetics as reflected by (R2) value (0.97)58. 
The rate constant calculated from the slope is 
equal to k = 5.9 x 10-3 min-1, t1/2 = 117 min and 
Ea = 12.72 kJ. Comparable results showing the 
consistency of MB photocatalytic degradation with 
the first order kinetic model were testified using 
different nanomaterials56, 57,59-61.

Blocking of Reactive Oxygen Species (ROS)
 The data in Table 2 presents that using 
isopropanol, as a scavenging reagent for hydroxyl 
radical did not affect the photodegradation efficiency, 
regardless of ZnO nanostructure photocatalyst 
identity. This observation implied that hydroxyl 
radical has no role in the photodegradation process 
of MB. However, the use of para-benzoquinone, 
for superoxide radical, the photodegradation 
efficiency was falling down, from 75% (in the 
absence of all scavenging reagent) to 45%. This 
result showed that superoxide radical's minor role 
in the photodegradation of MB. However, the use 
of disodium ethylenediaminetetraacetic acid for 
the photogenerated holes, caused a remarkable 
reduction in photodegradation efficiency 75% to 
16% over ZnO. This observation demonstrates the 
importance of holes direct interaction with MB on 
ZnO nanorods’ surface in photocatalytic degradation.  
The role of electrons photogenerated was also 
examined by using dimethylsulfoxide (DMSO). 
It was found that they did not dramatically affect 
photodegradation, which was lowered from 75% 
to 54% over ZnO. This result indicated that MB 
photodegradation did not depend on photogenerated 
electrons over ZnO.  Based on scavenging reagents 
experiments, we conclude that the valence band is 
where photodegradation of MB on ZnO occurs.   

Fig. 6. MB absorbance at different time intervals under 
UV-light irradiation

Fig. 7. %degradation at different time intervals (a) 
and  kinetics of MB photodegradation (b)

Table 2: Effects of scavenging reagents on MB 
photocatalytic degradation over ZnO photocatalyst

Scavenging reagent None IPA DMSO PBQ Na2EDTA

MB photocatalytic  75% 75% 54% 45% 16%
degradation

photocatalyst Recycling
 We examined the recyclability of ZnO 
photocatalysts for reuse in the industrial sector. We 
found that the photodegradation efficiency decreased 
from 73% (first cycle) to ~68% (second cycle) to 
42% (third cycle) over ZnO nanorods (Table 3). This 
decrease in photodegradation efficiency with the 
reused photocatalyst could be due to photodegradation 
products' accumulation on the photocatalyst surface62.  

Table 3: ZnO photocatalyst recovering 
for MB photodegradation

Cycle number 1 2 3

MB photodegradation  73% 68% 42%

Mechanism of photocatalysis
 Ultraviolet light irradiation cause electrons 
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excitation offering them enough energy to transit 
from the valence band (VB) to the conduction band 
(CB) of ZnO nanoparticles, opening positive holes 
(h+) in the VB 63. The strong 
oxidative species O2-• generated from the electrons 
and O2 reaction (O2+ e-  O2

-•) associate with H+ 
from solution to generate the peroxide H2O2 (O2+ 
2H+ + eCB-  H2O2)64. The produced H2O2 then goes 
through chain reactions with electron to the avail 
the active •OH radicals (H2O2 + e-  OH- + •OH). 
Similarly •OH can be created via the h+/ surface 
adsorbed H2O reactions21. The degradation process 
proceeds by the consecutive attacks on the organic 
dye by •OH radicals (R + •OH  R•’+ H2O) or h+ (R 
+ h+ → R•+  products)65. Fig. 8 is a diagrammatic 
exemplification for the proposed photodegradation 
mechanism.

CONCLUSION

 ZnO NPs of 15 nm size of archetypal 

Fig. 8. Elucidation of MB photodegradation

wurtzite structure and cell parameters were 
efficaciously prepared through a precipitation 
approach. The SEM images exposed flower-like 
structures NPs, which were further found to compose 
primarily of Zn and O elements as supported by 
the EDS analysis. Moreover, the establishment of 
Zn–O bonding was exhibited by the FTIR vibrational 
frequency assignments. According to the optical 
examination, the synthesized nanomaterials showed 
3.229 eV bandgap. The reaction was pseudo-first-
order kinetics, and the degradation mechanism was 
proposed using scavenging reagents. They were 
suggesting that the photodegradation of MB on ZnO 
occurs on its valence band. Also, the recyclability of 
the photocatalysts was studied. This photocatalyst 
application for MB degradation marks it an excellent 
candidate for pollutant dyes detoxification.
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