
INTRODUCTION

Membrane technology covers all
engineering approaches for the transport of
substances between two fractions with the help of
permeable membranes1-16. In general, mechanical
separation processes for separating gaseous or
liquid streams use membrane technology17-30.

Among membrane processes,
pervaporation systems are developed in many
applications such as alcohols and ethylene glycols
dehydration. Currently, hydrolysis of ethylene oxide
is the commercially method for production of
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ABSTRACT

In this study, nano silica was successfully incorporated into the polyamide solution to prepare
polyamide/nano silica mixed matrix membranes (MMMs). The prepared MMMs were characterized by
scanning electron microscopy (SEM). The prepared MMMs were used to separate mixtures of Ethylene
glycols/water at 25 C in the pervaporation (PV) process. The different nano silica loadings in polyamide
polymer, such as 0.5, 1 and 2 wt%, have been tried and nano silica with 0.5 wt% loading shows the
best PV performance. As a result, the 0.5 wt% nano silica in polyamide membrane leads to increases
in permeation, but, decrease in the separation factor. Separation factor decreases significantly at
higher loadings of nano silica due to the agglomeration of nano-particles in the polyamide matrix.

Key words: Mix matrix membrane, Nano-silica, Polyamides, ethylene glycol; Separation.

ethylene glycol (EG), where a large amount of water
is consumed in the hydrolysis reaction to increase
the conversion. The excess water requires to be
removed for ethylene glycol purification. Although
ethylene glycol and water do not form an azeotrope
over the entire composition range, separation of
ethylene glycol/water mixtures by evaporation or
distillation is still energy intensive because of the
high boiling point of ethylene glycols. Therefore,
pervaporation system can be appropriate
alternative for purification of ethylene glycols31-69.

The main goal of this study is in synthesis
of nano mixed matrix membranes for purification
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and separation of ethylene glycols. The membrane
is made of polyamide incorporated with nano-silica
particles. The membranes were used in separation
of ethylene glycols from ethylene glycol /water
mixtures using pervaporation.

EXPERIMENTAL

Materials
Ultramid® Polyamide: PA 6 (Nylon 6,

BASF), deionized water, nano silica, ethylene
glycols (Merck, 99%), and dimethyl acetamide
(Merck, 99%) were used in the all experiments. All
chemicals used were analytical grade reagents and
were used as received without further purifications.

Membrane preparation
The polyamide/nano silica MMMs were

prepared via solution casting and solvent
evaporation technique. Polyamide powder (12 wt.
%) was dissolved in dimethyl acetamide by stirring
and the solution was filtered to remove insoluble
impurities. Afterwards, the nano silica nano particles
were added into the previously prepared polyamide
solution. The solution was then stirred for 60 min
vigorously and then exposed to ultrasonication for
30 min. The solution was cast on the onto a clean
glass plate. The polymer casting solution was dried
in ambient temperature for 24 h and then MMMs
peeled from the glass. The prepared mixed matrix
membranes were evaluated in a PV separation
system which is shown in Fig. 1. The permeate
samples collected in the cold trap were analyzed
after weighted, using gas chromatography with a
flame ionization detector for confirmation. Total
permeation flux (J) was determined using the

following Equation 1 70-77:
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where J is the total flux (kg/m2 h), m is the
permeate weight (kg), A is the effective membrane
surface area (m2) and t is the PV time (h).

RESULTS AND DISCUSSION

SEM characterization
The synthesized membranes were

characterized using scanning electron microscopy
(SEM) to observe the dispersion of nano silica in
the polymer matrix. Fig. 2 illustrates SEM images of
synthesized membranes at different nano silica
loadings ranging from 0.5 to 2 wt. %. As can be
seen, the porosity of the membrane without nano
silica is low, on the other word this membrane is
dense. As shown, the membrane with 0.5 wt. % nano
silica loading shows the best nano silica dispersion.
Increasing nano silica loading results in coagulation
of particles in polymer matrix and non-uniform
dispersion of nano silica which in turn reduce the
separation performance of mix matrix membranes.

Effect of nano silica
Separation performance of polyamide (PA)

membranes in the case of pure and nano mixed
matrix were evaluated to investigate the effect of
nano silica on mixed matrix membrane
performance. Table 1 depicts the influence of nano
silica adding to polyamide on concentration of
ethylene glycols in permeate side. The nano silica
loading was 0.5 wt. % which reveals the best

Table 1: Effect of nano silica adding on separation performance of polyamide membranes

Di-ethylene glycol concentration at the outlet (wt. %) Di-ethylene glycol

With Nano-silica Without Nano-silica concentration in the feed
stream (wt. %)

64.34 49.27 40
75.90 67.01 50
99.95 95.18 60

83.51 73.65 60
98.32 93.62 70
99.52 95.03 80
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Fig. 1: Experimental setup used for pervaporation separation
of water from 2-propa ethylene glycol and di-ethylene glycol

Fig. 2: SEM images of synthesized membranes at different nano silica loadings.
a: pure polyamide; b: 0.5 wt. % nano silica; c: 1 wt. % nano silica; d: 2 wt. % nano silica

dispersion from SEM observations which it can be
seen in Fig. 2. As it can be seen from Table 1, adding
nano silica to polymer matrix increases the
concentration of ethylene glycols in permeate
significantly. The latter means that adding nano
silica increases both separation factor and

permeation flux of ethylene glycols. This could be
attributed to the increasing chemical bound between
ethylene glycols and nano silica which increase
sorption of ethylene glycols in the mixed matrix
membrane.
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CONCLUSION

In the current study, polyamide/nano silica
MMMs prepared for PV dehydration of ethylene
glycols. Silica nano particles, with sizes smaller than
100 nm, were dispersed in the matrix of polyamide
directly with a loading ranging from 0.5 to 2 wt%.
SEM observation confirmed that the agglomeration

of nano silica was observed only in the higher
contents of nano silica. Permeation values of the
polyamide/nano silica MMMs membranes were
higher than that of the neat polyamide membrane,
which indicates better PV efficiency for the
separation of water and ethylene glycols after the
incorporation of nano silica nano particles into the
polyamide membranes.
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