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ABSTRACT

	 Herein, we report the synthesis of novel thiazo-isoindolinedione derivatives in excellent yields 
(up to 92%) from the reaction of thiazolidinedione and isoindoline-dione. The structures of the novel 
compounds were elucidated by 1H-, 13C-NMR, and MS analyses. Furthermore, molecular docking 
analysis was performed to study the potential inhibition of the SARS-CoV-2 main protease (Mpro) by 
the new thiazo-isoindolinediones. The present study revealed that the new thiazo-isoindolinediones 
could inhibit the Mpro and represent a promising platform for the experimental development of new 
antiviral drugs based on thiazo-isoindolinedione scaffolds.
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INTRODUCTION

	 In December 2019, the World Health 
Organization (WHO) declared COVID-19, a disease 
caused by the coronavirus 2 (SARS-CoV-2), 
a global health emergency1,2. According to the 

WHO statistics, SARS-CoV-2 resulted in over 33 
million infections and caused more than 1 million 
deaths3. There is currently no approved specific 
treatment for COVID-19; however, immunization 
can reduce the risk of severe illness and death. 
The essential chymotrypsin-like cysteine protease 
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(Mpro) is among the potential targets proposed 
for SARS-CoV-2 inhibition, which plays a crucial 
role in viral transcription and replication4-6. Within 
this context, heterocyclic compounds have been 
extensively studied as potential lead inhibitors of the 
SARS-CoV-2 Mpro owing to their diverse biological 
properties, including antiviral, antiparasitic, and 
antimicrobial activities, making them among the most 
investigated pharmacologically active scaffolds7.

	 Fur thermore, nitrogen- and sulfur-
based heterocycles demonstrated favorable 
binding affinities to various biological targets 
due to their ability to form exceptionally high 
intermolecular interactions via the nitrogen and 
sulfur heteroatoms8. In this regard, isoindoline-
diones serve as a core structure for several 

medically essential agents. Furthermore, they are 
commonly utilized as starting building blocks for 
synthesizing alkaloids, pesticides, and polymers9. 
In addition, isoindoline-diones derivatives also 
manifested potent pharmaceutical properties, such 
as antiviral, anti-inflammatory, anticancer, and anti-
HIV properties10.

	 Within this context, isoindolinedione scaffolds 
were used to synthesize the a-glucosidase inhibitor 
I11. Furthermore, isoindoline II is a potent papain-
like cysteine protease (PLpro) 11 inhibitor. Moreover, 
norcantharimide III is a bioactive isoindoledione 
with potential antitumor activity against breast and 
lung cancers12. The 1,3-isoindolinedione tethered 
triazole IV possessed a promising antituberculosis 
mycobacterium activity13. 

Fig. 1. Bioactive isoindolinedione-(I-IV) and thiazolidinedione-(V-VI) containing agents

	 Conversely, the thiazolidinedione motif 
is a common building block of numerous drugs 
with interesting bioactivity, such as antiviral, 
antihyperglycemic, antitubercular, and anticancer 
properties14-16. The thiazolidinedione-based drug 
family includes the antidiabetic drugs pioglitazone 
V, troglitazone VI, and Troglitazone VII17. 

	 Interest ingly,  combining bioact ive 
pharmacophores targeting different pathways into a 
single compound is a major challenge for developing 
and discovering novel drugs acting simultaneously on 
multiple targets18. This strategy has shown considerable 
success and is currently employed to develop new 
therapies for diseases such as tuberculosis, malaria, 
anticancer, and Alzheimer’s diseases19,20.

	 Within this context, we envisage the synthesis 
of novel thiazo-isoindolinedione hybrids. The synthetic 
strategy involves a nucleophilic substitution reaction 
key step between thiazolidine-2,4-dione and bromo-

substituted N-alkyl phthalimides. The target compounds 
are designed to comprise thiazolidine-2,4-dione and 
1,3-isoindolinedione linked together by three carbon 
atoms, as illustrated in Fig. 2. Additionally, a molecular 
docking tool will be used to explore the chemical and 
electrical properties of the new compounds to inhibit 
the Mpro required for SARS-CoV-2 replication.

Fig. 2. The design criteria of the thiazo-isoindolinedione hybrids
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MATERIAL AND METHODS

Chemistry
	 Compounds 2-(2-bromoethyl)isoindoline-
1,3-dione (4)21 and 2-(3-bromopropyl)isoindoline-
1,3-dione (5)21,22 were synthesized from the reaction 
of 2-bromoethan-1-amine hydrobromide (2) and 
3-bromopropylamine hydrobromide (1) with phthalic 
anhydride under neat conditions at 110oC, respectively. 
Furthermore, thiazolidine-2,4-dione (6)23 was 
prepared from thiourea and chloroacetic acid reaction 
using water as the solvent and at 100oC for 4 hours. 
The potassium salt 7 was synthesized by treating 
an ethanolic solution of thiazolidine-2,4-dione (6) 
with potassium hydroxide according to the reported 
literature methods24. Copies of the 1H- & 13C-NMR, IR, 
and MS can be found in the Supporting information.

The synthesis of compound 8
	 Compound 7 (1.2 mmol) and compound 
4 (1 mmol) (1 mmol) were dissolved in DMF  
(10 ml) and heated at 80oC for 4 hours. TLC was used 
to monitor the process, and after completion, the 
reaction was poured onto ice to give a white powder. 
Compound 8 was obtained from the reaction of 
compound 4 (1 mmol, 253 mg) with thiazolidine-
2,4-dione potassium salt 7 (1.2 mmol, 186 mg) in 
DMF (10 mL) at 80oC for 4 hours. The reaction was 
followed by TLC (EtOAc/heptane 1:3; Rf=0.32), 
isolated as a white solid with 88% yield (and its m.p. 
=158–159oC. 1H NMR (400 MHz, DMSO-d6) d 7.83 
(s, 4H, Ar-H), 4.08 (s, 1H, 2H, CH2S), 3.82–3.66  
(m, 4H, CH2CH2); 

13C NMR (101 MHz, DMSO-d6) 
d 172.92, 172.46, 168.21, 134.99, 131.80, 123.59, 
40.25, 35.73, 34.21; MS (ESI): m/z=found 327.3 
[M++Na]; calcd. 327.0 [M++Na].

The synthesis of compound 9
	 Compound 9 was obtained from the 
reaction of compound 7 (1.2 mmol) with compound 
5 (1 mmol) in DMF (10 mL) at 80oC for 4 hours. The 
mixture was cooled to room temperature and then 
poured over ice to give a white powder. 

	 Compound 9 was obtained from compound 
5 (1 mmol, 269 mg) and thiazolidine-2,4-dione 
potassium salt (1.2 mmol, 186 mg) in DMF (10 mL). 
The reaction was followed by TLC (EtOAc/heptane 
1:3; Rf=0.31), isolated as a white solid with 92% 
yield and its m.p.=167–168oC. 1H NMR (400 MHz, 
DMSO-d6) d 7.87 (m, 4H, Ar-H), 4.13 (s, 2H, CH2S), 

3.52 (dt, J=20.3, 7.3 Hz, 4H, 2CH2), 1.90–1.77  
(m, 2H, CH2); 

13C NMR (101 MHz, DMSO-d6)d 
172.75, 172.34, 168.27, 134.84, 132.03, 123.47, 
39.38, 35.58, 34.39, 26.42; MS (ESI): m/z=found 
376.3 [M+++2Na+K]; calcd. 376.0 [M++2Na+K]. 

In silico studies
Molecular docking
	 The novel two thiazo-isoindolinedione 
hybrids 8 and 9 were subjected to a molecular docking 
study using the MOE software25,26 to investigate their 
potential inhibitory effect on the SARS-CoV-2 Mpro. 
Besides, the co-crystal (O6K) was inserted as a 
reference standard in the docking process. 

	 Each examined compound was sketched 
in the ChemDraw and then transferred to the MOE 
window, subjected to partial charge corrections and 
energy minimization, as mentioned before27. Next, 
the target Mpro protein receptor of SARS-CoV-2 
was extracted from the Protein Data Bank (PDB 
ID: 6Y2G, https://www.rcsb.org/structure/6Y2G) 
and opened in the MOE window. The Mpro protein 
was corrected and 3D hydrogenated before energy 
minimization as a final step of protein preparation28. 
Finally, a general docking process was performed 
by inserting a database of compounds 8 and 9 with 
the co-crystal (O6K) of SARSCoV-2 Mpro. The default 
setting options were adjusted to match the selected 
docking methodology29.

	 Notably, a validation process by redocking 
O6K of SARSCoV-2 Mpro within its receptor pocket 
was carried out, and the validly applied forcefield 
was confirmed by obtaining low Root Mean Square 
Deviation (RMSD) values<2 Å 30. 

RESULTS AND DISCUSSION

Synthesis and characterization 
	 Thiazo-isoindolinedione hybrids 8 and 9 were 
synthesized according to the synthetic Scheme 1. The 
condensation of phthalic anhydride with 2-aminoethyl 
bromide hydrobromide (2) and 3-aminopropyl bromide 
hydrobromide (3) under neat conditions afforded 
compound 4 and compound 5. Furthermore, the 
reaction of chloroacetic acid and thiourea in water 
afforded the corresponding 2,4-thiazolidinedione 6. 
The latter is converted to the corresponding potassium 
salt via reaction with KOH at room temperature and in 
ethanol. The nucleophilic substitution reaction of the 
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potassium salt 7 with the bromo derivatives 4 and 5 
afforded the corresponding compound 8 and 9 in 88% 
and 92% yields, respectively.

docking study to investigate their potential inhibitory 
effect on the SARS-CoV-2 Mpro. Besides, the  
co-crystal (O6K) was inserted as a reference 
standard in the docking process. 

	 Observing the O6K binding mode, it 
was clear that Glu166 and Cys145 are the most 
crucial amino acids to produce their inhibitory 
potential towards the SARS-CoV-2 Mpro. The docked 
O6K achieved a binding score of -8.41 kcal/mol 
(RMSD=1.58 Å) and could bind Glu166, Asn142, and 
Gly143 with three hydrogen bonds. On the one hand, 
compound 8 showed a binding score of -5.83 kcal/mol 
(RMSD=1.16 Å). It bound crucial amino acids (Glu166 
and Cys145) with two pi-hydrogen interactions and 
one hydrogen bond, respectively. On the other hand, 
compound 9 interacted with Glu166 (two hydrogen 
bonds) and Met165 (one pi-hydrogen bond), Table 
1. Its binding score was recorded at -6.05 kcal/mol 
(RMSD=1.50 Å), superior to compound 8.
	
	 Based on the above, compound 9 with 
the three carbons bridge (propylene) between the 
1,3-dioxoisoindoline and thiazolidine-2,4-dione 
moieties was superior to compound 8 with the two 
carbons bridge (ethylene) as SARS-CoV-2 Mpro 

inhibitor. This may be attributed to the flexibility of 
compound 9, which produced more and deeper 
fitting within the SARS-CoV-2 Mpro target receptor.  

Scheme 1. The synthesis of thiazo-isoindolinedione 
hybrids 8 and 9. Reagents: (i) phthalic anhydride (1 mmol) 
with 2-aminoethyl bromide hydrobromide (1 mmol) (2) or 

3-aminopropyl bromide hydrobromide (3) (1 mmol) heating 
at 110oC under neat conditions for 4 h; (ii) thiourea (2 

mmol) and chloroacetic acid (2 mmol), water, reflux for 4 h; 
(iii) KOH (1 mmol) and 2,4-thiazolidinedione (6) 

(1 mmol) in EtOH (20 mL); (iv) potassium salt 7 (1.2 
mmol) and compound (4) (1 mmol) or 2-(3-bromopropyl)

isoindoline-1,3-dione (5) in DMF, 80oC, 4 hours

Table 1: 2D interactions, 3D interactions, and 3D positioning of compounds 8 and 9 
within the binding pocket of the SARS-CoV-2 Mpro (PDB ID: 6Y2G) target receptor

	 2D interactions	 3D interactions	 3D positioning

8	 	 	

9	 	 	

O6K	 	 	

In silico studies
Molecular docking
	 The novel two thiazo-isoindolinedione 
hybrids 8 and 9 were subjected to a molecular 
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Conclusion 

	 I n  t h i s  s t udy,  we  des igned  and 
synthesized new thiazo-isoindolinedione hybrids 
from readily available starting materials and in 
good yields (up to 92%). The chemical structures 
of the new compounds were characterized by 
IR, 1H- and 13C-NMR, and MS techniques. In 
addition, a molecular docking study clarified 
that compound 9 with the three carbons bridge 
(propylene) between the 1,3-dioxoisoindoline 
and thiazolidine-2,4-dione moieties was superior 
to compound 8 with the two carbons bridge 
(ethylene) as SARS-CoV-2 Mpro inhibitor. This 

may be attributed to the flexibility of compound 
9, which produced more and deeper fitting within 
the SARS-CoV-2 Mpro target receptor.  
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