

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Access, Peer Reviewed Research Journal

ISSN: 0970-020 X CODEN: OJCHEG 2023, Vol. 39, No.(3): Pg. 627-634

www.orientjchem.org

A Novel Study on 2-D Material in Photoelectrochemical Cell for the Conversion and Storage of Solar Energy

SHANKER LAL MEENA¹, KAVITA MEENA^{2*}, RAVI KUMAR BHUPESH³ and R. C. MEENA⁴

^{1,2,3,4}Photoelectrochemical Laboratory, Department of Chemistry, Jai Narain Vyas University, Jodhpur, 342001, India. *Corresponding author E-mail: slmeena.jnvu@gmail.com

http://dx.doi.org/10.13005/ojc/390313

(Received: April 01, 2023; Accepted: May 04, 2023)

ABSTRACT

A photo-sensitizer made of graphene-based material (2-D) is used in concert with EDTA in photoelectrochemical solar cells to increase efficiency and storage capacity of solar energy in order to make a solar cell economically feasible. Photopotential and photocurrent are created at 1142mV and 960 μ A, respectively. Photoelectrochemical cell have achieved a maximum power of 228.40 μ W, a fill factor of 0.17, and a conversion efficiency of 4.38%. The cell storage capacity allows for a half power (t_{1/2}) level to be maintained for 1300 minutes. The electrical output of the photoelectrochemical cell has been observed to be influenced by a number of different factors.

Keywords: 2-D materials, Photoelectrochemical cell, Photo potential, Photocurrent, Conversion efficiency.

INTRODUCTION

In future, there will be a huge global demand for energy. The energy production from the traditional methods arise pollution in the environment. Therefore, the field of renewable energy storage and focus field of the research.¹ hence, the need of such devices for the effective use of renewable energy and such type of devices should be maximum efficient, cheaper-price and eco-friendly.² Photoelectrochemical solar cells are the good devices for the production of high energy chemicals from the sun light. Due to their abundance, stability and eco-friendliness is most suitable and intense field of the research.³

In recent years, scientific community has founded that the study of carbon allotropes (carbon nanotube, diamond and fullerene) is more emerged area of research.⁴ Graphene is a two-dimensional (2D) carbon atom that was discovered in the year 2004.⁵ It is a monolayer and crystal honeycomb lattice structure. Konstantin Novoselov and Andre Geim awarded the 2010 Nobel Prize in Physics based on their research on two-dimensional graphene.It is called the mother of all graphite forms of carbon. To produce low-cost, lightweight, and high-performance composite materials, researchers from all over the world are still exploring for new dimensions. The basic building block for other allotropes is thought to be graphene.⁶ Carbon atoms

This is an <a>Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC- BY). Published by Oriental Scientific Publishing Company © 2018

are arranged in a two-dimensional honeycomb lattice called graphene, which can also be wrapped into a zero-dimensional material called fullerene. Carbon atoms are arranged in a honeycomb lattice on a 2-D plane to form graphene. sp² orbitals are created through the hybridization of three carbon atomic orbitals. Covalent bonds are created between these sp² orbitals and the carbon atoms. The hybridised sp² orbitals and the 1.42 separation between the carbon atoms create the hexagonal planar structure known as the honeycomb lattice. Graphene's crystal structure gives rise to certain outstanding properties.7 In the past several years, the arena of nanoscience and nanotechnology has emerged significantly and its application is increasing continually in different industries.8 The interest in nanoscience has grown in academia and business since the creation of monolayer graphene. Researchers from all over the world are now very interested in graphene, which has been dubbed a "wonder substance" because of its excellent mechanical and functional gualities and high potential for creating advanced gadgets. Materials made of graphene have a lot of potential

Scientists have been attracted to the study of graphene and its derivatives such as graphene oxide (GO), reduced graphene oxide (rGO) because of their good properties, including their large specific surface area, strong chemical stability, good electrical conductivity, and potential optical, mechanical, electrical, and structural properties.¹⁰ As a result, the nanocomposite materials based on graphene have good conductivity for energy storage and conversion due to all of the above features.¹¹ The focus of this review will be on the creation and functionalization of graphene-based nanocomposites, which have great potential for usage in energy storage and energy conversion applications.¹²⁻¹⁴ In this research work, we apply r-GO dispersion solution in photoelectrochemical solar cells to investigate solar energy conversion and storage.

for use in electromechanical devices.9

MATERIALS AND METHOD

This section describes the materials that are used for the synthetization of graphite powder to graphite oxide and reduced graphite oxide, preparation for other solutions. Table 1 shows the chemicals and their specifications used for solutions.

S. No	Chemical	Specifications	
1	Graphite power	Merck	
2	EDTA di sodium salt	Loba chemical	
3	Sodium hydroxide	Loba chemical	
4	Oxalic acid	Loba chemical	
5	Phenolphthalein	Loba chemical	
6	98%, Con.H ₂ SO ₄	Merck	
7	>99%, KMnO	Merck	
8	De-ionized water	Loba chemical	
9	6%, H ₂ O ₂ aqueous	Loba chemical	
10	Diluted HNO	Merck	
11	Hydrazine hydrate	Merck	
12	Acetone	Loba chemical	
13	Methanol	Loba chemical	
14	Ethanol	Loba chemical	
15	1-propanol	Loba chemical	

Table 1: Materials Used

Methods

Synthesis of Graphite to Graphite oxide (GO)

In today's era, it is extremely difficult to manufacture graphene on a large scale. GO can be produced by oxidizing graphite, using a variety of techniques, including those shown by Brody, Staudenmaier's and Hummer. For the preparation of GO, the Modified Hummers method has been employed most frequently.¹⁵

In a typical experiment, 20 g of graphite powder (Merck) is mixed with NaNO₃ (10 g) to form a homogeneous solution. Now after this take 450 mL of concentrated H₂SO₄ (96% w/w) in a beaker of 5 L capacity. Now, an ice bath is used to cool the solution and keep the temperature below 5°C. Under steady stirring with a stirrer coated in Teflon, the two ingredients above were progressively combined. Additionally, while keeping the reaction mixture's temperature to below 5°C, gradually, 60 g of KMnO₄ (Merck) were added. The reaction mixture was removed from the ice bath after the KMnO, addition was finished and kept constantly stirring. The reaction mixture then appeared to transform into a brownish-gray paste. The reaction vessel's temperature was raised to 95°C by slowly adding 1000 mL of de-ionized water. Further dilution of the reaction mixture was accomplished using de-ionized water. The un-reacted MnO₄- and by-product MnO₅ were then converted into soluble Mn2+ by reacting it with 6% H₂O₂. The resulting brown solution was dried at 50°C in a vacuum oven after being vacuum filtered and rinsed with diluted HNO₃ to eliminate any remaining metal ions from the graphite oxide.¹⁶

Graphene oxide (GO) must be reduced in order to regain its thermal and electrical properties because it's thermally unstable and electrically insulating. Graphite oxide is exfoliated and reduced to reduced graphene oxide predominantly through chemical processes Figure 1.

Fig. 1. Schematic diagram formation from Graphite to Graphite oxide, Graphene oxide (GO) to reduced Graphene oxide (rGO)

Synthesis of Graphene oxide (GO) to reduced Graphene oxide (rGO)

To produce chemically reduced graphene oxide (rGO), graphite oxide was first converted into a stable colloidal dispersion and then employing reducing chemicals to reduce the exfoliated graphite oxide. Exfoliating graphite oxide with ultrasonication in either water or alcohol can result in the formation of a stable GO dispersion. r-GO was created by reducing agents reacting with graphene oxide. For this investigation, r-GO was obtained using hydrazine hydrate. The above suspension was once more sonicated for 2 h to produce rGO. At room temperature, hydrazine hydrate was gradually added drop by drop to the exfoliated graphite oxide suspension. The reduction took place for 1 h at 100°C For this sample, hydrazine hydrate and GO were maintained at a weight ratio of 9:7. The resulting black precipitates were then rinsed with a 1M HCl solution and filtered through cellulose filter paper. To extract rGO, the filtrate was dried for 24 h at room temperature.17-19

Preparation of Solutions

All solutions are created with doubledistilled water. The creation of all chemical stock solutions involves direct weighing. We employed several solutions, including. rGO dispersion solution, 1N NaOH solution, and .01M EDTA. The dry product was first crushed with a mortar and pestle to prepare rGO dispersions in various solvents. After that, the solvent was mixed, and the mixture were sonicated for an hour in an ultrasound bath cleaner.²⁰ To obtain a nominal concentration of 0.5 mg mL⁻¹ for all of the solvents, a specified quantity of rGO power (5 mg) was added to a predetermined volume of solvent (10 mL), allowing direct comparison between the dispersion behaviours of the various solvents. Acetone, methanol, ethanol, and 1-propanol were the organic solvents used to test rGO dispersions.²¹ We have shown that the solubility of rGO varies depending on the solvent, being 0.9, 0.52, 0.91, and 1.2 correspondingly.²² Compared to other organic solvents, 1-propanol has superior solvent solubility. The rGO and 1-propanol dispersions solution remained stable for several days without noticeable sedimentation.

Experimental Section of the photoelectro chemical cell

The apparatus of the Photoelectrochemical cell having a dark H-shape glass tube with a transparent window for illumination.23-25 In the H-shaped tube, the solution of graphene dispersed, NaOH and Reductant (EDTA) was filled in the proper manner. The total volume of the above tube after filling the solution was always 30 mL. After that in the H-shape glass tube which has a transparent window for the illumination, a platinum electrode was dipped with the saturated calomel (SCE) electrode combination. A digital multimeter was connected to the terminals of the electrodes. The apparatus measured the dark potential inside the chamber of total darkness. A lamp (tungsten) serving as the light source was exposed through the clear window of the apparatus. To filter infrared radiation, the light source and the illuminated chamber were separated by a water filter. The final step of the experiment was measuring the potential and current produced by the experimental setup using a digital multimeter. The current-voltage (i-V) characteristic of photoelectrochemical cells has been investigated by providing an external load with the support of a carbon pot (log 407 K) that was linked in the circuit through with a key to produce open circuit and close circuit device.26-29

Mechanism of Current Generation

An electricity generator powered by (cyclic) light is the photoelectrochemical system. For numerous cycles, it has been observed that the

photoelectrochemical behaviour is reversible.³⁰ In the cell, the reducing agents and their oxidised residues provide as the electron carriers. Fig. 2. illustrates how the electron exchange between the electrode, photosensitizer (rGO), and reductant (EDTA) produces the photo current in a photoelectrochemical cell.³¹⁻³³

Fig. 2. Scheme of mechanism of current generation

These observations lead to the following mechanism is described for the production of photocurrent in the photoelectrochemical cell's:

$$rGO \rightarrow rGO^*$$
 (1)

$$rGO^* + R \longrightarrow rGO^-$$
 (Semi or leuco)+R (2)

 $rGO^{-} \rightarrow rGO + e^{-}$ (3)

 $rGO+e^{-} \longrightarrow rGO^{-}$ (Semi or leuco) (4)

$$rGO^- + R + \longrightarrow rGO + R \tag{5}$$

Where: rGO = reduced graphene oxide, $rGO^{-}=Semi$ form of reduced graphene oxide, R=reductant molecule, R+=Oxidized form of the reductant.

RESULT AND DISCUSSION

Study of photo potential with time during the charging of the cell

The changes in potential of the system with time were measured at different time intervals by digital multimeter. During the charging of a photoelectrochemical cell, the photopotential is gradually increased until it reaches its maximum value, after which it remains relatively constant, which is known as maximum photo potential (V_{oc}) and the curve is maximum increase and it remains relatively constant then decrease open circuit potential (V_{oc}).

A substance becomes more electrically conductive when electromagnetic radiation, such as visible light, infrared light, and UV light, is absorbed. A phenomenon of both optics and electricity is photoconductivity. When light is absorbed, more free electrons and holes become available, increasing the electrical conductivity of a graphene material. The term "photocurrent" refers to the flow of electricity caused by photoconductivity or the photovoltaic effect. Here, photoconductivity is the generation, migration, and recombination of free carriers in the conduction and valence bands is used to describe the photovoltaic process. Graphene's strong charge carrier mobility, wide range of light absorption, and ultrafast carrier dynamics make it a potential material for the production of high-performance photoelectrons.

The variation of photopotential of dispersed solution of rGO with EDTA system with respect to time is graphically represented in Figure 3.

Table 2: Variation of Potential with Time

S. No	Time (min)	Photopotential (mV)	S. No	Time (min)	Photopotential (mV)
1	0	463	9	80	838
2	10	481	10	90	1118
3	20	501	11	100	1134
4	30	539	12	110	1139
5	40	627	13	120	1140
6	50	667	14	140	1142
7	60	676	15	160	1141
8	70	680	16	180	1138

Current–voltage (i-V) characteristics of cell

A digital multimeter (with one circuit closed) and a digital multimeter are used to measure the short circuit current (i_{sc}) and open circuit voltage (V_{oc}) in PECs (photoelectrochemical cells) (with the other circuit open). Close circuit potential is present when a key is put into the

switch. The extreme value between the potential and current readings was recorded when a digital multimeter connected to the circuit via a carbon pot (log 470K) applied an external load. Current-potential (i-V) characteristics of the photoelectrochemical cells are graphically represented in (Fig. 4) using an EDTA and dispersion solution of reduced graphene.

S. No	Photopotential (mV)	Photocurrent (µA)	S. No	Photopotential (mV)	Photocurrent (µA)
1	32	960	25	423	480
2	38	940	26	453	460
3	45	920	27	554	420
4	58	900	28	572	400
5	60	880	29	578	380
6	77	860	30	621	360
7	86	840	31	646	340
8	94	820	32	652	320
9	107	800	33	686	300
10	119	780	34	704	280
11	143	760	35	749	260
12	155	740	36	777	240
13	163	720	37	807	220
14	177	700	38	831	200
15	182	680	39	868	180
16	196	660	40	898	160
17	227	640	41	925	140
18	255	620	42	957	120
19	260	600	43	973	100
20	293	580	44	1012	80
21	331	560	45	1035	60
22	356	540	46	1064	40
23	370	520	47	1090	20
24	421	500	48	1112	0

Table 3: Variations of Photopotential with Photocurrent

In this i-v curve, we observed a point that is referred to the maximum power at power point (P_{PP}) since it is where the result of maximum current and minimum potential is found. The following formula is used to obtain the fill-factor at power point when the potential reading is greatest and the current reading is zero.

Fill factor (η)=(V_{PP}×i_{PP})/(V_{OC}×i_{SC}) (6)

Fig. 4. Photocurrent and Photopotential (i-V) Characteristics curve

Study of photopotential, photocurrent and power at power point of the cell

Then key insert in connecting switch 20 μ A difference in similar photocurrent in decrease and photo potential in continuously increase and photopotential and photocurrent are multiplied obtain power and after then we reach maximum power of the cell.

Graphical representations of the photopotential, photocurrent, and power at power point of cell for photoelectrochemical cells with dispersed solution-EDTA system Figure 5.

Storage capacity of the cell

The system's storage capacity (performance) is measured when the illumination is turned off as soon as the potential reaches a constant value and after applying an external load (which needs current at the power point). The storage capacity is measured in the form of $t_{1/2}$, or the time it takes for the greatest power to decrease to half in complete darkness. The observed half-life of the cell is 1300 min, as shown graphically in Figure 6.

Fig. 5. Variation of Potential and Power with Current (a) (i-V) Characteristic of the Cell, (b) Power v/s Current

Table 4: Performance of the Cell

S. No	Time (min)	Power (μW)	S. No	Time (min)	Power (µW)
1	0	228.4	24	690	160.38
2	30	200.78	25	720	160.05
3	60	184.72	26	750	159.23
4	90	177.99	27	780	158.42
5	120	176.46	28	810	157.61
6	150	174.93	29	840	157.12
7	180	173.06	30	870	155.82
8	210	172.21	31	900	155.85
9	240	171.87	32	930	155.5
10	270	171.02	33	960	155.18
11	300	170.52	34	990	154.37
12	330	170.18	35	1020	154.37
13	360	169.68	36	1050	154.06
14	390	169.17	37	1080	153.74
15	420	168.84	38	1110	151.74
16	450	167.16	39	1140	145.96
17	480	166.33	40	1170	139.41
18	510	166.33	41	1200	134.02
19	540	164.17	42	1230	128.97
20	570	163.84	43	1260	123.12
21	600	162.02	44	1290	117.13
22	630	162.02	45	1300	114.38
23	660	161.2	46	1320	112.66

Conversion efficiency

The formula is used to determine

the system's conversion efficiency, which is calculated to be 4.38% using the photocurrent and photopotential values at the power point and the incident power of radiations.

Conversion efficiency= $(V_{pp} \times i_{pp})/(P \times A) \times 100\%$ (7)

Photo potential
$$(\Delta V) = V_{\text{OC}} - V_{\text{Dark}}$$
 (8)

Here, open circuit voltage, potential at power point, short circuit current, current at power point, power of incoming light, electrode area, and dark potential are referred to V_{oc} , V_{pp} , i_{sc} , i_{pp} , P, A, dark V_{Dark} as, respectively.

Variation effect of photosensitizer (r-GO dispersed solution) on Photoelectrochemical cell

The effect of r-GO dispersed solution on photopotential and photocurrent was investigated. When the concentration of r-GO dispersion solution is increased, the photopotential, photocurrentand power of cellto their maximum value at 2 mL solution of rGO, after the obtain parameter are maximum and then decrease at given point in the studies of rGO and dispersion solution.

After varying the r-GO dispersed solution, it was observed that the lowest value shown in Table 5 for 1 mL r-GO dispersed solution, which has the lowest photopotential and photocurrent values at 432 mV and 642 μ A, respectively. In a similar manner, the photopotential and photocurrent values at 2 mL are 1136 mV and 960 μ A, respectively, while the power value is 1090.56 μ W the highest in the graph.

In Fig. 7 show graphical representations of photo potential, photocurrent, and power of the cell with graphene distributed solution.

Table 5: Variation of Potential, Current and Power with r-GO Dispersed solution

S. No	r-GO dispersed solution (mL)	Photopotential (mV)	Current (µA)	Power (µW)
1	1	432	642	277.34
2	2	1136	960	1090.56
3	3	448	702	314.49
4	4	585	596	348.66
5	5	432	826	356.83

Fig. 7. Variation of Potential, Current and Power with r-GO Dispersed solution

Performance of the Cell

The photoelectrochemical cell's total performance has been measured, and it has attained an impressive stage in terms of storage capacity, electrical output, conversion efficiency, and initial photocurrent generation.

Table 6: All parameters are observed result in performance of the cell

S. No	Parameters	Observed Value	
1	V _{dark} (Dark potential)	463mV	
2	V _{oc} (Open circuit Potential)	1142mV	
3	V _{PP} (Potential at power point)	572mV	
4	i _{sc} (Short circuit current)	960µA	
5	ipp (Current at power point)	400µA	
6	Power of incident light	10.4mW/cm ²	
7	Area of electrode	0.5 cm ²	
8	t _{1/2} (Storage capacity)	1300 min	
9	(Conversion efficiency η)	4.38%	
10	Fill factor	0.17	
11	Maximum power	228.40µW	
12	∆V(Photopotential)	679mV	

CONCLUSION

Fossil fuels industries account for a sizable share of global electricity production. Although

- Malviya, A.; Solanki, P. P., Renewable and
- Sustainable Energy Reviews., 2016, 59, 662-691.
 Tale, B.; Nemade, K. R.; Tekade, P. V.,

1.

- Polymer-Plastics Technology and Materials.,
 2021, 60(7), 784-797.
- Mahmood, N.; Zhang, C.; Yin, H.; Hou, Y., J. Mater. Chem. A., 2014, 2(1), 15-32.
- Chori, H. J.; Jung, S. M.; Seo, J. M.; Chang, D. W.; Dai, L.; Beak, J. B., *Nano Energy.*, **2012**, 1(4), 534–551.
- 5. Novoselov, K. S.; Geim, A. K.; Morozov,

the observed conversion efficiency of PG cells is fairly low (4.38%) as compare to the theoretical conversion efficiency of these cells is about 24-35%. Periodically, there are discussions on this challenge to photogalvanic cell development. To hasten the implementation of climate change measures, the world will need to dramatically reduce its usage of coal and oil over the coming decades. At the moment, hydrocarbon materials provide about more than half of the world's energy needs. r-GO dispersed solution, NaOH, and EDTA are novel system for solar cell is more effective. The r-GO dispersed solution has increased the storage capacity and conversion efficiency of Photoelectrochemical cell that happens as a result of the photo galvanic action on the working electrode.

The conversion efficiency, $t_{1/2}$, and fill factor for the r-GO dispersed solution, NaOH, and EDTA novel systems are recorded as 4.38%, 1300 min and 0.17, respectively. Power point applications for the r-GO dispersed solution, NaOH, and EDTA system are current at short circuit, potential at open circuit, and power point of cell (pp) were also tested, and the results are as follows: 960 mV, 1142 mV, 228.40 μ W.

ACKNOWLEDGEMENT

The authors are thank full to Head of the Department of Chemistry at Jai Narian Vyas University in Jodhpur, Rajasthan (342005) for providing essential laboratory resources for carrying out this research.

Conflict of interest

The author declare that we have no conflict of interest.

REFERENCES

S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A.A., *Science.*, **2004**, *306*, 666-669.

- Bich, N. H.; Van, N. H., Advances in Natural Sciences: Nanoscience and Nanotechnology., 2016, 7, 1-16.
- Madhad, H. V.; Vasava, D.V., Journal of Thermoplastic Composite materials., 2019, 35(9), 1-29.
- Wan, X.; Huang, Y.; Chen, Y., Acc Chem Res., 2012, 45, 598–607.

- Fu, X.; Yao, C.; Yang, G., *RSC Advances.*, 2015, *5*, 61688–61702.
- Fernanda, T. M.; Vania, G. A.; Katia, N.; Marina, L. S.; Anderson, S.K., *Nanomedicine.*, 2015, 1-28.
- 11. Kim, K. K.; Reina, A.; Shi, V.; Park, H.; Lee, Y. H., *Nano technology.*, **2010**, *21*, 285205.
- 12. Marian, M.; Vijay, T.; Florin, M.; Stefan, V., *Polymer advanced technologies.*, **2016**, *27*, 844-59.
- 13. Ambrosi, A.; Pumera, M., *Chem. Eur. J.*, **2016**, *22*, 153-9.
- 14. Lawal, A. T., *Biosensors and Bioelectronics.*, **2019**, *141*, 111384.
- Sharma, N.; Sharma, V.; Jain, Y.; Kumari, M.; Gupta, R.; Sharma, S. K.; Sachdev, K., *Macromol. Symp.*, **2017**, *376*, 1700006.
- 16. Shams, S. S.; Zhang, R.; Zhu, J., *Materials Science-Poland.*, **2015**, *33*(3), 566-578.
- 17. Cao, N.; Zhang, Y., *J. Nanomaterials.*, **2015**, *2015*, 168125.
- Tripathi, S. N.; Rao, G. S. S.; Mathur, A. B.; Jasra, R., *RSC Adv.*, **2017**, *7*(38), 23615–23632.
- 19. Park, S.; Potts, J. J. R.; Velamakanni, A.; Murali, S.; Ruoff, R. S., *Carbon.*, **2011**, *49*, 3019 -3023.
- Zhang, X.; Coleman, A. C.; Katsonis, N.; Browne, W. R.; Wees, B. J. V.; Feringa, B. L., *Chemical Communications.*, **2010**, *46*(40), 7539-7541.
- 21. Pardes, J. I.; Villar-Rodil, S.; Martı ´nez-Alonso,

A.; Tasco'n, J. M. D., *J. American Chemical Society.*, **2008**, *24*, 10560-10564.

- Johnson, D. W.; Dobson, B. P.; Coleman, K. S., Current Opinion in Colloid & Interface Science., 2015, 20(5-6), 367–382.
- 23. Gangotri,K.M; Meena, R.C., *J. Photochem. Photobiol.A: Chemistry.*, **2001**, *141*, 175-177.
- 24. Ganwa, K. R.; Singh, S. S.; Singh, K., *J. Ind. Chem. Soc.*, **2017**, *94*, 527-533.
- Meena, P. K.; Meena, R. C.; Meena, S. L.; Meena, K., Int. J. for Res. in Applied Sci. & Eng. Tech. (IJRASET)., 2018, 6, 1472-1478.
- 26. Meena, R. C.; Meena, K., *Energy Sources Part A.*, **2009**, *31*, 1081-1088.
- Genwa, K. R.; Singh, A. P., Asian Journal of Chemistry., 2017, 29(6), 1215-1219.
- 28. Chandra, M., Meena, R. C., *J. Chem. And Pharm. Research.*, **2011**, *3*(3), 264-270.
- Meena, R.C.; Meena, S. L.; Saini, S. R., Adv. in Chem. Eng. And Sci., 2017, 7, 125-136.
- Amogne, N. Y.; Ayele, D. W.; Tsigie, Y. A., Materials for Renewable and Sustainable Energy., 2020, 9(4), 1-6.
- Koli, P., Arabian Journal of Chemistry., 2017, 10(8), 1077-83.
- Jurasz, J.; Canales, F. A.; Kies, A.; Guezgouz, M.; Beluco, A.; *Solar Energy.*, **2020**, *19*, 703-24.
- Meena, S.L.; Meena, P.K., *J Adv Sci. Res.*, 2021, *12*(2), 110-116.