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Abstract

	 Uranium(U) is one of the highly toxic heavy metals and radionuclides that has become a 
major threat to soil health. There are two types of sources of Uranium in the soil system, natural 
and anthropogenic. Natural sources of uranium include rock systems and volcanic eruptions 
while anthropogenic sources include mining activities, disposal of radioactive waste, application 
of phosphate fertilizers, etc. Uranium accumulation impacts germination, early seedling growth, 
photosynthesis, metabolic and physiological processes of the plants. Through its accumulation in the 
aerial parts of the plants, Uranium finds its way to the human body, where it has deleterious health 
impacts. Different studies have identified the various sources of Uranium, explored, and explained 
the geochemistry of Uranium in soil, assessed the Uranium uptake and toxicity to the plants, and 
further studied the impact on human health. Most studies focused on two stages, either soil-plant 
or plant-human system. However, few studies have critically reviewed and summarized the U in the 
soil-plant-human system. Thus, the review has been designed to focus on the sources, geochemical 
behaviour, uptake, and translocation, plant toxicity, food chain entry, and finally, impact on human 
health. The relationship between the bioavailability of Uranium in the soil-plant system with soil 
properties like pH, Organic matter, and microorganisms have also been included. The study is further 
intensified by analyzing the accumulation of Uranium in various parts of the plants.
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Introduction

	 Uranium, a naturally radioactive element 
having an atomic number of 92 and an atomic 
weight of 238.03, was initially found as a part of 
pitchblende discovered by German Chemist Martin 
Heinrich Klaproth in 17891. In its crystalline state, its 
valence varies from +3 to +6. Only the hexavalent 

uranyl compounds (UO2
2+) are thermodynamically 

and kinetically stable in an aqueous solution for 
biological activities. Uranium forms various oxides, 
such as UO2, U3O8, and UO3. Uranates are made by 
fusing uranium with carbonates available on earth. 
Uranium, a very lethal environmental contaminant, 
has gained considerable attention in the field of 
research due to its chemical and radiotoxicity. 
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It has been discovered as a highly detrimental 
environmental contaminant for all living beings, 
including humans, and its chemical reactions and 
radiotoxicity make it a reason for toxicity to plants, 
animals, and humans2,3.

	 Uranium is carcinogenic and a radioactive 
element4,5 once its concentration increases above 
0.05 mg/kg body mass6. When Organisms ingest 
U, it has a long-term chemical toxicity effect7. The 
entry of U into an organism via the food chain is 
hazardous8. The most common way for U to enter 
the body is via drinking water. The suggested 
permissible limit of uranium for drinking water is  
30 mg/L, exceeding which could have long-term health 
consequences for humans9. Both anthropogenic and 
geogenic activities influence the sources of elements 
in groundwater10-13. Ingestion of groundwater 
containing high levels of U for a long time may affect 
bone and kidneys14. The bioavailability of Uranium 
is inversely proportional to its chemical state15. The 
presence of radiations in foods and plants is an 
concern as this leads to contamination of meals16-18. 
Humans are exposed to uranium mainly through the 
soil-crop system because it easily becomes a part of 
the food chain. So, this review is compiled to focus on  
biogeochemical behavior of U in soil-plant system 
and various impacts of this heavy metal.

Sources of Uranium
	 Natural U comprises three isotopes: U238, 
U235, and U234 19. It contains about 99.283% of U238 by 
weight and rest U235 and U234 20. U238 has a half-life 
of 4.5x109 years and is an exceptionally long-lived 
isotope. Uranium is a radioactive element found in all 
types of soils, rocks, and water sources21. Uranium 
comes from both natural and anthropogenic 
sources (Fig. 1). Weathering of the rocks and 
volcanic eruption is considered the primary sources 
of natural U in soil22,23. Other sources of Uranium 
includes mining, extracting and purifying ore, coal 
ash generation, phosphate fertilizer production, 
and waste from nuclear power plants24. Wang et 
al., 2019 concluded that mining is the primary 
anthropogenic source of U contamination in soil 
and water25. With ever exploding global population 
increase, this anthropogenic content of U will 
increase in the future due to higher demand for 
minerals, electricity, and food8,26-28. 

Fig. 1. Uranium sources in the ecosystem

Distribution and sources of Uranium in soil
	 Uranium concentration and radiation 
strength in the soil of different countries varies highly, 
as shown in Table 129-31. Highest concentration and 
radiation of Uranium in the soil was found in Portugal 
(25.10 mg/kg and 311.24 Bq/kg respectively). The 
average amount of uranium in the earth’s crust 
is about 2.82 mg kg-1 32,33. U can also leach or 
accumulate in specific soil profile horizons during 
the weathering process. Acid leaching is considered 
a significant factor in the distribution and mobility 
of Uranium in the soil profile34. Sequestration and 
reduction are considered the primary factors for the 
high level of Uranium in soil rich in organic matter35,36. 
U is retained in tropical environments in red soils 
due to its affinity for iron minerals34,37. The source of 
contamination of Uranium varies greatly. A certain 
amount of Uranium is found in the coals38-45, mining, 
extraction, and disposal of U-containing products or 
their by-products are considered the anthropogenic 
sources of U contamination of soils46,47. Phosphorous 
fertilizers made from natural rocks in agriculture 
are another potential source of U enrichment in 
soils48. The average value of U in such fertilizers is 
100 times higher than in soils49,50. The pollutant's 
source and the intended use of the contaminated 
soil determine the concentration levels that are 
considered harmful. mobilization and transportation 
of water in vertical directions and at the surface 
depend on contaminated soil51. Irrigation with 
U-contaminated water has also increased natural 
uranium in agricultural soil52,53.

Factors affecting Uptake of Uranium by plants
	 The migration, uptake, and accumulation 
of minerals from the soil to the plant is a complex 
process involving runoff, capillary rise, leaching, 
sorption, and root uptake. The availability and uptake 
of essential macro and micronutrients like nitrogen, 
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potassium, and zinc by plants influence the uptake of 
non-essential components. The term "bio-availability" 
refers to a chemical element's tendency to adhere to 
or move across an organism's cell surface54; hence it 
determines how much concentration of essential and 
non-essential elements will be taken up by plants. 
Uranium uptake by plants is generally confined to the 
dissolved fraction in the soil, suggesting there might 
be lesser availability of uranium to plants. The uranyl 
ions are the only plant soluble and available fraction 
of U. Plants receive all macro and micronutrients 
from the soil through the movements of ions from 
the soil solution to the roots, including the uranyl ion. 
The translocation of U and other radionuclides is 
influenced by soil factors such as soil characteristics, 
climatic conditions, plant type, plant part concerned, 
the physicochemical form of the elements, and the 
presence of other elements influences the transfer 
factor values as well55,56. 

Concentration of Uranium in Soil
	 For uptake and accumulation of Uranium 
by the plant, it must be available in the soluble 
fraction of the soil; hence, the concentration of 
all elements, including the radionuclides and the 
intake of heavy metals inside the plant, is directly 
proportional to the concentration in the soil 
solution57. The potential risk for uranium uptake and 
intake from different sources is higher for individuals 
who consume food grown in areas having soil with 
high concentrations of uranium because of its 
greater availability and absorption by plants58.

Soil pH
	 The availability and solubility of minerals 
and metals, including radionuclides in soils, 
depends on the soil's pH. Different studies have 
concluded that the mobility and bioavailability 
during interaction with different soils are affected 
by pH59. Heavy metal cations at neutral pH are 
strongly bounded to the soil minerals and hence 
are not bio-available. Since Uranium forms 
strong insoluble compounds, therefore it has 
low biological mobility at high pH, however, at 
low pH increases in heavy metal adsorption and 
hence increase in the concentration in plant parts 
are observed61-63. Therefore, due to high metal 
bioavailability in highly acidic soil, metal toxicities 
are often observed in plants growing in such soil64. 
Soil pH of less than 5.5 is required to convert U 
to its most plant available form in soil61, as some 

ions in soils get adsorbed on oxides at low soil pH. 
So, the solubility of these cations and anions can 
be decreased by dissolving the Fe-, Mn-, and Al-
oxides, which releases bound or adsorbed metals 
into the soil solution62,64.

Organic matter in the Soil
	 The mobility of Uranium depends on 
organic components present in soil65. Abdel-Haleem 
et al., (1997) found that organic wastes (biosolids) 
and municipal solid waste addition to soil increased 
the absorption of U in corn and sesame66.

Uranium speciation
	 The mobil ization and the solubil i ty 
of uranium in both biotic and abiotic systems 
are a very complex process influenced by the 
uranium species present67. The soil properties, 
especially pH and soil type, greatly influence 
U speciation61,68,69 and are considered the key 
factors altering U uptake by plants. U(VI) is the 
most mobile and soluble form of U in soil70. U(VI) 
is present in solution mainly as UO2

2+ and soluble 
carbonate complexes71,72. U(VI) exists primarily in 
hydrolyzed forms at a pH range of 4-7.573. 

Soil type
	 The uptake of Uranium in the soil-plant 
system is not only confined to the bio-availability, 
but the several soil characteristics also help 
and influence the uranium sorption, subsequent 
desorption of metals, and uptake in plants74. 
Ramaswami et al., (2001) discovered that the 
efficiency of uranium extraction in hydroponics 
and two different soils (sandy-loam and organic-
rich soil) reduced sharply from hydroponics to 
sandy and then organic soil, indicating that soil 
organic matter sequest uranium, making it largely 
unavailable for plant uptake75.

Soil Chelates
	 The presence of Chelates increases 
the accumulation of Uranium63. The Chelates 
available in the soil bind metals and acidify the 
soil solution, increasing the bioavailability that 
aids in the translocation of metals from root to 
shoot76. Citric acid has a high rate of environmental 
degradation, making it the most eco-friendly chelate 
for phytoextraction62.  
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Fig. 2. Uranium cycle in water-soil-plants-humans

Table 1: Comparison of Uranium concentration  
and radiation in soils of different countries

Sr. No	 Country	 U238 mg/kg	 U238 Bq/kg	 References

    1	 India	 11	 54	 [77]
    2	 England	 2.6	 32.24	 [77]
    3	 Malaysia	 9.43	 117	 [78]
    4	 Greece	 2.25	 28	 [79]
    5	 Turkey	 1.11	 13.8	 [80]
    6	 Pakistan	 3.62	 45	 [81]
    7	 Germany	 1.90	 23.56	 [82]
    8	 Portugal	 25.10	 311.24	 [83]
    9	 Spain	 13.5	 167.4	 [84]
   10	 Japan	 1.74	 21.57	 [85]
   11	 USA	 3.50	 43.4	 [86]
   12	 Chile	 0.79	 9.79	 [87]
   13	 Canada	 1.20	 14.88	 [77]
   14	 China	 3.13	 38.81	 [88]
   15	 Europe	 2.46	 30.50	 [89]
   16	 World	 2.82	 35	 [33]

Traslocation of Uranium in Plants
	 U(VI) salts as UO2

2+ and carbonate complexes 
are the most mobile form of Uranium71,90 while Other 
forms are less bioavailable and hence remain confined 
to soil particles. The Mycorrhiza fungi (Glomus genus), 
because of their high binding capacity for heavy metals, 
including Uranium, enhance their immobilization 
and significantly increase their plant uptake55,91,92,93. 
Fungal mycelium via fungal tissues helps transport 
uranyl cations to roots91,94. This has been proven by 
an experimental study done on Medicago trunctula 
cv. Jemalong plants in comparing treatments with and 
without the presence of the mycorrhizal fungus Glomus 
intraradices55. It was also concluded that experimental 
plants infected with the fungus have higher U uptake 
by roots. In the inoculated plants, the concentrations 
of uranium in stems were higher, indicating that 
mycorrhizal root colonization increased U uptake. 
Organic acids also stimulate the phytoextraction 
of U62. U uptake is also likely related to plant iron 

content95. Gunther et al., (2003) showed that Uranium 
is most likely bound to phosphoryl groups as uranyl 
(VI) phosphate96. Various growth anomalies and the 
highest concentration of Uranium in the stems of 
Capsicum annum Cucumis in experiments conducted 
on Capsicum annuum and Cucumis sativus plants 
treated with uranium nitrate salts97. Plants can absorb 
these elements in water-soluble forms, which are 
distributed from roots to aerial parts. While U contents 
greater than 3 mg/kg in tissues dry mass has been 
observed in some plants like Uncinia leptostachya and 
Coprosma Arborea (Mamangi)98,99.

Root to shoot Parts translocation
	 Accumulating uranium in root parts via soil 
or water takes place through penetration into the 
shoots and leaves (Table 2 and Table 3). In various 
plant species, such as sunflowers100, Pisum sativum 
L.101, Nicotiana tabacum L. [102], maize, wheat 
and pea72, carlina corymbosa103, sweet potato104, 
mustard105 U in roots and stem parts has been 
observed. Its translocation in the upper parts of the 
plants, including Sesbania rostrata106, Water lily107, 
Bidens pilosa L108 depends on the potential of U in 
soil and gene expression in plants109-111. Generally, 
the translocation of U from roots to the upper part 
of plants depends on three mechanisms, i.e., 
sequestration into root cells, symplastic transport 
among the central part of the plants, and its release 
through xylem112-114. Uranium is transported after the 
formation of U chelates, i.e., UO2-citrate- and UO2-
lactate in xylem tissues111. In the symplastic process, 
U ions from roots transfer to xylem vessels, probably 
due to transpiration115,116. The selective permeability 
of the cell plasma membrane also regulates the 
Uranium transport through Membrane transport 
proteins116,117. 

Uranium toxicity
Uranium toxicity to plants
	 Uranium is toxic to plants, and factors 
like organic acids (citrate, tartrate, and oxalate), 
phosphate content, and polyamines affect its 
bioavailability118-120. The cultivation substrate and 
its nature also influence the amount, distribution, 
movement, and toxicity level of Uranium in 
tobacco plants102. At various pH levels, U has a 
considerable impact on Arabidopsis thaliana's 
photosynthesis pathway118. Since uranium is a 
toxic element for plants, it hinders the various 
physiological and biochemical processes like seed 
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germination and photosynthesis. In addition, it 
causes damage to the structure of DNA and blocks 
the process of mitosis. Plant toxicity is mainly 
due to their environmental conditions, uranium 
concentration, and types of species72,108,121.

Table 2: Uranium uptake by different plant species 
during pot experiment

Plants	 Roots	 Shoot	 Uranium	 References
	 (mg/kg)	 (mg/kg)	 Treatment
			   (mg/kg)

Sesbania rostrata	 20.61	 23.74	 80	 [106]
Juncus bufonius	 39.9	 2.5	 135	 [103]
Maize	 32.01	 3.50	 50	 [72]
Sunflower	 136	 4.08	 82	 [100]
Italian Ryegrass	 800	 290	 150	 [122]
Wild ramie	 721.46	 35.88	 7.98	 [123]
Zebrina	 20.91	 1.23	 15	 [124]
Juncus squarrosus	 227	 1.1	 250	 [103]
Mustard	 7145	 380	 47.74	 [105]
Carlina corymbosa	 134	 0.9	 149	 [103]
Macleaya cordata	 36.8	 12.5	 18	 [125]

Effect on Germination
	 Germination under U stresses vary 
from plant to plant as each plant tends to 
tolerate some level of U concentration. The 
results obtained from the germination of cleome 
amblyocarpa Barr. & murb seeds showed 
increase in the germination upto 200ppm, and 
after that decrease at higher concentrations 
was noticed (250ppm and 300ppm)126. In case of 
three vegetables (tomato, spinach, and cabbage) 
germination was inhibited at 320ppm, whereas 
in cucumber, it was inhibited at 1280ppm127. 
Similar types of results were observed in cynodon 
dactylon (Bermuda)6 and aristida purpura (purple 
Threeawn)128. U concentration lower than 100ppm 
did not affect the germination of maize seeds 
but at higher concentrations a reduction to 80% 
and 63% in germination percentage has been 
observed at 500ppm and 1000ppm, respectively. 
This might be because at a lower concentration 
of Uranium, some enzymes promote seedling 
growth, or the net photosynthetic rate increases 
and thus enhances seed germination126. When 
the U concentration reaches the maximum limit 
of tolerance power of the seed, its metabolic 
activities get disturbed and damage the DNA 
structure of plant cells, thus decreasing the rate 
of seed germination7,127,132.

Table 3: Uptake of Uranium under hydroponics 
conditions by different plant species

Plant species	 Roots	 Shoot	 Hydroponics	References
	 (mg/kg)	 parts	 (umol/L)
		  (mg/kg)	

Sweet potato	 2216	 6.67	 25	 [104]
Purple sweet potato	 5712	 3.48	 25	 [104]
Water lily	 1538	 3446	 55	 [107]
Nicotiana tabacum L.	 82000	 357	 500	 [102]
Wheat	 12000	 28	 100	 [129]
Pea	 44000	 21	 100	 [129]
Maize	 29737	 6	 100	 [129]
Indian mustard	 36541	 122	 100	 [129]
Arabidopsis halleri	 3500	 170	 -	 [130]
Arabidopsis thaliana	 50352	 15	 50	 [131]
Bidens pilosa L.	 728	 809	 1000	 [108]

	 Uranium treatment on the seeds has an 
adverse effect on mitotic cell division. Furthermore, 
it leads to chromosomal cell defects133. According to 
a study conducted on the Vicia faba a decrease in 
the mitotic index has been observed on the root tip 
cell134. It was found that uranium adversely affected 
the germination rate and seedling growth, and the 
level of toxicity depends upon the physiological 
state and selective permeation of different metal 
ions through tissues surrounding the embryo and 
hence determines the toxicity. Seedling growth is 
severely inhibited at a much lower concentration of 
heavy metal. The early visible symptoms of toxicity 
are disturbances of germination and change in leaf 
color, and germination percentage is negatively 
correlated with uranium concentration135.

Effect on Photosynthesis
	 Heavy metal stress is already known to 
affect photosynthesis, resulting in decreased plant 
growth, delayed plant development, and sometimes 
plant death136,116. Reducing chlorophyll content is 
one of the harmful effects of exposing plants to 
various metals137. Reductions in the chlorophyll a and 
chlorophyll b content due to the toxic effect of uranium 
has also been observed in different plant species 
such as Bidens pilosa L.108, Arabidopsis thaliana or 
Thale cress131, Pisum sativum L. is also called garden 
pea143, Triticum aestivum L.139, Leptochloa fusca L.140, 
Nymphaea tetragona Georgi107, Pisum sativum L.101 
and Green broad bean38. 

	 According to Shtangeeva and Ayrault, U 
treatment increased light's coefficient of reflection 
(CR) at spectral channel 0.38-0.63m, indicating a 
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low chlorophyll content in the plant141. This decrease 
in chlorophyll biosynthesis is because of the 
replacement of Mg2+ ions by (UO2)

2+ 142. Uranium 
toxicity may disrupt the first step in glycolysis by 
replacing magnesium with uranyl in the enzyme143. 
Jagetiya and Purohit (2006) have also observed a 
gradual and contrasting reduction in the chlorophyll 
a, b and total chlorophyll content with increasing 
uranium concentration144. 

Effect on Plant Physiology
	 Since uranium accumulates in plant 
roots, shoots adversely affect plant physiological 
parameters. The root and shoot length decreased 
significantly in Arabidopsis thaliana at 50uM U145, 
duckweed at 50 uM solution of uranium146, and 
broad bean at 25uM U147. A decrease in root 
shoot fresh weight of Phaseolus vulgaris at 1000 
uM U has been observed143 and in the weight 
of fresh leaves at 100uM U in Thale cress148. In 
Ryegrass, maize, radish, and cabbage, the length 
of root and dry mass and stem height decreased 
significantly at 150mg/kg, 500mg/kg, and 2560 
mg/kg Uranium, respectively72,127,122.

Uranium toxicity in human
	 The natural uranium isotopes 234U, 235U, 
238U) decay to emit alpha, beta, and gamma rays, 
presenting both chemotoxicity and radiotoxicity 
effects in humans149. Uranium can enter the 
body in three routes: inhalation, ingestion, and 
absorption through intact or damaged skin150. Various 
anthropogenic activities like nuclear power plants, 
military practices led to the formation of suspended 
uranium in air. Thus it can easily inhaled by humans 
and its radiotoxicity directly affect at the cellular, 
subcellular and protein levels, similarly it also affects 
kidney151. Human beings also exposed through 
environmental uranium from ingesting water or food 
in natural uranium-contaminated areas152. 	
	
	 Hence consumption of food, especially 
vegetables, fruits, cereals, and table salt, is the 
primary source of Uranium in the human body153,154. 
Cothern and Lappenbusch (1983) conducted study 
and found that food contributes 15 percent of the 
ingested U, while on other hand drinking water 
contributes 85% of Uranium155. The solubility 
of the uranium from consumed food affects the 
gastrointestinal absorption of uranium, with a 
variation in absorption rate from 0.1-31%156-159. 

Uranium entry through contaminated water finds 
its way directly into the human bloodstream and 
has a negative impact on human health. The 
daily Uranium intake is estimated to be 1-2 mg 
and 1.5 mg from food and water, respectively160. 
The human body contains an average of 56 
mg Uranium, attr ibuting 32 mg (56%) to the 
skeleton, 11 mg to muscle tissue, 9 mg in fat,  
2 mg in blood, and less than 1 mg in the body 
organs like kidney, lungs, etc.161. Abnormalities 
in the gene, gulf war syndrome, infertility, and 
neurotoxic effects, occur due to Uranium in the 
human body162. Accumulating Uranium causes 
lung, bone, and thyroid cancer in humans. 
Sometimes higher intakes result in acute renal 
failure and even death163-165. Its concentration 
builds up in the human body's organs and tissues, 
posing various health risks166,167. It causes chronic 
problems with the liver, kidneys, and bones168-170. 
The absorption of uranium into blood as an uranyl 
anions which further complexed with proteins 
(such as transferrin, albumin, or bicarbonate 
anions, etc171. The two main target organs of  
U are kidney and bone. More than 80 percent 
of the Uranium is eliminated from the blood 
compartment via urethral excretion. The main 
target of Uranium in human cells is mitochondria 
which ultimately leads to apoptosis. The geological 
origin of soils, groundwater, and flora's living area 
has a significant impact on U transfer (Fig. 3) to 
the human food chain172.

Fig. 3. Hazardous effect of Uranium on human health

Conclusion

	 Natural radioactive minerals uranium 
is found int in rocks, soils, and water. But with 
increased industr ial ization and population 
explosion, its environmental concentration is 
rising. Although Uranium is not necessary for 
plants, it is taken up by the plants along with 
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specific essential metals like Zn, Ni, Ca, and Cu. 
At a lower concentration, it does not pose any 
harm to plants. However, if the concentration 
of Uranium reaches its threshold level, in that 
case, it causes direct toxicity causing damage 
to the plant by disturbing the cell structure (due 
to the production of reactive oxygen species 
causing oxidative stress), and it also inhibits 
several cytoplasmic enzymes. The uptake, 
retention, movement, and distribution profile of 
radionuclides in plants is strongly affected by the 
soil properties like pH, organic matter contents, 
soil characteristics, climatic conditions and, also 
by plant type, plant parts, the physicochemical 
form of the U and soil amendments such as 
fertilizer and chelate application. Transfer Factor 
(TF) estimates the quantity of Uranium taken up by 
plants from the substrate. The U taken up by plants 
is translocated to the others parts of the plant. 
However, the concentration of U in different parts 
of plants follows the trend of roots>shoots>leaves. 
It adversely affects the germination of seeds 

and early seedling growth in plants. Uranium 
treatments in plants negatively affected the mitotic 
division and caused chromosomal abnormalities in 
seeds. Plant yield, shoot growth, root growth, and 
dry matter of plants are significantly reduced due 
to Uranium uptake. So, it can be concluded that 
Uranium absorption by plants from contaminated 
soil directly impacts plant development and yield 
and finally leads to the food crisis. Consumption 
of contaminated plant parts is the primary source 
of Uranium entry into the human food chain, and 
it represents a high potential risk to human health 
due chemical toxicity of Uranium.
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