

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Access, Peer Reviewed Research Journal

ISSN: 0970-020 X CODEN: OJCHEG 2022, Vol. 38, No.(3): Pg. 718-723

www.orientjchem.org

Synthesis of New Knoevenagel Derivative using Fe₃O₄ Magnetic Nanoparticals

PRAVINSING S. GIRASE¹, DEEPAK V. NAGARALE², BHIKAN J. KHAIRNAR³ and BHATA R. CHAUDHARI^{4*}

 ¹Department of Chemistry, Jaihind Educational Trusts's Z. B. Patil College, Dhule-424002, India.
²Department of Chemistry, VVM's S. G. Patil Arts, Science and Commerce College, Sakri 424101,India.
³SSVPS's Arts, Commerce and Science College, Shindkheda, MH SH 11, Chimthane Road, Sindkheda, Maharashtra 425406, India.
⁴Department of Chemistry, SSVPS's L. K. Dr. P.R, Ghogrey Science College, Dhule, Vidyanagri, Deopur, Dhule, Maharashtra 424005, India.
*Corresponding authors E-mail: brc155@gmail.com, psgirase65@gmail.com

http://dx.doi.org/10.13005/ojc/380323

(Received: October 18, 2021; Accepted: June 08, 2022)

ABSTRACT

Heterogeneous catalysts mediated reaction system should compensate some of drawbacks observed in previously reported reactions. We have obtained magnetic nanoparticles (MNPs) were using a reduction–precipitation method and characterized for nano particle verification. This method is very easy and extremely efficient for the Knoevenagel reaction. We have used aromatic aldehydes with various active methylene containing compounds. It give Knoevenagel products in good to excellent yields at refluxed temperature and work with elevated temperature condition.

Keywords: Magnetite nanoparticles, Knoevenagel condensation, Active methylene compounds, Heterogeneous catalysts.

INTRODUCTION

Today organic synthesis based on magnetic nanomaterial's are found a major role in many fields including industrial procedure, biotechnology, environmental remediation, biomedicine, and particularly catalysis^{1-2a-d}. Reactions were generally and mostly carried out in organic solvents, some time with aqueous³. Some case water also act as environmentally benign solvent⁴. The use of environmentally benign solvents like water⁵ and absent of organic⁶ methods from inexpensive as well as importance in synthetic point of view⁷. This methods improve the rate of many organic reactions. Thus carry out the Knoevenagel condensation in water medium⁸. Application of Knoevenagel condensation reaction of in water aromatic aldehydes with ethyl cyanoacetate or malononitrile⁹. The separation and recycling of the catalyst is highly favorable because catalysts are very expensive.

Surface reform i. e. immobilization of

This is an <a>Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC- BY). Published by Oriental Scientific Publishing Company © 2018

functional group has been extensively studied¹⁰ formation of new covalent bond on the targeted structure¹¹. There are wide reports¹²⁻¹³ immobilization also different kind like chelate forming organic reagents, some on polymers, naturally found compounds, metal salts and carbon and highly dispersed silica. Immobilization of compounds depend on substitution reaction between the surface of the supporting material¹⁴. Among the different adsorbents, silica gel particularly restrained with various organic compounds¹⁵⁻¹⁹ Conducting same reactions by using heterogeneous catalyst had reduced many drawbacks found in previously reported reactions. In this type of reactions, the catalyst can be recovered by filtration and it can be reuse for the next cycle. However, it is worthy to mention in spite of several advantages experienced practically in using of heterogeneous catalysts, due to the nanosized particles used, few limitations to the sustainability are observed²⁰⁻²⁴.

EXPERIMENTAL

¹H NMR Spectra and ¹³C NMR spectra were recorded as δ values in ppm on instrument Brucker FTAC-400 MHz and 100 MHz (TMS Internal standard). IR spectra on a Perkin-Elmer 1605 FT-IR and absorptions recored in cm⁻¹ unit. Thermo Scientific Q-Exactive, Accela 1250 pump use for LCMS data.

Preparation of Ferrite (Fe₃O₄) magnetic nanoparticles

FeCl₂.6H₂O (Ferric chloride hexahydrate) (5.8 g, 0.022 mol) and FeCl, 4H,O (Ferrous chloride tetra hydrate) (2.1 g, 0.011 mol) were were dissolved in 150 mL of deionized H₂O in a round bottom flask (250 mL) at R.T. under constant stirring. Thereafter, 10 mL of aq. NH_a solution (32%) was then added into mixture within 40 min with stirring. Finally the black precipitate solid was collected by magnetic decantation, washed with distilled water until solution becomes neutral, and then washed with ethanol two times. After the performed of procedure the magnetic nano materials have been characterized using an Infrared spectroscopy and the structure of magnetic catalysts was determined by X-ray diffraction (XRD) study. Scanning electron microscope (SEM) use for determine crystal size of catalyst.

General procedure

We have carried out reaction of various substituted benzaldehyde with active methylene compounds active (acyclic) and (cyclic) active methylene compounds (e.g. barbituric acid and thiobarbituric acid) in presence of ferrite heterogeneous catalyst as shown in Scheme 1.

Knoevenagel reactions of substituted benzaldehydes with active methylene compounds using nano-ferrite as catalyst

We have carried out Knoevenagel condensation reactions. In this various substituted benzaldehyde with active methylene compounds (cyclic and acyclic) use ferrite catalyst (Scheme 1).

Scheme 1 Nano-ferrite catalysed Knoevenagel condensation

RESULTS AND DISCUSSION

We have made efforts to improve a catalytic system that would overcome the limitations of the earlier reported Knoevenagel reactions. When initial study held, benzaldehyde (1a) and malononitrile (2a) used as a represented system. optimization was done by Sequences of the experiments performed with a variety of reaction parameters, like type of catalyst, catalyst quantity, solvent, temperature and time (Table 1). Initially we have synthesized the paramount magnetically distinguishable catalysts, all MFe₂O₄ (M=Fe²⁺, Zn²⁺, Mn²⁺ and Ni²⁺) by screened for sample reaction. Apart from catalysts examined, Fe₂O₄ found to be the best, providing very good yields of the targeted product 3a (Table , entries 1-5). Then catalysts concentration study performed having rang 10 to 20 mol% rises the yield of product 3a up to 94%, Further increase of catalyst concentration to 25 mol% did not improve the yield of 3a (Table 1, entries 5-8). As the solvent have an impact on the overall process, the effect of various solvents (Table 1, entries 5, 9-13, 15) were examined; the best results was obtained with C₂H₂OH which afforded 3a in 94% yield (Table 1, entry 5). We have also made temperature study data 3a obtained good yield at reflux temperature for complete consumption of aldehyde (Table 1, entries 5, 14). Reaction conditions optimized and we have explore the substrate scope of the ferrite catalyzed Knoevenagel condensation of substituted aldehydes with acyclic active methylene compounds

(malononitrile, ethyl cyanoacetate, ethyl acetoacetate) and cyclic active methylene compounds (barbituric acid and thiobarbituric acid) for the synthesis of styrene derivatives having different functional groups. Thus, we have observed that electron good yield of products. Satisfyingly this protocol endured a range of common functional groups such as alkyl, ether, halogen and nitro groups irrespective of the place. Results of these reactions listed in Table 2.

	HO + NC	CN	Solvent	3a	CN	
Sr. No	Catalyst	Catalyst (mol%)	Solvent	Temp (°C)	Time (min)	Yield (%)⁵
1 2 3 4 5 6 7 8 9 10 11 12 13	$\begin{array}{c} \\ ZnFe_2O_4 \\ MnFe_2O_4 \\ Fe_3O_4 \\ $	 20 20 20 20 10 15 25 20 20 20 20 20	EtOH EtOH EtOH EtOH EtOH EtOH EtOH EtOH	Reflux Reflux Reflux Reflux Reflux Reflux Reflux Reflux Reflux Reflux Reflux Reflux Reflux Reflux	120 30 30 30 30 30 30 30 30 30 30 30 30	19 85 88 94 60 82 94 78 46 64 26 43
14 15⁰	Fe ₃ O ₄ Fe ₃ O ₄ Fe ₃ O ₄	20 20 20	EtOH 	60 80	30 30	43 81 59

^aReaction conditions: Benzaldehyde (1mmol), Malononitrile (1 mmol), Solvent (5 mL),blsolated yield, cneat reaction

	R l(a-i)	о н +	$\sum_{2(a-c)}^{X} \frac{Fe_3O}{EtO}$	O ₄ , 20 mol % H, Reflux 0 min COOEt, R:-I	R—	X 3 (a-p) 75 me, -Cl, NO ₂ , ?	6-94 % Yield
Sr.	Aldehyde	Х	Y	Product	Yield	m.p.	(°C)
No	(-R)				(%) ^₀	Found	Lit. [Ref.]
1	н	CN	CN	3a	94	82-84	82 ⁴⁹
2	н	CN	COOE	t 3b	91	47-49	49-50 ⁴⁹
3	н	COOEt	COOE	t 3c	90	Oil	N.A.
4	4-Cl	CN	CN	3d	89	162-164	164-165 ⁴⁹
5	4-Cl	COOEt	COOE	t 3e	90	84-86	87 ⁵³
6	2-CI	CN	CN	Зf	82	96-98	96-97 ⁴⁹
7	2-CI	CN	COOE	t 3g	86	50-52	53 ⁵²
8	4-NMe ₂	CN	CN	3h	84	186-188	160 ⁵⁰
9	4-NMe	CN	COOE	t 3i	86	124-126	125 ⁵¹
10	4-N0,	CN	CN	Зj	94	158-169	162-163 ⁴⁹
11	4-N0	CN	COOE	t 3k	93	168-170	173-174 ⁴⁹
12	3-NO	CN	CN	31	90	104-106	104-106 ⁴⁹
13	2-N0	CN	CN	3m	90	140-142	141-142 ⁵⁴
14	3-OMē	COOEt	COOE	t 3n	80	240-242	N.R
15	3,4-di OMe	CN	CN	30	86	142-144	N.R
16	3,4-di OMe	CN	COOE	t 3p	82	156-158	N.R

 $^{\rm a}Reaction$ conditions: Aldehyde (1mmol), acyclic active methylene compound (1 mmol), Ethanol (5 mL), blsolated yield, N.R.= Not Reported, N.A.= Not Applicable

Table 3: Substrate Study of Knoevenagel Producta
(Cyclic Active Methylene Compound)

					3	2
R=	f ∫ l	TH HN NH	Fe ₃ O ₄ , 20 m EtOH, Reflux	ol %		H
		0~ ~ 10			75	5-96 % Yield
	1(a-i)	2(d,e) X = O, S		R	4(а-г) = -Н, -Ме, Оте, -	Cl, NO ₂ , NMe ₂
Sr.	Aldehyde	e Active F	Product	Yield	m.p.	(°C)
No	(-R)	methylene	(%) ^b		Found	Calcu.
		Compound				
1	н	Barbituric acid	4a	96	270-272	248-249 ⁴⁷
2	2-Cl	Barbituric acid	4b	90	220-222	250-252 ⁵⁷
3	4-Cl	Barbituric acid	4c	93	232-234	271-272 ⁴⁷
4	4-NMe ₂	Barbituric acid	4d	88	276-278	260-267 ⁴⁷
5	4-NO ₂	Barbituric	4e	96	278-280	272-27455
6	3-NO ₂	Barbituric	4f	92	256-258	256-258 ⁴⁸
7	2-NO ₂	acid Barbituric acid	4g	92	238-240	231-23455
8	3-OMe	Barbituric	4h	93	>290	295-29755
9	3,4-di -OMe	Barbituric acid	4i	90	>290	N.R.
10	Н	Thiobarbituric acid	4j	96	271-272	>290 ⁵⁹
11	2-CI	Thiobarbituric acid	4k	90	234-236	234–23659
12	4-Cl	Thiobarbituric acid	41	94	288-290	291-293 ⁵⁹
13	4-NMe ₂	Thiobarbituric acid	4m	90	254-256	255 ⁵⁶
14	4-NO ₂	Thiobarbituric acid	4n	96	240-242	N.R.
15	3-NO ₂	Thiobarbituric acid	40	92	264-266	261-26359
16	2-NO ₂	Thiobarbituric acid	4р	93	240-242	247-24859
17	3-OMe	Thiobarbituric	4q	90	236-238	20458
18	3,4-di -OMe	Thiobarbituric acid	4r	89	>290	>300 ⁵⁹

^aReaction conditions: Aldehyde (1mmol), cyclic active methylene compound (1 mmol), Ethanol(5 mL), blsolated yield, N.R = Not Reported

		_	
Table 3:	Catalys	t Recycle	Studya

Sr.No. Run No.		Yield(%)⁵
1	1 st	94
2 3	2 rd	88 76

^aReaction conditions: Benzaldehyde (1mmol), malononitrile (1mmol), ethanol (5 mL), blsolated yield Our aim is to make catalytic system more cheap, we have focused on the reusability of nano- Fe_3O_4 catalyst in this condensation reaction as shown in Table 3, the catalyst shown extraordinary activity in all three cycles. Reaction was monitored by TLC. Followed by touching the external magnet to wall of the round bottom flask and reaction mixture was decant in the small beaker. The catalyst was washed with ethanol (3x5 mL) and dried it for 1 h at 120°C in oven, it is ready for next cycle. Catalyst were recycled three times without significant loss of catalytical activities.

Fig. 1. X-ray diffraction study of nano-ferrite catalyst

Fig. 2. Scanning Electron Microscope (SEM) images of nano-ferrite catalyst

Synthesis of styrene compounds

Benzaldehyde (1 mmol), malononitrile (1 mmol), Fe₃O₄ (20 mol %) in ethanol (5 mL) heated at reflux for 30 minute. Reaction was monitored by Thin Layer Chromatography. The catalyst was recovered by simple magnetically decantation of reaction mixture by pouring in cold H_2O and the product were filtered and purified in aqueous ethanol. Recovered catalyst was washed with ethanol and dried in oven. The catalyst is ready for next cycle of the reaction.

Spectral Data of Selected Compounds 1)2-(4-chlorobenzylidene)malononitrile (3d)

FT-IR(KBr): 3030, 2227, 1955, 1558, 779, 617 cm⁻¹. ¹H-NMR(CDCl₃,400MHz)δ: 7.880(d,

J=8.4Hz, 2H), 7.760(s,1H), 7.545(d, *J*=8.4Hz, 2H). ¹³C NMR(CDCl₃,100MHz)δ: 158.30, 141.18, 131.86, 130.09, 129.28, 113.45, 112.35, 83.37.

2) 2-(2-chlorobenzylidene) malononitrile (3f)

Colour: Pale yellow, m.p:96-98°C. FT-IR (KBr): 3055, 2222, 1907, 1587, 756, 619 cm⁻¹. ¹H NMR (Deuterated chloroform, 400MHz) δ : 8.295(s, 1H), 8.205(d, *J* = 8.0Hz, 1H,), 7.576 (d, *J* = 3.6Hz, 2H), 7.495–7.435 (m, 1H).¹³CNMR (Deuterated chloroform, 100MHz) δ : 156.05, 136.35, 135.04, 130.72, 129.51, 129.07, 127.80, 113.22, 111.91, 85.81.

3) 2-(2-nitrobenzylidene) malononitrile (3m).

Colour: Yellow m.p.: 140-142°C FT-IR(KBr): 3047, 2239, 1975, 1591, 1523, 1440 cm⁻¹. ¹H NMR(Deuterated chloroform, 400MHz) δ : 8.474(s, 1H), 8.393-8.369(m, 1H), 7.931-7.891 (m, 1H), 7.855-7.816(m, 2H).¹³C NMR(Deuterated chloroform, 100MHz) δ : 158.83, 146.80, 134.98, 133.44, 130.49, 126.72, 125.88, 112.24, 110.98, 88.55.

4) 2-(3,4-dimethoxybenzylidene)malononitrile (30)

Colour: Yellow, m.p: 142-144°C, FT-IR(KBr): 2933, 2833, 2218, 1909, 1467, 1251,1147 cm⁻¹, ¹H NMR(Deuterated chloroform, 400MHz) δ : 7.683 (t, *J* = 2.0 &12.0Hz, 2H,), 7.399 (q, *J* = 2.4 &6.0Hz, 1H), 7.283 (s,1H), 4.003 (s, 3H), 3.953 (s, 3H). ¹³C NMR(Deuterated chloroform, 100MHz) δ : 159.15, 154.28, 149.56, 128.22, 124.29, 114.42, 113.59, 111.10, 11, 0.78, 78.45, 56.34, 56.09.

5) (Z)-ethyl 2-cyano-3-(3,4-dimethoxybenzylidene) acrylate(3p).

Colour: Yellow, m.p.: 156-158°C, FT-IR(KBr): 3003, 2845, 2222, 1928, 1710, 1512, 1159, 1097 cm⁻¹.¹H NMR(Deuterated chloroform, 400MHz) δ : 8.162 (s, 1H), 7.808 (s, 1H), 7.482 (d, *J* = 7.6 Hz, 1H), 6.955 (d, *J* = 7.6 Hz, 1H), 4.377 (q, *J* = 7.2 Hz, 2H), 3.900(s,6H), 3.400(t, *J* = 7.2 Hz, 3H). ¹³C NMR(Deuterated chloroform, 100MHz) δ : 163.11, 154.70, 153.68, 149.28, 127.89, 124.61, 116.36, 111.65, 110.95, 99.38, 62.46, 56.15, 56.05, 14.21.

6) 5-benzylidenepyrimidine-2,4,6(1H,3H,5H)trione(4a)

Colour: Yellow, m.p: 270-272°C,FT-IR(KBr): 3512, 3313,3074, 2845, 1880, 1701, 1581,1438. ¹H NMR(Dimethyl sulfoxide-d₆, 400MHz) δ: 11.735(bs,2H), 7.913(t, J = 6.8 &1.6 Hz, 1H), 7.615 (t, J = 6.8 &7.6Hz, 1H),7.180(t, J = 7.6 Hz,

1H), 7.075 (t, \underline{J} = 7.2 Hz, 1H), 7.015(d, J = 8.0Hz, 2H), 5.946(s,1H).¹³C NMR(Dimethyl sulfoxide-d₆, 100MHz) δ : 193.74, 173.30, 163.50,142.89, 136.64, 135.07, 133.89, 129.96, 129.63,128.61, 128.17, 126.99, 125.44, 96.35, 31.06.

7) 5-(3-methoxybenzylidene)pyrimidine-2,4,6 (1H,3H,5H)-trione(4h)

Colour: Brown, m.p: 268-270°C.FT-IR(KBr): 3518, 3458, 3007, 2828, 1938, 1660, 1570, 1444, 1163 cm⁻¹.¹H NMR (Dimethyl sulfoxide-d₆, 400 MHz) δ : 11.407 (s,1H), 11.256(s,1H), 8.259 (s, 1H), 7.845 (t, *J* = 2.0Hz, 1H), 7.611(q, *J* = 0.8Hz&. 0.4Hz, 1H), 7.395 (t, *J* = 8.0Hz, 1H), 7.142–7.117 (m,1H,) 3.797(s,3H). ¹³C NMR (Dimethyl sulfoxide-d₆, 100MHz) δ : 163.87, 162.09, 159.08, 154.98, 150.64, 134.31, 129.59, 126.55, 119.74, 118.91, 118.07,55.68.

8)5-(2-chlorobenzylidene)-dihydro-2-thioxopyrimidine-4,6(1H,5H) dione(4k)

Colour: Red, m.p: 234-236°C.FT-IR(KBr): 3633, 3388, 3076, 1718, 1583, 1215, 1049,725, 642 cm⁻¹.¹H NMR(Dimethyl sulfoxide-d_g, 400MHz) δ: 11.491(s,1H), 11.272(s,1H), 8.292,(s, 1H), 7.747 (t, J = 6.8 & 0.8 Hz, 1H), 7.556, (q, J = 1.2Hz & 6.8Hz, 1H), 7.497–7.456, (m, 1H), 7.392-7.352, (m,1H). ¹³CNMR(Dimethyl sulfoxide-d_g, 100MHz)δ: 163.12, 161.38, 150.69, 150.17, 133.64, 132.74, 132.44, 132.40, 129.35, 126.80, 122.26

9) 5-(3-methoxybenzylidene)-dihydro-2thioxopyrimidine-4,6(1H,5H)-dione(4q)

Colour: Red, m.p: 236-238°C.FT-IR(KBr): 3485, 3070, 2904, 1944, 1701,1651, 1548, 1228, 1151, 1047 cm⁻¹ ¹HNMR(Dimethyl sulfoxide-d₆, 400 MHz) δ : 12.477(s,1 H), 12.357 (s,1H), 8.271(s,1H), 7.892(s,1H), 7.676 -7.657(d,1H, *J* = 7.6Hz),7.430-7.390(m,1H, *J* = 8.0Hz), 7.172-7.147, (m,1H), 3.803 (s, 3H)., ¹³C NMR(Dimethyl sulfoxide-d₆, 100MHz) δ : 179.02, 162.18, 159.94, 159.12, 155.88, 134.29, 129.68, 126.92, 119.80, 119.45, 118.31, 55.72.

10)5-(3,4-dimethoxybenzylidene)-dihydro-2thioxopyrimidine-4,6(1H,5H)-dione (4r).

Colour: Red, m.p: >290°C,FT-IR(KBr):

3506, 3386, 3083, 1946, 1662, 1583, 1220, 1159 cm⁻¹, ¹H NMR (Dimethyl sulfoxide-d_e, 400MHz) δ: 12.403-12.300(d, 2H), 8.438(d, J = 1.6Hz, 1H), 8.275(s, 1H), 7.969 (t, J = 1.2 & 7.2 Hz, 1H), 7.157(q, J = 8.0 & 9.2 Hz, 1H), 3.830(s,6H), ¹³C NMR (Dimethyl sulfoxide-d_e, 100 MHz) δ: 191.86, 178.65, 162.76, 160.60, 156.97, 154.70, 154.66, 149.63, 148.35, 132.84, 130.09, 126.60, 125.91, 117.43, 115.79, 111.74, 111.69, 109.87, 56.42, 56.35, 55.98, 55.93.

CONCLUSION

We have carried out Knoevenagel reactions of various substituted aromatic aldehydes with cyclic and acyclic active methylene compounds resulting compounds form with good to significant yields at refluxed temperature in presence of environmentally benign Fe₃O₄ as a nano catalyst. The ferrite catalyst was recycled upto three successive times. But not in considerable loss in action. The present method displaces all other methods that used various homogeneous catalysts and performed compare with elevated temperature. FT-IR, ¹H NMR and ¹³C NMR spectroscopy, characterized structures of the synthesized compounds.

ACKNOWLEDGEMENT

¹H NMR analysis for S. P. University, Pune and SAIF Panjab University, Panjab. UICT, KBC, NMU, Jalgaon for XRD and SEM and Principal, , M.J. College, Jalgaon for IR analysis, Principal, R. C. Patel College, Shirpur, for microbial screening. Also thank full to Principal, Jaihind Educational Trust's Zulal Bhilajirao Patil College Dhule, Maharashtra, India and Head, Chemistry Department, Jaihind Educational Trust's Zulal Bhilajirao Patil College Dhule Maharashtra, India for providing laboratory for carried this work.

Conflict of interest

The authors declare that there is no conflict of interests concerning the publication of this article.

REFERENCES

- 1. Rorig K., *J. Am. Chem. Soc.*, **1951**, *73*(3), 1290-1292,https://doi.org/10.1021/ja01147a124
- a) Alexandrina M. R.; *Liebscher J., RSC Adv.,* 2014, 4, 5927-5952https://doi.org/10.1039/

C3RA46984K b) Zhang X.; He X.; Zhao S., *Green Chemistry Letters and Reviews.*, **2021**, *14*(1), 85-98 https://doi.org/10.1080/175 18253.2020.1862312 c) Kalantari F.; Rezayati S.; Ramazani A.; Aghahosseini H.; Ślepokura K.; Lis T., *Appl. Nano Mater.*, **2022**, *5*(2), 1783– 1797 https://doi.org/10.1021/acsanm.1c03169 d) Maleki R.; Kolvari E.; Salehi M.; Koukabi N.; *Appl Organometal Chem.*, **2017**; e3795, https:// doi.org/10.1002/aoc.3795

- a) Brogan A. P.; Dickerson T. J.; Janda K. D.; *Angew. Chem. Int. Ed.*, **2006**, *45*, 8100-8102 https://doi.org/10.1002/anie.200601392 b) Hayashi Y.; Samanta S.; Gotohand H.; Ishikawa. H.; *Angew. Chem., Int. Ed.*, **2008**, *47*, 6634- 6637 https://doi.org/10.1002/anie.200801408 c) Huang J.; Zhang X.; Armstrong D. W., *Angew. Chem., Int. Ed.*, **2007**, *46*, 9073-9977 https:// doi.org/10.1002/anie.200703606
- Li C. J.; Chen L., *Chem. Soc. Rev.*, **2006**, *35*, 68-82, https://doi.org/10.1039/B507207G
- Lindstrom. U. M.; Chem. Rev., 2002, 102(8), 2751-2772 https://doi.org/10.1021/cr010122p
- F. Bigi.; Conforti M. L.; Maggi R.; Piccinno. A.; Sartori. G., *Green Chem.*, **2000**, *2*, 101-103 https://doi.org/10.1039/B001246G
- Cao Y.Q.; Dai Z.; Zhang R.; Chen. B. H., Synth. Commun., 2004, 34, 2965-2972 https://doi.org/10.1081/SCC-200026650
- T.S Jin.; J. S. Zhang.; A.Q.Wang.; T.S. Li, Synth. Commun., 2004, 34(14), 2611-2616 https://doi.org/10.1081/SCC-200027995
- S. H. Wang.; Z. J. Ren.; W. G. Cao.; W.Q. Tong., Synth.Commun., 2001, 2001(31), 673-677. https://doi.org/10.1081/SCC-100103255
- a) Quintanilla P. D.; Sanchez A.; delHierro I.; FaJardo M.; Sierra I. *J. Colloid. Interface Sci.*, **2007**, *313*(2), 551-562 https://doi.org/10.1016/j. jcis.2007.04.063 b) Renaudin S. G.; Gaslain F.; Marichal C.; Lebeau B.; Schneider R.; Walcarius A.; *New J. Chem.*, **2009**, *33*, 528-537

https://doi.org/10.1039/B811780B

- 11. Mureseanu M.; Reiss A.; Parvulescu V.; Stefanescu I.; David E., *Revista Chim.*, **2007**, *58*, 502-506 https://doi.org/10.37358/Rev.Chim.1949
- 12. Bagshaw S. A.; Prouzet E.; Pinnavaia T. *J. Science.*, **1995**, *269*, 1242-1244 https://doi. org/10.1126/science.269.5228.1242
- Prouzet E.; Pinnavaia T., J. Angew. Chem. Int. Edit., 1997, 36, 516-518 https://doi. org/10.1002/anie.199705161
- 14. Zaporohets O. A.; Gover O. M.; Sukhan V. V., *Russ. Chem. Rev.*, **1997**, *66*, 613-636 https:// doi.org/10.1070/RC1997v066n07AB EH000305
- Tong A.; Akama Y.; Tanaka S., *Analyst.*, **1990**, *115*, 947-949 https://doi.org/10.1039/AN9901500947
- 16. Kocjan R.; *Micro chim. Acta.*, **1999**, *131*,153-158.https://doi.org/10.1007/s006040050021
- a) Kim Yi J. S.; *J. Sep. Sci. Technol.*, **1999**, 34, 2957-2971. https://doi.org/10.1081/SS-100100815 b) Prado A. G. S.; Airoldi C., *Anal. Chem. Acta.*, **2001**, *432*(2), 201-211 http:// dx.doi.org/10.1016/S0003-2670(00)01372-6
- 18. Lee B. I.; Paik U., *J. Mater. Sci.*, **1992**, *27*, 5692-5700 https://doi.org/10.1007/BF01119724
- 19. Trans P.; Denoyel, R. *Langmuir.*, **1996**, *12*, 2781-2784 https://doi.org/10.1021/la950768a
- 20. Van der Voort P.; Vansant E. F., *Polish J. Chem.*, **1997**, *71*, 550-567 https://biblio.ugent.be/publication/346010
- Pyell U.; Stork, G., *Fresenius J Anal Chem.*, 1992, *342*, 281-286 https://doi.org/10.1007/ BF00322170
- 22. Kale N. V.; Salve S. P.; Karale B. K.; Mhaske S.D.; Dare S.B.; Athare A.E.; Takate S.J., *Orient. J. Chem.*, **2021**, *37*(4), 891-899. http:// dx.doi.org/10.13005/ojc/370417
- 23. Khare R.; Pandey J., Smriti S.; Rupanwa R., Orient. J. Chem., **2019**, *35*(1), 423-429.http:// dx.doi.org/10.13005/ojc/350154
- 24. Pippal P.; Singh P. P., *Orient J. Chem.*, **2017**, *33*(4) 1736-1743 http://dx.doi.org/10.13005/ojc/330418