

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

www.orientjchem.org

ISSN: 0970-020 X CODEN: OJCHEG 2014, Vol. 30, No. (4): Pg. 1989-1992

NaBH₄/(NH₄)₂SO₄: A Convenient System for Reduction of Carbonyl Compounds to their Corresponding Alcohols in wet-THF

SABER AKBARZADEH, DAVOOD SETAMDIDEH*and MOHAMMAD ALIZADEH HEDAYATI

Department of Chemistry, Faculty of Sciences, Ahar Branch, Islamic Azad University, Ahar. Iran. *Corresponding author E-mail: d.setamdideh@iau-mahabad.ac.ir

http://dx.doi.org/10.13005/ojc/300461

(Received: September 30, 2014; Accepted: November 03, 2014)

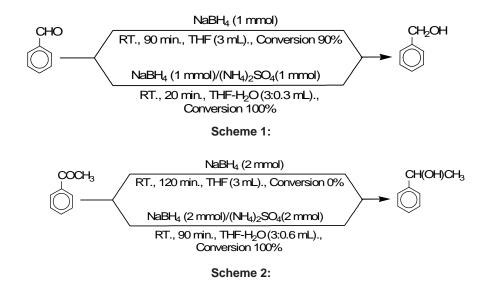
ABSTRACT

NaBH₄ (1-2 equivalents) in the presence of (NH₄)₂SO₄ (1-2 equivalents) reduces varieties of organic carbonyl compounds such as aldehydes, ketones and á,â-unsaturated carbonyl compounds to their corresponding alcohols. Reduction reactions were carried out in THF-H₂O in high to excellent yields of products.

Key words: NaBH₄, Reduction, Carbonyl compounds, (NH₄)₂SO₄.

INTRODUCTION

Preparation of alcohols from the reduction of carbonyl functional groups are importance in organic chemistry ¹ and a large number of methods including catalytic reduction ², hydride homogeneous catalysis ³, heterogeneous catalysis systems ⁴ and transfer reagents ⁵ have been reported to be effective towards carbonyl compounds reduction. But, most chemists employ lithium aluminum hydride (LiAIH₄) or sodium borohydride (NaBH₄). Controlling the reducing power of NaBH₄ has been achieved by different types of modifications ⁶⁻¹³. A literature review also reveals that the reduction of carbonyl compounds can be achieved by NaBH₄ in the presence of mineral protic solids or under wet conditions with some limitations. In continuing our efforts for the development of new reducing systems, ¹⁴ we decided to investigate the reducing properties of NaBH₄ in the presence of $(NH_4)_2SO_4$ as the coreagent for the reduction of a variety of carbonyl compounds. We now report the results of a parallel investigation of the role of $(NH_4)_2SO_4$ in the reduction of carbonyl compounds to their corresponding alcohols. Former, $(NH_4)_2C_2O_4$ has been proposed as a co-reactant.


RESULTS AND DISCUSSION

benzaldehyde as a model compound has been reduced with one molar equivalent of NaBH₄ in THF-H₂O (3:0.3 mL) within 20 in the presence of 1 molar equivalent of $(NH_4)_2SO_4$ at room temperature as shown in scheme 1.

The efficiency of this protocol was examined by the reduction of a variety of aldehydes. All reductions were completed within 20-80 minutes as shown in table 1, entries 1-7. The molar ratio of NaBH₄ is not different according to the nature of the substrates. 1 molar equivalents of NaBH₄ and 1 molar equivalents of $(NH_4)_2SO_4$ per one equivalents of the substrate were sufficient to complete

conversion of aldehydes to the corresponding alcohols in excellent yields (91-96%).

Our next attempt was the reduction of ketones to the corresponding secondary alcohols with the NaBH₄/(NH₄)₂SO₄ system. We optimized the reaction conditions with the reduction of the model compound acetophenone by NaBH₄/(NH₄)₂SO₄ under different conditions. Reduction of ketones was obtained with this reducing system, but due to the lower reactivity of ketones relative to aldehydes, the reduction require higher molar amounts of NaBH₄ & (NH₄)₂SO₄. The reduction reactions were performed with 2 molar amounts of NaBH₄ in presence of 2 molar amounts of (NH₄)₂SO₄ at room temperature in wet-THF as shown in scheme 2.

All reductions were completed within 90-120 minutes with high to excellent yields (94-97%) as shown in table 1, entries 8-14.

The mechanism for the influence of $(NH_4)_2SO_4$ is not clear, but we observed that with the addition of $(NH_4)_2SO_4$ hydrogen gas slowly is liberated *in situ*. Hydrogen gas generation seems to be directly related to the solubility of the NaBH₄ and $(NH_4)_2SO_4$ in the reaction solvent. Because water causes an increase in solubility of the NaBH₄ & $(NH_4)_2SO_4$, so hydrogen gas generation increase dramatically.

EXPERIMENTAL

General

All substrates and reagents were purchased from commercially sources with the best quality. IR and ¹H NMR spectra were recorded on PerkinElmer FT-IR RXI and 300 MHz Bruker spectrometers, respectively. The products were characterized by their ¹H NMR or IR spectra and comparison with authentic samples (melting or boiling points). Organic layers were dried over anhydrous sodium sulfate. All yields referred to isolated pure products. The purity of products was determinate by TLC and ¹H NMR. Also, reactions

1990

Entry	Aldehydes	Products	Time/min.	Yield%
1 ª	banzaldabuda	benzyl alcohol	20	96
•	benzaldehyde	,		
2ª	4-bromobenzaldehyde	4-bromobenzyl alcohol	30	96
3ª	4-methylbenzaldehyde	4-methylbenzyl alcohol	60	96
4 ^a	4-nitrobenzaldehyde	4-nitrobenzyl alcohol	30	93
5ª	2-methoxylbenzaldehyde	2-methoxylbenzyl alcohol	60	93
6ª	4-methoxybenzaldehyde	4-methoxybenzyl alcohol	80	95
7 ^a	3-methylbenzaldehyde	3-methylbenzyl alcohol	30	95
8 ^b	acetophenone	1-phenylethanol	90	96
9 ^b	4-methylacetophenone	1-(4-methylphenyl)ethanol	120	94
10 ^b	4-methoxyacetophenone	1-(4-methoxyaphenyl)ethanol	120	97
11 ^b	4-methoxybenzophenone	(4-methoxyphenyl)(phenyl)methanol	120	95
12 [⊳]	Benzophenone	diphenylmethanol	110	95
13 [⊳]	9 <i>H</i> -fluoren-9-one	9H-fluoren-9-ol	120	95
14 ^b	4-phenylcyclohexanone	4-phenylcyclohexanol	90	97

Table 1: The Reduction of Carbonyl Compounds by NaBH, ((NH,), SO, in wet-THF at Room Temperature

^a The reaction has been carried out by NaBH₄/(NH₄)₂SO₄ (1/1 mmol) in THF-H₂O (3:0.3 mL). ^b The reaction has been carried out by NaBH₄/(NH₄)₂SO₄ (2/2 mmol) THF-H₂O (3:0.6 mL). ^c Yields refer to isolated pure products.

are monitoring over silica gel 60 $\mathrm{F}_{_{254}}$ aluminum sheet.

A typical procedure for Reduction of aldehydes with the NaBH₄/(NH₄)₂SO₄ system in wet-THF

In a round-bottomed flask (10 mL) equipped with a magnetic stirrer, a solution of benzaldehyde (0.106 g, 1 mmol) in THF-H₂O (3:0.3 mL) was prepared. To this solution, NaBH₄ (0.038 g, 1 mmol) and then $(NH_4)_2SO_4$ (0.132 g, 1 mmol) was added and the mixture was stirred at room temperature for 20 minutes. Completion of the reaction was monitored by TLC (Hexane/EtOAc: 9/ 1). Then, water (5 mL) was added to the reaction mixture and it was stirred for an additional 1 minute. The mixture was extracted with CH₂Cl₂ (3×10 mL) and dried over anhydrous Na₂SO₄. Evaporation of the solvent and a short column chromatography of the resulting crude material over silica gel (Hexane/ EtOAc: 9/1) afforded the pure liquid benzyl alcohol (0.104 g, 96%, Table 1, entry 1).

A typical procedure for reduction of ketones with the NaBH₄/(NH₄)₂SO₄ system in wet-THF

In a round-bottomed flask (10 mL) equipped with a magnetic stirrer and a condenser, a solution of acetophenone (0.12 g, I mmol) in THF-

 H_2O (3:0.6 mL) was prepared and NaBH₄ (0.038 g, 1 mmol) and (NH₄)₂SO₄ (0.234 g, 2 mmol) were added and the mixture was stirred at room temperature for 90 minutes. TLC monitored the progress of the reaction (Hexane/EtOAc: 9/1). After completion of the reaction distilled water (5 mL) was added to the reaction mixture and it was stirred for an additional 1 minute. The mixture was extracted with CH_2CI_2 (3×10 mL) and dried over anhydrous sodium sulfate. Evaporation of the solvent and short column chromatography of the resulting crude material over sil-ica gel (Hexane/ EtOAc: 9/1) afforded the pure crystals of 1phenylethanol (0.11 g, 96% yield, Table 1, entry 8).

CONCLUSION

In conclusion, we have shown that the combination system of $NaBH_4/((NH_4)_2SO_4$ in wet-THF reduces a variety of carbonyl compounds to their corresponding alcohols in high to excellent yields at room temperature. Reduction reactions were carried out with 1-2 molar equivalents of $NaBH_4$ in the presence of 1-2 molar equivalents of $(NH_4)_2SO_4$. All reductions were accomplished with high efficiency of the reductions, using the appropriate molar ratios of $NaBH_4$ and $(NH_4)_2SO_4$. shorter reaction times and easy work-up procedure. Therefore this new protocol for reduction of carbonyl compounds could be a useful addition to the present methodologies.

ACKNOWLEDGMENTS

The authors gratefully appreciated the financial support of this work by the research council of Islamic Azad University branch of Ahar.

REFERENCES

- 1. Ji, H. B. and She, Y. B. *Green Oxidation and reduction*, China Petrochemical Press, Beijing, 2005.
- 2. Larock, R. C. Comprehensive Organic Transformations: a guide to functional group preparations, 2nd Ed.; Wiley-VCH, New York, 1999.
- 3. Brandt, P.; Roth, P.; Anderssson, P.G., *J. Org. Chem.* **2004**, *69*, 4885-4890.
- 4. Liu, P. N.; Gu, P. M.; Wang, F. D.; Tu, Y. Q., *Org. Lett.* **2004**, *6*, 169-172.
- Mohanazadeh F.; Hosini, M.; Tajbakhsh, M., Monatshefe fur Chemie. 2005, 136, 2041-2043.
- Hudlicky, M. Reductions in Organic Chemistry, Ellis Horwood Ltd. Chichester, 1984.
 (b) Seyden-Penne, J. Reductions by the

Alumino and Borohydrides in Organic Synthesis, 2nd Ed.; Wiley-VCH, New York, 1997.

7. Narayana, C.; Periasamy, M. Tetrahedron Lett.

1985, 26, 1757-1760.

- 8. (a) Ranu, B. C. Synlett. 1993, 885-892.
 (b) Narasimhan. S; Balakumar, A. Aldrichimica Acta. 1998, 31, 19-26.
 (c) Soai, K.; Ookawa, A. J. Org. Chem. 1986, 51, 4000-4005.
- Firouzabadi, H.; Afsharifar, G. R. Bull. Chem. Soc. Jpn. 1995, 68, 2595-2602.
- Blough, B. E.; Carroll, F. I. *Tetrahedron Lett.* 1993, 34, 7239-7242.
- 11. Zeynizadeh, B.; Setamdideh, D. Asian J. *Chem.* **2009**, *21*, 3603-3610.
- 12. Zeynizadeh, B.; Setamdideh, D. Asian J. *Chem.* **2009**, *21*, 3588-3602.
- 13. Zeynizadeh, B.; Setamdideh, D *J. Chin. Chem. Soc.* **2005**, *5*2, 1179-1184..
- 14. (a) Zeynizadeh, B.; Setamdideh, D Zeit. Natur. 2006, 61b, 1275-1281.
 (b) Zeynizadeh, B.; Setamdideh, D Synth. Commun. 2006, 36, 2699-2704.
- 15. Setamdideh. D.; Ghahremani, S. S. Afr. J. *Chem.* **2012**, 65, 91-97.

1992