

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

ISSN: 0970-020 X CODEN: OJCHEG 2014, Vol. 30, No. (4): Pg. 1823-1840

www.orientjchem.org

NMR and NBO Investigation of Dopamine Properties in Point View of Brain activities

M. MEHDIZADEH BARFORUSHI*

Department of Chemistry, College of Basic Sciences, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran. *Corresponding author E-mail: Maryam.mehdizadeh.b@gmail.com

http://dx.doi.org/10.13005/ojc/300443

(Received: September 25, 2014; Accepted: November 10, 2014)

ABSTRACT

Dopamine dosage is the main reason for panic, fear as well as exhilaration. In this study, it has been shown that the electron negativity of CI, Br and F ions plays an important role in binding of these ions to dopamine receptors. The nervous quartiles effective drugs have been calculated via NMR and NBO approach. Moreover, the HOMO-LUMO energy gap of dopamine and its halogenated derivatives have been calculated at the B3LYP/6-31G* level. These calculations are so important in order to investigate many other diseases since it can exhibit the ability and relation between electron acceptor represents and electron donation in any brain activities. Finally, the accuracy of calculated result has confirmed by comparing the results to the experimental data.

Key words: Dopamine; NMR; NBO; Brain activity.

INTRODUCTION

Dopamine is a nervous transporter which has a key role in the central nervous system. This nervous transporter has an important role in the normal functions of brain such as learning, memorizing (storage ability in mind), controlling the noise level and adjusting character. Also do-pamine is the brain's Cortex and this Cortex is responsible for human behaviors¹⁻⁹.

Through the decades, dopamine has been always attracted by scientists due to important roles in many diseases such as schizophrenia, Parkinson's and depression (e.g. increase or decrease dopamine dosage in the body can cause disorder dopamine depression¹⁰. However the structure and reactivity of this molecule has not been investigated thoroughly¹¹⁻¹³.

Understanding the structure, reactivity and stability of dopamine derivateis important for understanding the acting mechanism in the body sincethey determine the bonding ability to receptors. In this paper, the effect of electronegativity of atoms in the binding ability to receptors has been investigated in order to improve drug treatment of this common drug. For this purpose, the energy levels of dopamine molecules and electronegativity atoms such as chlorine, fluorine, bromine ions are calculated via NMR and NBO method¹⁴⁻¹⁷.

Computational Methods

The structures of dopamine and halogenated derivatives were designed primarily using Chem. Bio Draw 12.0 (Scheme 1). The geometry of the systems has been optimized at the B3LYP /6-31G* computational level [18-20]. The optimization, NBO and NMR calculations of all systems are done by density functional theory (DFT) using B3LYP method and the standard 6-31G* basis set, by Gaussian09 suit of programs (Gaussian 09, Revision A.02) in the gas phase²¹⁻²⁴.

Mullikan charges on the atoms, dipole moments, and geometry parameters such as bond lengths were also determined by the same method. The energy barrier for rotation around the tow bond in the dopamine moleculeis also assessed and the results are represented in Table 1 and Fig.1 ²⁵⁻²⁷.

RESULTS AND DISCUSSION

Energies

The E_{HOMO} , E_{LUMO} and HOMO-LUMO energygap (Eg; Δ) of dopamine and halogenated derivatives were calculated using the B3LYP method and 6-31G⁻ basis set and the results are presented in Table 4-9 and Table S3-S8

(Supplementary materials)²⁸.

The energy levels are so important since the energy level for LUMO as an electron acceptor represents the ability to obtain an electron and the energy level of HOMOrepresentsthe ability to donate an electron. As shown in Table 4-9, the(CI)₂-Dop moleculeh as the lowest energy gap is -175.7456 Kcal/mol and the dopamine molecule has the largest energy gap is-130.9417 Kcal/mol²⁹⁻³¹.

Geometries

The structures of dopamine and halogenated derivatives were designed primarily using of Chem. Bio Draw 12.0 in scheme 1 and the obtained results were compared to other derivate at the end. The optimization, NBO and NMR calculations of the whole systems are done by density functional theory (DFT) using B3LYP method and the standard 6-31G basis set using Gaussian 09. The optimized geometrical parameters, such as Dipole moment (Debye), energy of structure formation (HF;kcal/mol) and enthalpies (Δ H), Gibbs free energy (ΔG) are listed in Table 4-9.As shown in Table 4-9, the (Br)2 - Dop moleculehasthe lowest ΔG is 72.059013Kcal/mol and the dopamine molecule has the largest ΔG is 91.416315 Kcal/mol. The molecule has the lowest ∆H is 102.29162Kcal/ mol and the dopamine molecule has the largest ΔH is 122.32726 Kcal/mol.

Rout 1(C ₆ -C ₁ -O	0 ₁₀ -H ₂₁)	Rout 2(C ₃ -C ₂ -O ₁₁ -	·H ₂₂)
Angstroms and Degrees	E(k(cal/mol)	Angstroms and Degrees	E(k(cal/mol)
-15.2	-2.32175	-166.77	-8.09475
-0.202	-1.8825	13.22	-2.259
14.8	-2.32175	28.22	-1.69425
29.8	-1.69425	43.22	-0.94125
44.8	-0.94125	58.22	-0.251
59.8	-0.251	73.22	0
74.8	0	88.22	-0.31375
89.8	-0.43925	103.22	-1.19225
104.8	-1.44325	118.22	-1.8825
119.8	-3.07475	133.22	-4.518
134.8	-4.95725	148.22	-6.4005
149.8	-6.83975	163.22	-7.781
164.8	-8.22025	178.22	-8.4085

Table 1: The calculated energy barrier of rotation around bonds $C_1 - O_{10}$ and $C_2 - O_{11}$

Structure	Atom number	σ11	σ22	σ33	σiso	Δσ
(OH)2-DOP*	C1	-6.7203	35.6456	129.586	52.8371	115.1234
(F)2-DOP*		-17.4526	17.9589	78.9894	26.4985	78.7362
F(OH)-DOP*		-16.694	22.9613	76.7965	27.68793333	73.66285
(CI)2-DOP*		-22.6423	57.3594	114.0318	49.58297	96.67325
CI(OH)-DOP*		3.7164	62.4586	123.6434	63.2728	90.5559
(Br)2-DOP*		-25.6558	56.5618	110.3614	47.08913333	94.9084
Br(OH)-DOP*		11.7828	69.3353	126.8483	69.32213333	86.28925
(OH)2-DOP*	C2	-4.2227	35.8531	130.5894	54.07326667	114.7742
(F)2-DOP*		-12.7193	18.0642	79.269	28.2	76.59
F(OH)-DOP*		-8.3722	24.9618	21.9099	12.83316667	13.6151
(CI)2-DOP*		-17.9397	59.6516	114.7442	52.15203	93.88825
CI(OH)-DOP*		8.0263	26.0354	122.4972	52.1863	105.4664
(Br)2-DOP*		-20.9239	59.6319	111.1917	49.96656667	91.8377
Br(OH)-DOP*		29.0368	34.451	131.1433	64.87703	99.3994
(OH)2-DOP*	C8	19.9281	32.2393	170.3295	74.16563333	144.2458
(F)2-DOP*		129.9135	36.9611	64.7332	143.86	31.29
F(OH)-DOP*		130.0042	36.7783	64.3277	77.03673333	-19.06355
(CI)2-DOP*		129.945	36.9932	164.9629	110.6337	81.4938
CI(OH)-DOP*		9.7885	36.8712	164.4894	70.38303	141.1596
(Br)2-DOP*		129.7864	36.9806	165.0564	110.6078	81.6729
Br(OH)-DOP*		20.2364	31.8799	170.9779	74.36473333	144.91975

Table 2: Computed chemical shifts for selected atoms

The isotropic chemical shielding $\sigma_{_{\rm ISO}}$ parameters are average of parameters, $\sigma_{_{11}},\sigma_{_{22}}$ and $\sigma_{_{33}}$ > 33 > 22 >11 *Dop=dopamine

Table 3: Computed chemical shifts for selected atoms

Structure	Atom number	σ11	σ22	σ33	σiso	Δσ
(OH)2-DOP*	N	95.9945	29.4999	242.7177	122.7373667	179.9705
(F)2-DOP*		191.716	25.3634	41.97	219.68	33.43
F(OH)-DOP*		190.9571	25.0724	41.8411	85.95686667	-66.17365
(CI)2-DOP*		191.5971	25.4218	241.9345	152.9845	133.4251
CI(OH)-DOP*		0.6262	25.0737	241.9851	89.22833333	229.13515
(Br)2-DOP*		191.5634	25.4276	241.9487	152.9799	133.4532
Br(OH)-DOP*		96.2871	29.4256	243.2144	122.9757	180.3581
(OH)2-DOP*	H19	24.7994	28.992	41.3526	31.71467	14.4569
(F)2-DOP*		23.7725	29.4723	40.0824	31.1	13.46
F(OH)-DOP*		23.8236	29.5709	40.1099	31.16813333	13.41265
(CI)2-DOP*		23.7761	29.5058	40.1742	31.15203333	13.53325
CI(OH)-DOP*		3.8093	29.5853	40.1726	24.5224	23.4753
(Br)2-DOP*		23.7379	29.4884	40.2316	31.15263	13.61845
Br(OH)-DOP*		24.719	28.9215	41.4097	31.6834	14.58945
(OH)2-DOP*	H20	25.6399	31.2533	39.7743	32.2225	11.3277
(F)2-DOP*		25.2384	31.3865	38.977	31.86	10.66
F(OH)-DOP*		25.2569	31.4527	38.9689	31.89283333	10.6141
(CI)2-DOP*		25.2443	31.4942	38.9987	31.9124	10.62945
CI(OH)-DOP*		5.2442	31.5347	38.9681	25.249	20.57865
(Br)2-DOP*		25.2012	31.5541	38.9776	31.91097	10.59995
Br(OH)-DOP*		25.4854	31.2492	39.7694	32.168	11.4021

The isotropic chemical shielding $\sigma_{_{iso}}$ parameters are average of parameters, $\sigma_{_{11}}, \sigma_{_{22}}$ and $\sigma_{_{33}}$ > 33 > 22 >11 *Dop=dopamine

Table	4: Occupancy	/ of natural orbi	itals (NBOs) ar	nd hybrids of	dopamine calc	ulated by the E	33LYP meth	od with 6-310	3*(d) basis	set
Symbol	charge of nitrogen	QG	ЧΔ	Energy of band gap (kcal/mol)	E (kcal/mol)	Dipole Moment(D	NBOa	Occupancy	ш	Length (Å)
(OH)2-DOP*	-0.714676	91.416315	122.32726	-130.9417	324198.48	1.3422	σ(C₁-O₁)	1.99428	-0.89263	1.367773
							σ(C ₂ -O ₁₁)	1.99428	-0.89158	1.368191
							σ(C ₈ -N ₉)	1.99352	-0.69245	1.466979
							σ(N ₉ -H ₁₉)	1.98953	-0.59715	1.018841
							σ(N ₉ -H ₂₀)	1.99081	-0.59666	1.019841
							σ(o ₁₀ -H ₂₁)	1.98816	-0.72203	0.969679
							σ(o ₁₁ -H ₂₂)	1.98812	-0.72117	0.969655
							CR(1) N9	1.99967	-14.15973	
							CR(1) 010	1.99978	-18.97620	
							CR(1) 011	1.99978	-18.97565	
							LP(1) N9	1.96300	-0.29819	
							LP(1) 010	1.98058	-0.58666	
							LP(2) 010	1.87668	-0.30619	
							LP(1) 011	1.98052	-0.58625	

BARFORUSHI, Orient. J. Chem., Vol. 30(4), 1823-1840 (2014)

lable 5: 0(ccupancy of n	atural orbitals	(NBOS) and h	/brids of fluor	'ine derivatives	calculated by	the B3LYP n	nethod with	6-31 G°(d) ba	ISIS Set
Symbol	charge of nitrogen	ΔG	Ч	Energy of band gap (kcal/mol)	E (kcal/mol)	Dipole Moment(D	NBOa	Occupancy	ш	Length (Å)
(F)2-DOP*	-0.715220	74.983818	103.11933	-140.8939	-354340.1	4.5494	$\begin{array}{c} \sigma(C_1-F_{10})\\ \sigma(C_2-F_{11})\\ \sigma(C_8-N_9)\\ \sigma(N_9-H_{92})\\ \sigma(N_9-H_{22})\\ \sigma(N_9-H_{22})\\ \sigma(N_1-H_{22})\\ \sigma($	1.99254 1.99255 1.99367 1.98887 1.98974 1.99964 1.99997 1.99365	-0.81360 -0.81275 -0.81275 -0.72093 -0.60580 -0.60641 -14.17086 -24.46188 -24.46132 -0.30046	1.490790 1.490832 1.451545 1.028165 1.028052 -
							LP(1) F10 LP(2) F10 LP(3) F10 LP(3) F11 LP(1) F11 LP(2) F11	1.99189 1.97365 1.94114 1.99191 1.97357	-1.08634 -0.38268 -0.37902 -1.08530 -0.38209	
F(OH)-DOP*	-0.715003	83.055426	111.34841	-131.2805	-339269.8	4.0068	$\begin{array}{c} C(C_1,F_{10})\\ \mathfrak{\sigma}(C_2,O_{11})\\ \mathfrak{\sigma}(C_8,N_9)\\ \mathfrak{\sigma}(N_9,H_{22})\\ \mathfrak{\sigma}(N_9,H_{22})\\ \mathfrak{\sigma}(O_{11},H_{22})\\ \mathfrak{\sigma}(O_{11},H_{22})\\ \mathfrak{C}(R(1) N9\\ \mathfrak{C}(R(1) N9\\ \mathfrak{C}(R(1) N9\\ \mathfrak{C}(R(1) N9\\ C(R(1) N9\\ C(1) C) C(1) C(1) C) C(1) C(1) C) C(1) C(1) C) C(1) C) C(1) C) C(1) C) C(1) C) C) C) C(1) C) $	1.99517 1.99517 1.99346 1.99346 1.98944 1.99967 1.99967 1.99978 1.99978 1.99978 1.99978 1.99978 1.99978 1.99978 1.99978	-0.37020 -0.99874 -0.90590 -0.69512 -0.59858 -0.73264 -14.16175 -24.43437 -14.16175 -24.43437 -14.16175 -24.43437 -14.16175 -24.43437 -14.16175 -24.43437 -14.16175 -24.43437 -0.39358	1.348276 1.365509 1.466480 1.018767 1.019799 0.969690 - - -
							LP(1) 011 LP(1) 011 LP(2) 011	1.92030 1.98027 1.87676	-0.39107 -0.59669 -0.31674	

Table 6: Oc	scupancy of na	tural orbitals ((NBOs) and hy	/brids of chloi	rine derivatives	s calculated by	y the B3LYP r	nethod with	6-31G*(d) b	asis set
Symbol	charge of nitrogen	QG	ЧΔ	Energy of band gap (kcal/mol)	E (kcal/mol)	Dipole Moment(D	NBO a	Occupancy	ш	Length (Å)
(CI)2-DOP*	-0.715383	73.1948	102.2916	-175.7456	-806600.9	3.8253	م(C,-Cl ₁₁) م(C -Cl	1.98950 1.98955	-0.71181 -0.71140	1.765766 1.765634
							σ(C _a -N _a)	1.99372	-0.71906	1.451624
							σ(N ₉ -H ₁₉)	1.98893	-0.60413	1.028213
							σ(N ₉ -H ₂₀)	1.98975	-0.60476	1.028091
							CR(1) N9	1.99964	-14.16918	
							CR(1) CI10	2.00000	-100.11360	
							CR(2) CI10	1.99979	-10.60753	
							CR(3) CI10	1.99992	-7.22659	
							CR(4) CI10	1.99998	-7.22023	
							CR(5) CI10	1.99999	-7.21960	
							CR(1) CI11	2.00000	-100.11534	
							CR(2) CI11	1.99979	-10.60669	
							CR(3) CI11	1.99995	-7.22386	
							CR(4) CI11	1.99995	-7.22419	
							CR(5) CI11	1.99999	-7.22024	
							LP(1) N9	1.96370	-0.29880	,
							LP(1) CI10	1.99350	-0.91875	
							LP(2) CI10	1.97008	-0.32085	
							LP(3) CI10	1.92962	-0.31899	
							LP(1) CI11	1.99348	-0.91970	
							LP(2) CI11	1.97021	-0.32132	·
							LP(3) CI11	1.92814	-0.31955	ı

Table 7: Oc	cupancy of na	atural orbitals (NBOs) and h	ybrids of chlor	rine derivatives	calculated by	/ the B3LYP n	nethod with	6-31G*(d) b	asis set
Symbol	charge of nitrogen	QG	Ч	Energy of band gap (kcal/mol)	E (kcal/mol)	Dipole Moment(D	NBOª	Occupancy	ш	Length (Å)
CI(OH)-DOP*	-0.715707	82.385877	111.34527 -	131.72603852	8 -565401.1	3.8764	σ(C ₁ -Cl ₁₁)	1.98873	-0.70060	1.764012
							α(C₂-O₁₀) σ(C゚-N゚)	1.99426 1.99377	-0.85575 -0.71415	1.412481 1.451525
							σ(N _g -H _{1g})	1.98909	-0.59970	1.028174
							σ(N _g -H ₂₀)	1.98975	-0.60025	1.028130
							σ(o ₁₀ -H ₂₁)	1.98795	-0.71680	0.991190
							CR(1) N9	1.99964	-14.16442	
							CR(1) O10	1.99980	-18.99604	
							CR(1) CI11	2.00000	-100.08973	,
							CR(2) CI11	1.99979	-10.61420	
							CR(3) CI11	1.99994	-7.21411	,
							CR(4) CI11	1.99996	-7.21266	,
							CR(5) CI11	1.99999	-7.20958	,
							LP(1) N9	1.96402	-0.29433	,
							LP(1) 010	1.98244	-0.60464	,
							LP(2) 010	1.88683	-0.31522	ı
							LP(1) CI11	1.99388	-0.90538	ı
							LP(2) CI11	1.96992	-0.31106	ı
							LP(3) CI11	1.93318	-0.30943	

S
×
ati
Š
ŝri
ð
e
ij.
Ľ
ñ
f b
0
ъ В
Ţ.
ą
Ē
p
ar
s)
Ő
B
٤
S
ta
iq.
P
a
n
ati
Ê
ę
Ň
ĕ
oa
<u>n</u>
8
0
ö
<u>e</u>
g
Ë

Symbol	charge of nitrogen	ΔG	Ч	Energy of band gap (kcal/mol)	E (kcal/mol)	Dipole Moment(D	NBOª	Occupancy	ш	Length (Å)
(Br)2-DOP^*	-0.715441	72.059013	105.04574	-133.8847	-3456570	3.4846	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \sigma(G_{1}, h_{1}) \\ \sigma(G_{1}, h_{2}) \\ \sigma(G_{2}, h_{$	$\begin{array}{c} 1.985553\\ 1.9885753\\ 1.9885753\\ 1.9885753\\ 1.9885753\\ 1.9999976\\ 1.9999999\\ 1.9999999\\ 1.9999999\\ 1.9999999\\ 1.9999999\\ 1.9999999\\ 1.9999999\\ 1.9999999\\ 1.9999999\\ 1.9999999\\ 1.9999999\\ 1.9999999\\ 1.9999999\\ 1.9999998\\ 1.99999998\\ 1.99999998\\ 1.99999998\\ 1.99999998\\ 1.999998\\ 1.999998\\ 1.999998\\ 1.999998\\ 1.99998\\ 1.99998\\ 1.99998\\ 1.99998\\ 1.99998\\ 1.99998\\ 1.99998\\ 1.99998\\ 1.99998\\ 1.9998\\ 1.9998$	-0.65158 -0.65260 -0.70342 -0.60584 -14.16868 -67554 -14.16868 -6.55396 -6.53335 -6.53335 -6.53335 -6.53335 -6.53335 -6.53335 -6.53335 -6.53335 -6.5294 -2.65294 -2.65294 -2.65294 -2.65294 -2.65294 -2.65295 -6.5296 -2.65294 -2.65294 -2.65234 -2.65234 -0.29197	1.903692 1.002276 1.018617 1.019651 1.019651
							LP(3) Br11	1.93271	-0.29245	

			ccupality of 11	מוחושו שוושו			וווופ מפוואמווא	20		
Symbol	charge of nitrogen	QG	Ч	Energy of band gap (kcal/mol)	E (kcal/mol)	Dipole Moment(D	NBOª	Occupancy	ш	Length (Å)
							σ(C,-Br,,)	1.98444	-0.63499	1.906622
							α(C ₂ -O ₁₀)	1.99462	-0.91537	1.362391
							σ(C ₈ -N ₉)	1.9934	-0.69646	1.466399
							σ(N ₉ -H ₁₉)	1.9894	-0.60025	1.018787
Br(OH)-DOP*	-0.715719	81.8983	113.7618	-166.013	-1890386	3.7584	σ(N ₉ -H ₂₀)	1.99075	-0.59973	1.019811
							σ(o ₁₀ -H ₂₁)	1.98841	-0.73754	0.969946
							CR(1) N9	1.99967	-14.163	ı
							CR(1) O10	1.99977	-18.9888	
							CR(1) Br11	0	-476.741	
							CR(2) Br11	1.99997	-67.5907	
							CR(3) Br11	1.99976	-8.65225	
							CR(4) Br11	1.99998	-56.383	
							CR(5) Br11	1.99992	-6.5152	
							CR(6) Br11	1.99998	-56.3825	
							CR(7) Br11	1.99993	-6.51377	
							CR(8) Br11	N	-56.3811	
							CR(9) Br11	1.99999	-6.51003	
							CR(10)Br11	1.99978	-2.64137	
							CR(11) Br11	1.99996	-2.6375	
							CR(12) Br11	1.99998	-2.63583	
							CR(13) Br11	1.99994	-2.64154	ı
							CR(14) Br11	1.99992	-2.63499	
							LP(1) N9	1.96266	-0.30132	
							LP(1) 010	1.9786	-0.59815	
							LP(2) 010	1.86962	-0.3204	
							LP(1)Br11	1.9953	-0.93367	
							LP(2)Br11	1.97324	-0.28394	ı
							LP(3)Br11	1.93939	-0.28138	ı

Table 8: Occupancy of natural orbitals (NBOs) and hybrids of bromine derivatives

BARFORUSHI, Orient. J. Chem., Vol. 30(4), 1823-1840 (2014)

		Table 9: C	ccupancy of n	natural orbitals	s (NBOs) and hy	/brids of bron	nine derivativ	/es		
Symbol	charge of nitrogen	ΔG	Ч	Energy of band gap (kcal/mol)	E (kcal/mol)	Dipole Moment(D	NBOª	Occupancy	ш	Length (Å)
							σ(C,-Br,,)	1.98444	-0.63499	1.906622
							σ(C ₂ -O ₁₀)	1.99462	-0.91537	1.362391
							σ(C _s -N _s)	1.9934	-0.69646	1.466399
							σ(N ₉ -H ₁₉)	1.9894	-0.60025	1.018787
Br(OH)-DOP*	-0.715719	81.8983	113.7618	-166.013	-1890386	3.7584	σ(N ₉ -H ₂₀)	1.99075	-0.59973	1.019811
							σ(o ₁₀ -H ₂₁)	1.98841	-0.73754	0.969946
							CR(1) N9	1.99967	-14.163	ı
							CR(1) O10	1.99977	-18.9888	ı
							CR(1) Br11	0	-476.741	ı
							CR(2) Br11	1.99997	-67.5907	ı
							CR(3) Br11	1.99976	-8.65225	ı
							CR(4) Br11	1.99998	-56.383	ı
							CR(5) Br11	1.99992	-6.5152	ı
							CR(6) Br11	1.99998	-56.3825	ı
							CR(7) Br11	1.99993	-6.51377	ı
							CR(8) Br11	0	-56.3811	ı
							CR(9) Br11	1.99999	-6.51003	ı
							CR(10)Br11	1.99978	-2.64137	ı
							CR(11) Br11	1.99996	-2.6375	ı
							CR(12) Br11	1.99998	-2.63583	ı
							CR(13) Br11	1.99994	-2.64154	·
							CR(14) Br11	1.99992	-2.63499	ı
							LP(1) N9	1.96266	-0.30132	ı
							LP(1) 010	1.9786	-0.59815	ı
							LP(2) 010	1.86962	-0.3204	ı
							LP(1)Br11	1.9953	-0.93367	I
							LP(2)Br11	1.97324	-0.28394	ı
							LP(3)Br11	1.93939	-0.28138	

BARFORUSHI, Orient. J. Chem., Vol. 30(4), 1823-1840 (2014)

Structure	Atom number	η	κ	Charge
(OH)2-DOP*	C1	0.552007	0.378372093	0.327738
(F)2-DOP*		0.674621696	0.48806174	0.581972
F(OH)-DOP*		0.807502696	0.151672095	0.310302
(CI)2-DOP*		1.241321	-0.17069	-0.07644
CI(OH)-DOP*		-1.6284	0.02036739	-0.111033
(Br)2-DOP*		1.299425551	-0.208929459	0.048784
Br(OH)-DOP* (OH)2-DOP* (F)2-DOP* F(OH)-DOP* (CI)2-DOP* CI(OH)-DOP* (Br)2-DOP* Br(OH) DOP*	C2	1.000457763 0.52375621 0.60278251 3.6724666 1.239633 -52.3018 1.315730904	-0.000343283 0.405457 0.595417964 -1.201564621 -0.16957 0.685351 -0.21947446 0.80305	0.047116 0.315797 0.003529 0.305575 -0.07595 0.362558 0.048189 0.228621
(OH)2-DOP*	C8	0.128023138	0.836289	-0.128391
(F)2-DOP*		-13.8256	-4.052946663	-0.340644
F(OH)-DOP*		7.335404476	-1.838942392	-0.133027
(Cl)2-DOP*		-1.710899479	6.308816348	-0.134595
Cl(OH)-DOP*		-67.0237	0.64987	-0.13307
(Br)2-DOP*		-1.70447	6.262591	-0.13434
Br(OH)-DOP*		0.1205167	0.845516994	-0.129605

Table S1: Com	puted chemic	al shifts for	selected	atoms

Table S2:	Computed	chemical	shifts fo	or selected	atoms

Structure	Atom number	η	κ	Charge
(OH)2-DOP*	Ν	-0.554212496	1.906395171	-0.714647
(F)2-DOP*		0.936090259	-3.280343256	-0.407913
F(OH)-DOP*		3.760213469	-1.224908125	-0.715729
(CI)2-DOP*		-1.86819	7.602459	-0.7154
CI(OH)-DOP*		-128.3092667	0.79741787	-0.715707
(Br)2-DOP*		-1.86735	7.594614	-0.71544
Br(OH)-DOP*		-0.55607	1.91013	-0.71502
(OH)2-DOP*	H19	0.43501	0.493439335	0.296342
(F)2-DOP*		0.634552	0.543629765	0.310717
F(OH)-DOP*		0.642747705	0.294216612	0.298807
(CI)2-DOP*		0.635069181	0.301175136	0.300622
CI(OH)-DOP*		10.1258	-0.417693114	0.298418
(Br)2-DOP*		0.633387	0.302703	0.300477
Br(OH)-DOP*		0.432076	0.496426	0.297998
(OH)2-DOP*	H20	0.743319474	0.20571089	0.290714
(F)2-DOP*		0.863861	0.199592525	0.2761
F(OH)-DOP*		0.875599438	0.096295216	0.293655
(CI)2-DOP*		0.881969434	0.091214448	0.294312
CI(OH)-DOP*		12.5714	-0.55916	0.293424
(Br)2-DOP*		0.899	0.077713	0.294229
Br(OH)-DOP*		0.758255	0.192971	0.293085

Symbol	NBO a	Occupancy	Hybrid
(OH)2-DOP*	$ \begin{array}{c} \sigma({\rm C_1-O_{10}}) \\ \sigma({\rm C_2-O_{11}}) \\ \sigma({\rm C_8-N_9}) \\ \sigma({\rm N_9-H_{19}}) \\ \sigma({\rm N_9-H_{20}}) \\ \sigma({\rm o_{10}-H_{21}}) \end{array} $	1.99428 1.99428 1.99352 1.98953 1.99081 1.98816	$\begin{array}{c} 0.5771(\text{sp}^3)_{\text{C1}} + 0.8166(\text{sp}^{1.93})_{\text{O10}} \\ 0.5774(\text{sp}^{2.98})_{\text{C2}} + 0.8165(\text{sp}^{1.94})_{\text{O11}} \\ 0.6368(\text{sp}^{3.17})_{\text{C8}} + 0.7710(\text{ sp}^{2.19})_{\text{N9}} \\ 0.8299(\text{sp}^{3.23})_{\text{N9}} + 0.5579(\text{s})_{\text{H19}} \\ 0.8282(\text{sp}^{3.28})_{\text{N9}} + 0.5605(\text{s})_{\text{H20}} \\ 0.8625(\text{sp}^{3.92})_{\text{O10}} + 0.5060(\text{s})_{\text{H21}} \end{array}$
	$ \begin{aligned} &\sigma(o_{11}-H_{22}) \\ &CR(1) \ N9 \\ &CR(1) \ O10 \\ &CR(1) \ O11 \\ &LP(1) \ N9 \\ &LP(1) \ O10 \\ &LP(2) \ O10 \\ &LP(1) \ O11 \end{aligned} $	1.98812 1.99967 1.99978 1.99978 1.96300 1.98058 1.87668 1.98052	0.8626(sp ^{3.92}) ₀₁₁ +0.5059(s) _{H22} s s s sp ^{3.62} sp ^{1.19} p sp ^{1.19}

Table S3: Occupancy of natural orbitals (NBOs) and hybrids of dopamine
calculated by the B3LYP method with 6-31G*(d) basis set

Table S4: Occupancy of natural orbitals (NBOs) and hybrids of fluorine
derivativescalculated by the B3LYP method with 6-31G*(d) basis set

Symbol	NBO a	Occupancy	Hybrid
(F)2-DOP*	σ(C ₁ -F ₁₀)	1.99254	0.5385(sp ^{3.64}) _{c1} +0.8426(sp ^{3.98}) _{E10}
	$\sigma(C_2 - F_{11})$	1.99255	0.5388(sp ^{3.62}) _{C2} +0.8424(sp ^{3.98}) _{F11}
	$\sigma(C_{s} - N_{o})$	1.99367	0.6402(sp ^{3.12}) _{C8} +0.7682(sp ^{2.08}) _{N9}
	$\sigma(N_9 - H_{19})$	1.98887	0.8317(sp ^{3.14}) _{N9} +0.5553* (s) _{H19}
	$\sigma(N_9 - H_{20})$	1.98974	0.8298(sp ^{3.17}) _{N9} +0.5581(s) _{H20}
	CR(1) N9	1.99964	р
	CR(1) F10	1.99997	S
	CR(1) F11	1.99997	S
	LP(1) N9	1.96365	sp ^{4.15}
	LP(1) F10	1.99189	sp ^{0.26}
	LP(2) F10	1.97365	р
	LP(3) F10	1.94114	р
	LP(1) F11	1.99191	sp ^{0.26}
	LP(2) F11	1.97357	р
	LP(3) F11	1.94223	р
F(OH)-DOP*	σ(C ₁ -F ₁₀)	1.99517	0.5260(sp ^{3.45} d ^{0.01}) _{C1} +0.8505(sp ^{2.30}) _{F10}
	σ(C ₂ -O ₁₁)	1.99430	0.5786(sp ^{2.93} d ^{0.01}) _{C2} +0.8156(sp ^{1.94}) _{O11}
	σ(C ₈ -N ₉)	1.99346	0.6373(sp ^{3.16} d ^{0.01}) _{C8} +0.7706(sp ^{2.19}) _{N9}
	σ(N ₉ -H ₁₉)	1.98944	0.8301(sp ^{3.23}) _{N9} +0.5576(s) _{H19}
	$\sigma(N_{9}-H_{20})$	1.99077	0.8285(sp ^{3.27}) _{N9} +0.5600(s) _{H20}
	σ(0 ₁₁ -H ₂₁)	1.98806	0.8635(sp ^{3.89} d ^{0.01})O11+0.5043(s) _{H21}
	CR(1) N9	1.99967	S
	CR(1) F10	1.99994	S
	CR(1) O11	1.99978	S
	LP(1) N9	1.96271	sp ^{3.63}
	LP(1) F10	1.98935	sp ^{0.44}
	LP(2) F10	1.96580	sp ^{99.99} d ^{0.31}
	LP(3) F10	1.92036	р
	LP(1) O11	1.98027	sp ^{1.19}
	LP(2) O11	1.87676	р

Symbol	NBOª	Occupancy	Hybrid
(CI)2-DOP*	$ \begin{array}{c} \sigma(C_1 - CI_{11}) \\ \sigma(C_2 - CI_{10}) \\ \sigma(C_8 - N_9) \\ \sigma(N_9 - H_{19}) \\ \sigma(N_9 - H_{20}) \\ CR(1) N9 \\ CR(1) CI10 \\ CR(2) CI10 \\ CR(2) CI10 \\ CR(3) CI10 \\ CR(3) CI10 \\ CR(4) CI10 \\ CR(5) CI10 \\ CR(1) CI11 \\ CR(2) CI11 \\ CR(3) CI11 \\ CR(3) CI11 \\ CR(4) CI11 \\ CR(5) CI11 \\ CR(5) CI11 \\ CR(5) CI11 \\ LP(1) N9 \\ LP(1) CI10 \\ LP(2) CI10 \\ LP(3) CI10 \\ LP(1) CI11 \\ LP(2) CI11 \\ LP(2) CI11 \\ LP(3) CI11 \\ CR(3) CI11 \\ CR($	1.98950 1.98955 1.99372 1.98893 1.98975 1.99964 2.00000 1.99979 1.99998 1.99999 2.00000 1.99979 1.99999 1.99995 1.99995 1.99995 1.99995 1.99995 1.99995 1.99995 1.99995 1.99995 1.99995 1.99995 1.99995 1.99995 1.99995 1.99995 1.99995 1.99995 1.99948 1.92962 1.99348 1.97021 1.92814	$\begin{array}{c} 0.6793(\text{sp}^{3.31})_{\text{C1}} + 0.7338(\text{sp}^{4.77}\text{d}^{0.03})_{\text{C111}} \\ 0.6794(\text{sp}^{3.28}\text{d}^{0.01})_{\text{C2}} + 0.7338(\text{sp}^{4.77}\text{d}^{0.03})_{\text{C110}} \\ 0.6400(\text{sp}_{3.12}\text{d}^{0.01})_{\text{C8}} + 0.7684(\text{sp}^{2.08})_{\text{N9}} \\ 0.8315(\text{sp}_{3.14})_{\text{N9}} + 0.5555(\text{s})_{\text{H19}} \\ 0.8297(\text{sp}_{3.17})_{\text{N9}} + 0.5582(\text{s})_{\text{H20}} \\ \text{s} \\ \text{s} \\ \text{s} \\ \text{p} \\ \text{p} \\ \text{p} \\ \text{p} \\ \text{p} \\ \text{s} \\ \text{s} \\ \text{s} \\ \text{sp}^{9.15} \\ \text{sp}^{0.21} \\ \text{sp}^{99.99}\text{d}^{0.11} \\ \text{p} \\ \text{sp}^{0.21} \\ \text{sp}^{99.99}\text{d}^{0.11} \\ \text{p} \end{array}$

Table S5: Occupancy of natural orbitals (NBOs) and hybrids of chlorine derivatives calculated by the B3LYP method with 6-31G*(d) basis set

Table S6: Occupancy of natural orbitals (NBOs) and hybrids of chlorine derivatives calculated by the B3LYP method with 6-31G*(d) basis set

$\begin{array}{cccccc} Cl(OH)\text{-}DOP^{\star} & \sigma(C_1-Cl_{11}) & 1.98873 & 0.6777(sp^{3.29}d^{0.01})_{C1}\text{+}0.7353(sp^{4.71}d^{0.03})_{C111} \\ & \sigma(C_2-O_10) & 1.99426 & 0.5792(sp^{3.11}d^{0.01})_{C2}\text{+}0.8152(sp^{2.18})_{O10} \\ & \sigma(C_8-N_9) & 1.99377 & 0.6394(sp^{3.13}d^{0.01})_{C8}\text{+}0.7689(sp^{2.07})_{N9} \\ & \sigma(N_9-H_{19}) & 1.98909 & 0.8311(sp^{3.15})_{N9}\text{+}0.5561(s)_{H19} \\ & \sigma(N_9-H_{20}) & 1.98975 & 0.8296(sp^{3.17})_{N9}\text{+}0.5584(s)_{H20} \\ & \sigma(o_{10}-H_{21}) & 1.98795 & 0.8645(sp^{3.93}d^{0.01})_{O10}\text{+}0.5026(s)_{H21} \\ & CR(1) N9 & 1.99964 & s \\ & CR(1) O10 & 1.99980 & s \\ & CR(1) O10 & 1.99980 & s \\ & CR(1) Cl11 & 2.00000 & s \end{array}$	Symbol	NBO ^a	Occupancy	Hybrid
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CI(OH)-DOP*	$\begin{array}{c} \sigma(C_1\text{-}CI_{11})\\ \sigma(C_2\text{-}O_10)\\ \sigma(C_8\text{-}N_9\text{-})\\ \sigma(N_9\text{-}H_{19})\\ \sigma(N_9\text{-}H_{20})\\ \sigma(o_{10}\text{-}H_{21})\\ \sigma(C_1)\text{-}H_{21})\\ CR(1) \text{ N9}\\ CR(1) \text{ O10}\\ CR(1) \text{ C111}\\ CR(2) \text{ C111}\\ CR(2) \text{ C111}\\ CR(3) \text{ C111}\\ CR(4) \text{ C111}\\ CR(5) \text{ C111}\\ LP(1) \text{ N9}\\ LP(1) \text{ O10}\\ LP(2) \text{ O10}\\ LP(2) \text{ C10}\\ LP(2) \text{ C111}\\ LP(2) \text{ C111}\\ LP(3) \text{ C111}\\ \end{array}$	1.98873 1.99426 1.99377 1.98909 1.98975 1.98795 1.99964 1.99980 2.00000 1.99979 1.99994 1.99996 1.99999 1.96402 1.98244 1.88683 1.99388 1.99388 1.96992 1.93318	$\begin{array}{c} 0.6777(sp^{3.29}d^{0.01})_{\rm C1} + 0.7353(sp^{4.71}d^{0.03})_{\rm C111} \\ 0.5792(sp^{3.11}d^{0.01})_{\rm C2} + 0.8152(sp^{2.18})_{\rm O10} \\ 0.6394(sp^{3.13}d^{0.01})_{\rm C8} + 0.7689(sp^{2.07})_{\rm N9} \\ 0.8311(sp^{3.15})_{\rm N9} + 0.5561(s)_{\rm H19} \\ 0.8296(sp^{3.17})_{\rm N9} + 0.5584(s)_{\rm H20} \\ 0.8645(sp^{3.93}d^{0.01})_{\rm O10} + 0.5026(s)_{\rm H21} \\ s \\ $

NMR

Nuclear magnetic resonance (NMR) is very powerful tool in studying microscopic phenomena in physics, chemistry, biology and medicine. Determination of spectral parameters using the quantum-chemistry methods helps in the assignment and interpretation of the experimental data³². In this study, NMR has been used for

Symbol	NBOª	Occupancy	Hybrid
(Br)2-DOP^*	σ(C ₁ -Br ₁₁)	1.98553	0.7066(sp ^{3.52}) _{C1} +0.7076(sp ^{6.23} d ^{0.02}) _{Br11}
	$\sigma(C_2 - Br_{10})$	1.98570	0.7071(sp ^{3.48}) _{C2} +0.7071(sp ^{6.21} d ^{0.02}) _{Br10}
	$\sigma(C_8 - N_9)$	1.99323	0.6383(sp ^{3.14}) _{C8} +0.7698(sp ^{2.19}) _{N9}
	$\sigma(N_9 - H_{19})$	1.98916	0.8307(sp ^{3.21}) _{N9} +0.5567(s) _{H19}
	$\sigma(N_9-H_{20})$	1.99077	0.8289(sp ^{3.26}) _{N9} +0.5594(s) _{H20}
	CR(1) N9	1.99967	S
	CR(1) Br10	2.00000	S
	CR(2) Br10	1.99997	S
	CR(3) Br10	1.99976	S
	CR(4) Br10	1.99997	р
	CR(5) Br10	1.99986	р
	CR(6) Br10	1.99999	р
	CR(7) Br10	1.99998	р
	CR(8) Br10	2.00000	р
	CR(9) Br10	1.99999	р
	CR(10)Br10	1.99993	d
	CR(11) Br10	1.99993	d
	CR(12) Br10	1.99999	d
	CR(13) Br10	1.99980	d
	CR(14) Br10	1.99993	d
	CR(1) Br11	2	S
	CR(2) Br11	1.99997	S
	CR(3) Br11	1.99976	S
	CR(4) Br11	1.99998	P
	CR(5) Br11	1.99994	P
	CR(6) Br11	1.99998	P
	CR(7) Br11	1.99991	P
	CR(8) Br11	2	P
	CR(9) Br11	1.99999	P
	CR(10)Br11	1.99978	d
	CR(11) Br11	1.99998	d
	CR(12) Br11	1.99996	d
	CR(13) Br11	1.99994	d
	CR(14) Br11	1.99992	d
	LP(1) N9	1.96207	sp ^{3.65}
	LP(1) Br10	1.99455	sp ^{0.16}
	LP(2) Br10	1.97317	sp ^{99.99} d ^{0.13}
	LP(3) Br10	1.93321	р
	LP(1) Br11	1.99457	sp ^{0.16}
	LP(2) Br11	1.97342	sp ^{99.99} d ^{0.13}
	LP(3) Br11	1.93271	р

Table S7: Occupancy of natural orbitals (NBOs) and hybrids of bromine derivatives

determination of microscopic properties of dopamine and it halogenated derivate³³⁻³⁵.

To discuss the magnitude of the shielding tensor, it is necessary to report the three principal eigenvalues of the chemical shielding anisotropy tensor (σ_{11} , σ_{22} , σ_{33})using following equations:

 the isotropic value of the shielding tensor which is defined as:

$$\sigma_{iso} = (\sigma_{11} + \sigma_{22} + \sigma_{33}) / 3$$

- a) the anisotropy ($\Delta\sigma$) of the tensor, given by: $\Delta\sigma = \sigma_{_{33}} \cdot (\sigma_{_{11}} + \sigma_{_{22}})/2$
- b) the shielding tensor asymmetry parameter (η) given by:

$$\eta = \frac{|\sigma_{22} - \sigma_{11}|}{|\sigma_{33} - \sigma_{iso}|}$$

The optimization and NMR calculation are done by density functional theory (DFT) using B3LYP method and the standard 6-31G* basis set in the gas phase. Table 2 and 3 presents the computed chemical shift for selected hydrogen, nitrogen and carbon atoms. According to this Table, anisotropic shielding value ($\Delta\sigma$) for C₈ and N atom of F(OH)-Dopmolecule and N are negative values. Interestingly, among all of mentioned carbon atoms, C₂ of F(OH)-Dophas the lowest isotropic shielding value. The ⁹, η and charges valuesare summarized in Table S1 and S2 ³⁶⁻³⁸.

NBO analysis

NBO method gives useful information about interactions in both filled and virtual orbital spaces which could enhance the analysis of intra

Symbol	NBOª	Occupancy	Hybrid
Br(OH)-DOP*	$σ(C_1-Br_{11})$ $σ(C_2-O_{10})$ $σ(C_8-N_9)$ $σ(N_9-H_{19})$ $σ(N_9-H_{20})$	1.98444 1.99462 1.9934 1.9894 1.99075	$\begin{array}{l} 0.7029(\text{sp}^{3.53})_{\text{C1}} + 0.7113(\text{sp}^{6.18}\text{d}^{0.02})_{\text{Br11}} \\ 0.5776(\text{sp}^{2.98}\text{d}^{0.01})_{\text{C2}} + 0.8163(\text{sp}^{1.90})_{\text{O10}} \\ 0.6375(\text{sp}^{3.16}\text{d}^{0.01})_{\text{C8}} + 0.7705(\text{sp}^{2.19})_{\text{N9}} \\ 0.8302(\text{sp}^{3.22})_{\text{N9}} + 0.5574(\text{s})_{\text{H19}} \\ 0.8286(\text{sp}^{3.27})_{\text{N9}} + 0.5598(\text{s})_{\text{H20}} \end{array}$
	σ(ο ₁₀ -H ₂₁) CR(1) N9 CR(1) O10 CR(1) Br11 CR(2) Br11	1.98841 1.99967 1.99977 2 1.99997	0.8642(sp ^{3.87} d ^{0.01}) ₀₁₀ +0.5031(s) _{H21} s s s s
	CR(3) Br11 CR(4) Br11 CR(5) Br11 CR(6) Br11 CR(7) Br11	1.99976 1.99998 1.99992 1.99998 1.99993	s p p p
	CR(8) Br11 CR(9) Br11 CR(10)Br11 CR(11) Br11	1.99999 2 1.99999 1.99978 1.99996	p p d
	CR(12) Br11 CR(13) Br11 CR(14) Br11 LP(1) N9	1.99998 1.99994 1.99992 1.96266	d d d sp ^{3.63}
	LP(1) O10 LP(2) O10 LP(1)Br11 LP(2)Br11 LP(3)Br11	1.9786 1.86962 1.9953 1.97324 1.93939	sp ^{1.22} p spp ^{0.16} sp ^{99.99} d ^{0.02} p

Fable S8: Occupancy	of natural orbitals (NBOs) and h	ybrids of bromine derivatives
---------------------	-----------------------	-------------	-------------------------------

and intermolecular interactions. This is carried out by considering all possible interactions between filled donor and empty acceptor NBOs and estimating their energy importance by second order perturbation theory³⁹.

NBO analysis is based on a method for optimally transforming a given wave function into localized form, corresponding to the one-center ("lone pairs") and two-center ("bonds") elements of the chemist's Lewis structure picture. In NBO analysis, the input atomic orbital basis set is transformed via natural atomic orbitals (NAOs) and natural hybrid orbitals (NHOs) into natural bond orbitals (NBOs)⁴⁰⁻⁴³. Table 4-9 lists the calculated occupancies of natural orbitals. The calculated Natural bond hybrids and are also given in this table⁴⁴⁻⁴⁶.

Table S3-S8 show share of orbitals contribute in the bonds (BD for 2-center bond).

According to calculations, the nitrogen atom forms three single bond (sigma bond) with two hydrogen atoms $H_{_{19}}$ and $H_{_{20}}$ (σ_{N_9} - $H_{_{19}}$ and σ_{N_9} - $H_{_{20}}$), and a carbon atom C_8 (σ_{C_9} - N_9) and a lon pair orbital (Lp). As seen from Table S3-S8, the LP on the nitrogen atom is formed from an sp^{3.62} hybrid for the(OH)₂-DOP molecule, sp^{4.15}hybrid for the F₂-DOP molecule, sp^{4.15}hybrid for the Cl₂-DOP molecule, sp^{4.15} hybrid for hybrid for the Cl₂-DOP molecule, sp^{4.15} hybrid for hybrid for hybri

Scheme 1: Optimized structure of dopamine and halogenated derivatives

Fig. 1: The scan of potential energy verses degrees changing of Dopamine

the CI(OH)-DOP molecule, $sp^{3.65}$ hybrid for the Br₂-DOP molecule, and $sp^{3.63}$ hybrid For the Br (OH)-DOP molecule⁴⁷.

CONCLUSION

In the present work, atheoretical analysis of dopamine and its halogenated derivate has been performed in order to obtain the dipole moment (μ) and energy of structure formation (HF)of dopamine and it halogenated derivate. Also the thermodynamic parameters of this compound has

been studied and according to the results, it has been found that the amount of Gibbs free energy(Δ G) and standard enthalpies (Δ H) of dopamine and its halogenated derivatearepositive value, therefore dopamine and its halogenated derivateareunstable structure. Moreover, the chemical shifts of these molecules have been simulated using quantum mechanics.Finally, the Natural Bond Orbital (NBO) analysis has provided the detailed insight into the type of hybridization and the nature of bonding in dopamine and its halogenated derivate.

REFERENCES

- 1. Dahlstrom, A.; Fuxe K. *Experientia*. **1964**, *15*, 398–399.
- Tierney,L.; McPhee, S.; Papadakis, M. Quinta Edic. Edit. *El Manual Moderno*. 2000, 965-967.
- Abdel-Baki, A.; Ouetllet-Plamondon, C.; Malla, A. Journal of Affective Disorders. 2012, 138, S3.
- Santos-García, D.;Prieto-Formoso,M.; de la Fuente-Fernández, R. Journal of Neurological Science. 2012, 318, 91.
- Monajjemi,M.;Honarparvar, B. H.;Haeri, H.; Heshmat, M. Russian Journal of Physical Chemistry C. 2006, 80(1), S40-S44.
- Mollamin,F.; Monajjemi, M.; Mehrzad J. Fullerenes, Nanotubes, and Carbon Nanostructures. 2014, 22: 738-751,
- 7. Monajjemi, M.;. Karachi, N.;.Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures. **2014**, 22, 643-662.
- Tahan A.; Monajjemi, M. ActaBiotheor. 2011, 59, 291–312.
- Monajjemi, M.; Sobhanmanesh, A.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures.2013, 21, 47-63.
- 10. Nicola, S.M.; Surmeier, J.; Malenka, R.C.Annu Rev Neurosci. **2000**, *23*, 185-215.
- 11. Monajjemi, M.; Robert Wayne, Jrand James E. Boggs, *Chemical Physics*.**2014**,*433*, 1-11.
- 12. Ardalan, T.;Ardalan, P.;Monajjemi, M. Fullerenes, *Nanotubes, and Carbon Nanostructures.* **2014**, *22*, 687-708.
- Monajjemi, M.; Mollaamin, F. J Clust Sci. 2012, 23, 259–272.

- 14. Monajjemi, M.; Chegini, H.; Mollaamin, F.; Farahani,Fullerenes P. *Nanotubes, and Carbon Nanostructures.* **2011**, *19*, 469-482.
- Mollamin,F.; Monajjemi, M.; Mehrzad J. Fullerenes, Nanotubes, and Carbon Nanostructures. 2014, 22: 738-751.
- Monajjemi, M.;Yamola, H.;Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures. 2014, 22, 595–603.
- Yahyaei, h.; Monajjemi, M. Fullerenes, Nanotubes, and Carbon Nanostructures.
 2014, 22, 346-361.
- Moleman, P.; van Berkum, H.; Tjaden,U.;de JongJ.*Journal of Neuroscience Methods* 11. 1984, 29.
- Thierry,A.M.; Jay, T.M.; Pirot, S.; Mantz, J.; Godbout, R.; Glowinski, J. In: *Motor and Cognitive Functions of the Prefrontal Cortex.* (Thierry A.M., Glowinski J., Goldman- Rakic P.S., Christen Y., eds), NewYork: Springer-Verlag. 1994, pp 35-50.
- 20. Frisch, M.J.; Pople, J.A.; Binkley, J.S. J. Chem. Phys. **1984**, *80*, 3265.
- 21. Gaussian 09, Revision A.02, M. J. Frisch et al. Gaussian, Inc., Wallingford CT, **2009**.
- 22. Monajjemi, M.; Boggs, J.E. *J. Phys. Chem* A.**2013**, *117*, 1670.
- 23. Mollaamin,F.; Monajjemi,M. *J. Comput. Theor. Nanosci.***2012**, *9*, 597-601.
- Monajjemi, M.; Lee, V. S.; Khaleghian, M.; Honarparvar, B.; Mollaamin, F. J. Phys. Chem. C. 2010, 114, 15315-15330.
- Monajjemi, M. Chemical Physics. 2013, 425, 29-45.

- Yahyaei, H.; Monajjemi, M.; Aghaie, H., Zare K. Journal of Computational and Theoretical Nanoscience. 2013, 10(10), 2332-2341.
- Monajjemi, M. Struct Chem.2012, 23, 551-580.
- Monajjemi, M.; JafariAzan M.; Mollaamin F.Fullerenes, Nanotubes, and Carbon Nanostructures.2013, 21(6), 503–515.
- Monajjemi, M.; Afsharnezhad, S.; Jaafari, M.R.; Abdolahi, T.; Nikosade, A.; Monajjemi, M. Russian *Journal of physical chemistry* A. 2007, *2*, 1956-1963.
- Mollaamin,F.; Monajjemi,M. Physics and Chemistry of Liquids.2012, 50(5), 596–604.
- Monajjemi, M.; Faham R.; Mollaamin,F. Fullerenes, Nanotubes, and Carbon Nanostructures. 2012, 20, 163-169.
- Vaara, J. CSC Report on Scientific Computing 1999-2000 .S. Kotila and J. Haataja, eds. CSC - Scientific Computing Ltd., Finland, 2001, 118-121.
- Monajjemi, M.; Mahdavian,L.; Mollaamin,F.; Honarparvar,B.*Fullerenes, Nanotubes and Carbon Nanostructures*.2010, 18, 45–55.
- Mollaamin, F.; Shahani pour, K.; Shahani pour, K.; Ilkhani, A. R.; Sheckari, Z.; Monajjemi M. 2012, 61(12), 2193-2198.
- Monajjemi, M.; SeyedHosseini, M.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures. 2013, 21, 381-393.
- Monajjemi, M.; Falahati, M.; Mollaamin, F. Ionics. 2013, 19, 155-164.
- 37. Mollaamin, F.; Najafpour, J.; Ghadami,

S.;.Ilkhani, A. R.; Akrami, M. S.; Monajjemi, M.J. Comput. Theor.Nanosci.2014, 11, 1290-1298

- Monajjemi, M.; Farahani N.; Mollaamin, F. *Physics and Chemistry of Liquids*.2012, 50(2), 161–172.
- 39. Reed, A.E.; Curtiss, L.A.; einhold, F.W. *Chem Rev.* **1988**, *88*, 899.
- Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706.
- 41. Monajjemi, M.;Mollaamin,F. J. Comput. Theor.Nanosci. 2012, 9, 2208-2214.
- Mollaamin,F.; Baei,M.T.; Monajjemi, M.; Zhiani, R.; Honarparvar,B. Russian Journal of Physical Chemistry A. 2008, 82(13), 2354-2361.
- Monajjemi, M.;Baheri, H.;Mollaamin,F. Journal of Structural Chemistry.2011, 52(1), 54-59.
- 44. Monajjemi, M.;Mahdavian,L.; Mollaamin, F. Bull Chem. Soc. Ethiop. 2008, 22(2), 1-10.
- Mollaamin,F.; Varmaghani, Z.;Monajjemi, M.Physics and Chemistry of Liquids. 2011, 49(3), 318–336.
- Monajjemi, M.;Mollaamin,F.;Karimkeshteh, T.J. Mex. Chem. Soc. 2005, 49(4), 336-340.
- Monajjemi, M.;Najafpour, J.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures.2013, 21, 213–232.