

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Access, Peer Reviewed Research Journal

ISSN: 0970-020 X CODEN: OJCHEG 2018, Vol. 34, No.(6): Pg. 2826-2831

www.orientjchem.org

New Series of Substituted Heterocycles Derived from α , β -unsaturated Ketone and Their Cytotoxic Activity in Tumor Cell Lines

MUNA S. AL-RAWI*, HUDA A. HASSAN* and DHEEFAF F. HASSAN*

Department of Chemistry, College of Education For Pure Science Ibn Al- Haitham, University of Baghdad, Baghdad- Iraq.

*Corresponding author E-mail: tagreedaloom@gmail.com

http://dx.doi.org/10.13005/ojc/340620

(Received: September 30, 2018; Accepted: November 06, 2018)

ABSTRACT

The aldol condensation of 2-acetylnaphthalene with 9-anthracene carboxaldehyde afforded α , β -unsaturated keton (1). New heterocyclic compounds containing: cyclohexenone[2], indazole[3], pyrimidinethion [4], thiazolo fused pyrimidine[5], isoxazoline[6], substituted pyrazoline[7]_{a-d} and pyrimidinone[8] rings system were synthesized from α , β -unsaturated keton[1]. Cyclization of [1] with ethylacetoacetate gave the mentioned heterocycle cyclohexanone [2]. The cyclo condensation of [2] with hydrazine gave the new indazole derivative [3]. furthermore, the reation of [1] with thiourea gives thiopyrmidine derivative [4]. The cyclo condensation of [4] with chloroacetic acid gave the fused rings [5]. Then reacted compound[1] with hydroxylamine to produce isoxazoline [6]. Also the reaction of [1] with hydrazine and hydrazide derivatives to produce pyrazole [7]_{a-d}. All the newly synthesized derivatives[2-7_{a-d}] were characterized via the CHN-S, FT- IR, 'H NMR, and '3C NMR (of some of theme). The antibacterial and cytotoxic activities were evaluated for these derivatives[2-7_{a-d}]. The study of antibacterial displayed good to moderate activity and the study of anticancer activity showed that were effective for inhibition of L₂₀B the mice intestines carcinoma cell line and RD human pelvic rhabdomyosarcoma cell line. treated

Keywords: α , β -Unsaturated ketons, Cyclohexenone , Indazole, Pyrimidinethion, Isoxazoline, Pyrazoline, Pyrmidinone, Anti-cancer activity.

INTRODUCTION

 α,β –Unsaturated ketons, one of the primary classes of natural products and belongs to flavonoid family, as well these compounds keep several biological activities^{1,2}. α , β -Unsaturated ketons are suitable for the synthesis of an important heterocycles rings like cyclohexenone, indazole,

pyrimidinethion, isoxazoline, pyrazoline, and pyrimidinone³. The biological activity for chalcones are wide ranging in the recent years, isoxazolines are considered biologically active molecules since they are used in controlling parasite infections in humans⁴ in addition to their use as insecticides⁵, nematicides and molluscicides agents⁶. Pyrazolines, for example, have attracted increasing attention

This is an <a>Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC- BY). Published by Oriental Scientific Publishing Company © 2018

due to their pharmaceutical applications such as: anti-bacterial, anti-fungal, enzymatic inhibitors and cytotoxic properties⁷⁻⁹. Pyrmidine derivatives play an essential role in medicinal field due to their anti-inflammatory, anti-ulcerogenic¹⁰. The antiinflammatory and anti-cancer activities of indazoles were also reported¹¹. Hence, it appeared of interest to prepare the mentioned heterocycles linked to 2-acetyl naphthalene moiety and evaluated their cytotoxicity effect on two cancer cell lines including: $L_{20}B$ and RD cell lines.

EXPERIMENTAL

Materials

All chemicals utilized brand Sigma-Aldrich and used as received.

Instrumentation

FTIR spectra were registered in KBR dices on a SHIMADZU-FTIR-8400spectro photometer. ¹H & ¹³CNMR spectra were done on Bruker 400-MHz spector photometer. CHN-S were completed an EuroEA Elemental Analyzser.

General Synthetic Procedures

All compounds [2-8] were synthesized confer to the scheme 1.

Preparation of of chalcone: 3-(anthracen-9-yl)-1-(naphthalen-2 -yl) prop-2-en-1-one[1]

2-Acetyl naphthalene (1.70 g, 0.01 mol) was added with small portions to a solution of (2.06 g, 0.01 mol) 9-anthracenecarboxaldehyde in 10% ethanolic NaOH (10 mL) and stirred for 3 hours. The reaction mixture was acidification with dilute HCI. The resulting product was filtered off, washed well with cold water, dried in air to give the required product [1]; Yield 82%; m.p 155-157°C; FT- IR : 3049 (C-H arom.), 2931 (C-H aliph.), 1658 (C=O), 1622- 1597 (C=C) and 1172due to (C-O-C); ¹H-NMR (δ):8.42-7.70 (m, 16H, Ar-H), 6.20, 6.15 (2H,d, CH=CH). Furthermore, the results of CHN-S analysis harmonized with the proposed structure for [1] C_{27} H₁₈O: C, 90.47; H, 5.06; Found:C, 90.91; H,5.63.

Scheme 1. Synthetic route for target derivatives [1-8]

Synthesis of ethyl 6-(anthracen-9-yl)-4-(naphthalen-2-yl)-2-oxocyclohexa-3-ene-carboxylate [2]

A stirred mixture of chalcone [1] (3.58 g, 0.01 mol), $CH_3COOC_2H_5$ (0.01 mol), aqueous KOH solution (1mL, 10%) was heated for 3 h and then left to stirring overnight at ambient temperature. The precipitated off white was collected and dried to give the cyclohexanone derivatives [2]; Yield : 68%; m. p 182-184°C; FTIR 3035 (C-H arom.), 2981 (C-H aliph.), 1737 (C= O) 1660 (C =O) and 1604 (C =C); ¹HNMR: 8.55-6.92 (m, 16H, H-Ar), 6.69(s, 1H, CH=C-Ar), 4.02(1H,m,CH-Ar/), 2.71 (1H, s, CH-CO), 1.58 (s, 2H, CH₂-C-Ar), 1.24 (q,2H, -CH₂CH₃) and 1.10 (t, 3H, -CH₂CH₃); Anal. Calcd. for $C_{33}H_{26}O_3$: C(84. 23); H(5.57); Found:C(84.85); H (5.76).

Synthesis of 4-(anthracen-9-yl)-6-(naphthalen-2yl) -2 ,3 ,4 ,5 -tetrahydro-3H-indazol-3-one [3]

Hydrazine hydrate was added dropwise to a solution of compound[2] (4.70 g,0.01 mol) in ethanol (20 mL) and glacial acetic acid (0.3 mL) at ambient temperature. The mixture was heated for 6 h¹². The pale yellow solid formed was filtered off and dried, Yield:52%; M. P. 137-139°C; FT-IR(3385-NH), (3020C-H arom.), (2980 C-H aliph.), (1653 C = O) (1631 C = N) and (1955 C=C); ¹HNMR (9.78:s,1H,NH), (7.86-7.22 : m, 16H, H-Ar), (4.02:s, 1H, CH =C-Ar), (3.47 :1H, d, CH-CO), 3.18(d, 2H, CH₂CH-Ar/), 1.35 (m, 1H, CH₂-CH- Ar/); likewise, the results of CHN-S analysis agree with the suggested structure for compound(3) :C₃₁H₂₂N₂O: (C:84.91); (H:5.06); (N:6.39) ; Found:(C: 85.15); (H:5.66, (N:6.91).

Synthesis of 4-(anthracen-9-yl)-6-(naphthalen-2 -yl)-3, 4-dihydropyrimidine 2 (1H) -thione [4]

To a solution of chalcone (3.58 g) in ethanolic NaOH (0.01 mol), SC(NH₂)₂ (0.6 g) was added, refluxed for 7 hours. A solution of ice cold water was added, the orange solid created, washed with water and dried, yield :68%; m.p. 214-216°C ; FT-IR: 3383 cm⁻¹ for(NH), 3012 cm⁻¹ (C-H arom.), 1638 (C =N), and 1255 (C =S). ¹HNMR: 12.00 (s,1H, NH tautomeric with SH in thiopyrimidine ring), 11.38(s,1H,NH),9.00-7.86(m, 16H ArH), 8.29 (d,1H, CH = C-Ar), 7.65 (d,1H, = CH-CH-Ar); Also, the output of CHN-S analysis correspond with the indicate structure for $C_{28}H_{20}N_2S$.

Synthesis of 5-(Anthracen -9 -yl)-7-(naphthalen- 2- yl) -5H- Thiazolo [3,2-a] pyrimidin-3(2H)- one [5]

Chloroacetic acid (0.01 mol) was added to a compound[4] (4.16 g,0.01 mol) in mixture of glacial CH₃CO₂H (10 ml) and (CH₃CO)₂O (5ml) and anhydrous sodium acetate (0.45 g). The mixture refluxed for 6 h and poured into 30 mL crushed ice to allow golden yellow solid precipitate, which was filtered and dried; Yield (48%); M. P. 193-195°C; FT-IR (v, cm⁻¹): 3091 (C-Haromatic), 2098 (C-H aliphatic), 1668 (C=O),1606 (C=N), 1078(C-S); ¹H NMR (9.55-7.16:m, 16H Ar-H), 8.46 (d, 1H, CH=CAr), 5.45 (d,1H, =CH-CH-Ar), 1.66(s,2H,CH₂). CHN-S for compound $C_{30}H_{20}N_2OS$: (C, 78.92); (H, 4.42); (N, 6.14); (S, 7.02); Found: (C,79.20); (H,4.18); (N,6.45); (S,7.42).

Synthesis of derivatives 5-(anthracen-9-yl)–3-(naphthalene–2–yl)-4, 5-dihydro -isoxazole[6]

To a mixture of chalcone[1] (3.58 g, 0.01 mol) and hydroxyl amine hydrochloride (0.69 g, 0.01 mol) ethanolic sodium hydroxide (10 mL) was refluxed for 8 hours. On cooling 50 mL water was added then the mixture acerbated at fridge overnight and the white solid was formed, Yield (77%); m.p. 146-148°C; FT-IR3064 (C-H arom.), 1627 (C=N), 1598 (C=C); 1348 (cyclic ether) (C - O); ¹HNMR: (8.89-7.36: m, 16H, ArH), (4.73-4.61: d, 2H, CH₂CHAr/), (2.25-1.20:t,1H, CH₂-CH-Ar/). The CHN analysis for $C_{27}H_{19}NO$: (C, 86.84); (H, 5.13); (N, 3.75); Found: (C,86.22); (H,5.45); (N,3.95).

Synthesis of 5-(naphthalen -2-yl)-3- (substituted phenyl) - pyrazoline derivatives [7]_{a-d}

A mixture of chalcon [1] (3.58 g, 0.01 mol) and hydrazine hydrate or substituted hydrazine (0.01 mol) in EtOH (20 mL) containing glacial acetic acid (0.3 mL) was heated for 4 hour. The precipitated was formed , collected and dried to afford $[7]_{a,d}$.

5-(anthracen-9-yl)-3-(naphthalen-2-yl)-4,5dihydro-1H-pyrazole[7]

Yellowish brown; Yield (58%); m.p. 92-94°C; FTIR for this compound confirm that: 3431(NH), 3053 (CH -Ar), 1666 (C =N), 1593 (C =C); ¹HNMR :(9.01:s,1H, NH), (8.48 -6.76: m, 16H Ar-H), 4.11 (t,1H, CH₂CHAr/), 2.49-1.46 (d,2H, CH₂-CH- Ar/), CHN analysis ($C_{27}H_{20}N_2$) agree with the proposed structure: C, 87.07; H, 5.41; N,7.52 Founder: C,87.55; H,5.85; N,7.85.

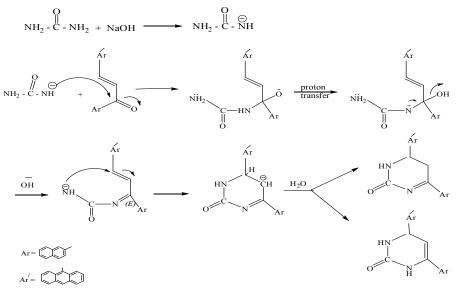
5-(anthracen-9-yl)-3- (naphthalen-2-yl)-1- phenyl-4, 5- dihydro -1H-pyrazole[7]_h

Dark orange; Yield (60%); m.p. 149-151°C; FTIR(CH-Ar 3057), (C =N1620); ¹HNMR, 8.12 -7.23 (m, 16H ArH), 3.67 (t,1H, CH₂CHAr/), 1.19-1.35 (d,2H, CH₂-CH- Ar/); the CHN-S compound[7]_b C₃₃H₂₄N: C,88.36; H,5.39; N,6.25, Founder: C,88.99; H,5.70; N,6.05.

(2-aminophenyl)(5-(anthracen-9-yl)-3-(naphthalen-2yl) -4, 5- dihydro-1H-pyrazol -1- yl) methanone [7]c

Brownish red; Yield (74%); m.p. 172-174°C; FTIR: 3344(NH₂), 3026 (CH -Ar), 1666 (C =N), 1593 (C =C), 1336 (C=S); ¹HNMR : 9.32(s,1H,NH), 8.70 -7.55 (m, 16H, Ar-H), 4.27 (t,1H, CH₂CHAr/), 1.711.21 (d,2H, CH₂-CH- Ar/); CHN-S for compound $C_{34}H_{25}N_3O$ [7]c: C, 83.07; H, 5.13; N, 8.55; Found: C, 83.65; H, 5.42; N,8.76.

1-(5-(anthracen-9-yl)-3-(naphthalen-2-yl)-4,5dihydro -1H- pyrazol -1 -yl) thiourea [7]_d


Bright yellow; Yield (67%); m.p. 204-206°C; FT-IR(v, cm⁻¹): 3309(NH₂), 3035 (C-H aromatic),1718(C=O), 1660 (C=N), 1597 (C =C); ¹HNMR: 11.47(s,1H,NH₂), 9.70 -7.45 (m, 16H Ar-H), 7.60-7.61 (t,1H, CH₂CHAr/), 1.62 (d,2H, CH₂-CH- Ar/); Anal. Calcd. for $C_{28}H_{22}N_4$ S: C, 75.31; H, 4.97; N, 12.55; S, 7.18 Founder: C, 75.73; H, 5.11; N,12.32;S,7.29.

Synthesis of 4-(anthracen-9–yl)-6-(naphthalene -2 -yl)-3,4-dihydropyrimidin-2(1H)-one [8]

To a solution of chalcone[1] (3.58 g, 0.01 mol), urea (0.6 g, 0.01 mol) and EtOH (30 mL) containing glacial CH_3CO_2H (0.3 ml) was added. The combination was heated for 7 h and poured into crushed ice. The solid light yellow precipitate was washed, filtered and dried to give pyrimidinone derivative[8]. Yield (75%); m.p. 119-121°C ; FTIR: (3406, 3350NH), (3064 CH arom.), (1670 C=O), (1614,1597 C=C); ¹HNMR: 10.12 (s,1H, NH), 8.82(s,1H, NH), 8.38-7.35 (m,16H, Ar-H and pyrimidine proton), 3.33 (d,1H, =CH-CH); ¹³CNMR the presence of peaks at δ 190.88 (C=O), δ 125.11-138.96 (C aromatic) and δ 123(CH=CH) ; CHNS for $C_{28}H_{20}N_2O$ the target compound: C, 83.98; H, 5.03; N, 7.00; Found: C,83.67; H,5.43; N,7.11.

RESULTS AND DISCUSSION

Aldole condensation reaction of 2-acetyl naphthalene with 9-anthracenecarboxaldehyde in alcoholic sodium hydroxide offorded3-(anthracen -9-yl)-1-(naphthalen-2-yl) prop-2-en-1-one[1] at room temperature. The structural of the chalcone[1] was substantiated spectroscopically and elemental analyses. The formation of cyclohexanone derivative [2] was achieved by refluxing chalcone[1] with ethylacetoacetate in the presence of aqueous potassium hydroxide solution. Moreover, reaction of this derivative[2] with hydrazine hydrate in the presence of CH₂CO₂H as acatalyst give a new indazol derivative[3], the reaction may have proceeded through condensation between carbonyl group of cyclohexanone[2] and amineNH₂ of hydrazine, followed by cyclization by losing a molecule of ethanol. The pyrimidinethione derivative [4] was obtained from refluxing chalcone [1] with thiourea in basic medium, its structure was ascertained by spectral data. However, compound [5] was prepared directly from the reaction [4] with CICH, CO, H in glacial CH₃CO₃Hand (CH₃CO)₃O in the presence of anhydrous CH_CO_Na. Isoxazoline compound [6] was synthesized from the reaction of chalcone [1] with NH_OH.HCI. Sutructure of compound[6] was established by their spectral data, the FTIR spectra were no characteristic bands of the CH=CH and C=O and NH groups in the starting material, with the appearance of new absorption band for (C=N) group around 1627 cm⁻¹ and C-O (cyclic ether) group around 1348 cm⁻¹. It was reported that, reaction of α , β -Unsaturated ketone with N₂H₄ or PhNHNH₂ or 2-amino benzohydrazide or thiosemicarbazide in the presence of glacial acetic acid and refluxed, yield the target pyrazoline [7]_{a-d}, respectively. The structure of the pyrazoline derivatives $[7]_{a-d}$ were identified by their melting point, CHN-S analysis, FTIR and ¹HNMR spectroscopy. The FTIR spectra of these compounds exhibited new absorption stretching peaks of NH and imiene groups in the region 3431cm⁻¹ and 1666-1660 cm⁻¹, the more characteristic for pyrazole ring. The pyrimidinone derivative [8] was synthesized from reaction of chalcone [1] with urea in glacial acetic acid as a catalyst. The structure of the pyrimidinone [8] characteristic by FTIR, H & ¹³C NMR spectroscopy; the suggested mechanism of this reaction may be shown as follows Scheme 2.

Scheme 2

Antibacterial evaluation

The target compounds were synthesized [2-8] were screened their antibacterial activity (*in vitro*) against both G+ and G- bacteria; like *Staph. aureus*(G+), *Bascillus cereus* (G+) and *E.coli*(G-) according to the agar plate diffusion method. The test solution was prepared by using DMSO as a solvent, and each compounds was dissolved in DMSO to give concentration (1 ppm). The plates were then incubated at 37°C and examined after

24 hours. (+) and (+ +) depending upon the diameter and clarity as in Table 1. The derivatives [3], [5], [7]b, [7]_d, and [8] displayed good to moderate antibacterial activity against three pathogenic species; also, the derivatives [2], [6], [7]_a and [7]_c shows low activity against Gram positive. Finally, both compounds[2] and [7]_c shows no activity against *Gram negative* but they exhibited moderate to weak antibacterial against *Gram poistive*.

Comp. No.	Staphlococcus aureus(G+)	Bascillus cereus (G+)	<i>E. coli</i> (G–)	Comp. No.	Staphlococcus aureus(G+)	Bascillus cereus (G+)	<i>E. coli</i> (G–)
[2]	7.1	12	0	[7]a	5.5	15	6.9
[3]	20.4	16.8	6.5	[7]b	27	7.7	9.8
[4]	11.7	6.6	13.7	[7]c	10	7.5	0
[5]	18.7	13	11.9	[7]d	19.2	11	8.8
[6]	8.1	9.5	8	[8]	13.7	11.8	6.7

Table 1 : Antibacterial activity of the synthesized compounds[2-8]

Key to symbols: highly active = ≤ 15 mm, moderately active =11-15 mm and slightly active =5-10mm.

Cytotoxic activity

All derivatives of chalcone were chosen for examined their anticancer activity. Two cell lines were used for testing: $L_{20}B$ (mice intestines carcinoma) cell line and RD (human pelvic rhabdomyosarcoma) according to the procedure of Freshney (13). Seven derivatives [2-8] different concentrations were tested for their cytotoxicity by using cultured cells in microtiter plate (96 wells). The examine was applied by the next steps:

a-Seeding: When cells in the incubated falcon became monolayer, a liquot 200 μ l/104-105 cells/

well from single cell hang were added to all the 96 wells of the microtiter plates ; which wrapped by plate lids and sealed with parafilm, shaked softly and returned to the incubator.

b- Incubation: Plates were incubated in moisten chamber at 37° C, 5% CO₂.

c-Exposure: When the cells are in full activity, they were exposed to 6 concentrations of the derivatives μ g/ml for cell line, 200 μ l of maintenance medium were added to each well of control group, then

plates were locked with parrafilm and returned to the incubator. cytotoxicity was carried out after 48 h and the photo picture were taken after 24 hour.

d-Staining: Cell viability was measured after 48 h, then removing the medium and 20 μ l/well solution of MTT were added. The crystals remaining in the wells were solubilized by the addition of 200 μ l/ well of DMSO followed by incubation in 37°C for 15 min. with shaking. The absorbance was measured on a microplate reader at 620 nm .The average of inhibition of cell growth was counted according to (46) as follow equation.

Inhibition rate =
$$\frac{\text{mean of control-mean of treatment}}{\text{mean of control}} \times 100$$

The synthesized derivatives [5], [7]a, [7] b,[7]c and [8] showed moderate anticancer activity against two type of cancer cell lines. The remaining derivatives exhibited low anticancer activity. However, the compound [6] showed no activity versus both cell lines, and [2] showed no activity versus RD cell line. Structure-activity relationship could be observed by examining the effect of heterocyclic rings on these derivatives on the cell growth inhibition.

Table 2 : The inhibition of cells growth of synthesized derivatives. µl/well

		•			<u> </u>
Comp. No.	For (L20 B)	For (RD)	Comp. No.	For (L20 B)	For (RD)
[2] [3] [4] [5] [6]	20.00% 15.90% 11.50% 52.70%	- 23.30% 25.70% 12.20% -	[7] _a [7] _b [7] _c [7] _d [8]	47.80% 60.70% 18% 51.90% 23%	42.10% 33.50% 11.90% 32.30% 34.20%

CONCLUSION

The aim of the present work has been directed towards synthesized of new series of heterocyclic compounds derived from α , β -un saturated ketone they may be have more activity and less toxicity as anticancer agents. Biological evaluation may support the development of synthetic organic compoundes and pharmaceutical chemistry.

- N. Beyhan, B.Kocyigit-Kaymakcioglu, S. Gu, and F. Aricioglu, *Arabian Journal of Chemistry.*, 2017, 10, S2073–S2081.
- N.Prakash, M. Elamaran and N. Ingarsal, *Chemical Science Transactions.*, 2015, 4(4), ISSN: 2278-3458,947-954.
- Muna S. AL-Rawi, Huda A. Hassan, Dheefaf F. Hassan and Rana M. Abdullah, International *Journal for Sciences and Technology.*, 2013, 8(2), 48.
- Sanjay Menon, Susan M. K. Shaheen and Valerie A.Lain Court, "Spiro-cyclic Isoxazolines As Anti-parasitic Agents", WO Patent, 039484 A1., 2012.
- P hillip G. Lahm, Wagerle T. and Ming X.,"Isoxazoline Insecticides", US Patent, 0127165 A1., 2014.
- David J. Calderwood, Eric C. Breinlinger and Steven L. Swann, Subhendu Makherjee," Isoxazolines As Therapeutic Agents", WO Patent, 151158A1., 2012.
- 7. Oren M. Becker, Shtrit A., Schutz N., Zeev B., Yacovan A. and Ozeri R.," Pyrazolines

The study of antibacterial displayed good to moderate activity. All compounds except [6] showed moderate to low inhibition for L20B and RD cancer cell lines.

ACKNOWLEDGMENT

We thank Dr. Hytham Ahmed -Faculty of Pharmacy -Menoufia University/ Egypt for support us throughout our experimental work.

REFERENCES

for the Modulation of PKM2", US patent , 0302609A1., 2013.

- Patrich Page, Francesca Gaggini and Benoit laleu, "Pyrazoline Dione Derivatives As NADPH Oxidase Inhibitors", US Patent, 0172352 A1., 2012.
- Mohamed EL. K., Malika B., Bouabdallah I., Abdelmajid Z.,Fouad M., Rachid T., Abdelkrim R. and AHMED M.; *Natural Product Research.*, 2007, 21(11), 947.
- 10. Casey C. Maccomas , Scott D. Kuduk and Thomas S. Reger,"Pyrmidine PDE10 Inhibitors", WO Patent , 081619A1., **2014**.
- 11. Zacharia Cheruvallath, Philip Erckson and Jun feng, "Indazole derivatives ", WO Patent, 130855A1., **2013**.
- Nehad A. Abdel Latif, Manal M. Saeed, Nesreen S. Ahmed, Rasha Z. Batran and Nadia R. A. El-Mouhty; *International Journal of Innovative Research in Science, Engineering and Technology.*, 2014, 3(1), 8517.
- Freshney RI., "Culture of Animal Cells: A manual of Basic Technique and Specialized Applications," 6th Edition, Wiley: New York., 2010.