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Abstract

	 Quantitative structure-activity relationship (QSAR) based on electronic descriptors had been 
conducted on 2,3-dihydro-[1,4]dioxino[2,3-f]quinazoline analogues as anticancer using DFT/B3LYP 
method. The best QSAR equation described as follow:

	 Log IC50 = -11.688 + (-35.522×qC6) + (-21.055×qC10) + (-85.682×qC12) + (-32.997×qO22)+ 
(-85.129×EHOMO) + (19.724×ELUMO)

	 Statistical value of R2 = 0.8732, rm
2 = 0.7935, r2-r0

2/r2 = 0.0118, PRESS = 1.5727 and Fcalc/Ftable 
= 2.4067 used as external validation. Atomic net charge showed as the most important descriptor to 
predict activity and design new molecule. Following QSAR analysis, Lipinski rules was applied to filter 
the design compound due to physicochemical properties and resulted that all filtered compounds did 
not violate the rules. Docking analysis was conducted to determine interaction between proposed 
compounds and EGFR protein. Critical hydrogen bond was found in Met769 residue suggesting that 
proposed compounds could be used to inhibit EGFR protein. 
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Introduction

	 Cancer is a diseases which have an 
uncontrolled and abnormal growth. There were 
1.688.780 new cancer cases diagnosed in 2017 and 
about 600.920 of Americans die or equally 1.650 
people per day. Lung cancer was a second common 

cancer cases due to the high cigarette smoking 
activity both in men and women1. One of protein 
receptor which plays an important role in the growth 
and survival of tumor is EGFR (Epidermal Growth 
Factor Receptor)2-3. EGFR is divided into three 
domain which are extracellular receptor domain, 
transmembrane region, and intracellular domain. 
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Expression of EGFR range from 40.000 to 100.000 
receptors per cell in normal cell. On the other side, 
some cancer will express until 2×106 molecule 
EGFR per cell. This overexpression resulting more 
aggressive growth of cancer. One of approaches to 
inhibit the EGFR effect is using small molecule tyrosine 
kinase inhibitor. This molecule inhibitor was orally active 
and could be specific in EGFR protein 4. 

	 Quinazoline derivative compound had been 
the most extensively studied as anti-inflammatory5 

and anticancer as EGFR inhibitor. Many of EGFR 
inhibitor from the first and second generation was 
derived from quinazoline core such as erlotinib6-7, 
gefitinib as first generation8–10, and afatinib as second 
generation of EGFR inhibitor. This type of inhibitor 
binding to the ATP binding site through hydrophobic 
interactions and formation of hydrogen bonds11. 
However, EGFR inhibitor had been discovered and 
treated to the patient orally, some of resistance 
and mutation of drugs still reported12. Gefitinib 
and erlotinib was reported having an oncogenic 
mutations, while afatinib has a limited efficacy 
because there is a clash with Met790 side chain13. 
This phenomenon makes researcher to develop new 
methods that are not time consuming and expensive 
to get a new compound that have a bioactivity as 
anticancer. 

	 Quantitative Structure Activity Relationship 
(QSAR) correlate the relationship between chemical 
structure and biological activity in mathematical 
equation. The advantage using QSAR technique is 
not require any information about binding site which 
describe the complexity of a biological system, this 
method only need specific activity of the drug such 
as inhibition concentration14. Chemical structure of 
compound will be described as electronic descriptors 
such as atomic charge, HOMO and LUMO energy, 
dipole moment, etc. This electronic descriptors 
were obtained by calculation using quantum 
chemical method13. Current researches focus in 
finding correlation between electronic descriptor 
and bioactivity15,16,17 study a correlation between 
electronic descriptor and antimalarial activity of 
chalcones and showing a good correlation between 
bond orders and atomic net charge with antimalarial 
activity which could be used in designing new 
molecules. There have been many investigations 
about quinazoline derivatives using 2D-QSAR18 

or 3D-QSAR19 using electronic and molecular 
descriptors to build the QSAR model. Here, our study 
will be focused to examine the correlation between 
electronic descriptor and predicted anticancer 
activity of quinazoline derivatives. Furthermore, we 
will continue to observe interaction between newly 
designed compounds against EGFR protein to get 
explanation about molecular inhibition mechanism. 

Material and methods

Data set
	 A data set comprised of 34 compounds 
from novel series of 2,3-dihydro-[1,4]dioxino[2,3-f]
quinazoline derivatives with EGFR inhibitor activity 
(Table 1) was used in this study. All compounds 
and associated data were taken from20 to build 
QSAR model. All of data divided into two parts 
that are training set and test set data. Training set 
data including 29 compounds and remaining data 
belonging to test set data which are randomly 
selected until a good QSAR model was reached. 
Training set data was used to construct QSAR model 
and test set data to validate the QSAR model. 

Structure optimizing and descriptors calculation
	 Three-dimensional structure of al l 
compounds was drawn and optimized using Gaussian 
09 software package21 supported by Gauss View  
5.0.8 22. Structural energy optimization was performed 
using DFT/B3LYP method with 6-31G basis set of the 
studied molecule23, 24, 25. All of electronic descriptors 
such as atomic net charge (C1 until O22), dipole 
moment, Highest Occupied Molecule Orbital 
(HOMO) energy, and Lowest Unoccupied Molecule 
Orbital (LUMO) energy were taken from data after 
optimizing of each compounds.

QSAR model development and validation
	 The QSAR model was constructed using 
Multiple Linear Regression (MLR) backward method 
in SPSS program package. The linear equation 
had been made by setting up biological activity as 
dependent variable and electronic descriptors as 
independent variable. The QSAR model was chosen 
based on statistical parameters like R, R2 and 
PRESS. External validation of a good QSAR model 
was performed by using statistical parameters such 
as R2, rm

2 , r2-r0
2/r2, and PRESS26. 
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Design new molecules and Lipinski rules filter
	 The best QSAR model was applied to 
design new molecules. Then it will be chosen based 
on IC50 which is lower than b1 as the most active in 
data set. The chosen molecule will be evaluated by 
using Lipinski rules to obtain the molecule that is 
effective as drug. 

Protein-ligand docking
	 Molecular docking were performed to 
confirm binding pose of inhibitor in active site of 
EGFR protein by using Autodock program with the 

help of Autodock Tools27. Protein EGFR model was 
downloaded from PDB file (ID 1M17). Preparation 
of ligand and protein was done by using Chimera 
program28. Redocking and docking analysis was 
utilized in grid maps size 40×40×40 Å with spacing 
0.375 Å. Successful redocking analysis is considered 
to be successfull if the RMSD value less than 2 Å29. 
Lamarckian Genetic Algorithm (LGA) was applied 
in searching the lowest energy for each docking 
conformations30. The resulting conformation was 
analyzed to know binding energy, inhibition constant, 
and binding pose.  

Table 1: Core structure and list of quinazoline derivative compounds

Compounds	 R1	 R2	 R3	 Log IC50 (nM)

a1	 Me	 Cl	 F	 1.35
a2	 Me	 ethynyl	 H	 1.04

b1	 	 Cl	 F	 0.3

b2	 	 ethynyl	 H	 0.96

b3	 	 MeO-	 H	 0.64

b4	 	 Cl	 Me	 0.83

b5	 	 NO2	 H	 0.99

b6	 	 H	 Me	 0.56

c1	 O 	 Cl	 F	 1.12

c2	 O 	 ethynyl	 H	 1.32

c3	 O 	 H	 F	 2.3

c4	 O 	 MeO-	 H	 2.2

c6	 O 	 NO2	 F	 1.64

c7	
O

	 NO2	 Me	 1.87
c8	 O 	 NO2	 Cl	 1.56
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c9	 O 	 CN	 F	 2.59

d1	
O

	 Cl	 F	 1.38

d2	 O 	 ethynyl	 H	 1.44

e2	 	 NO2	 F	 1.92

e3	 	 NO2	 Me	 2.27

e4	 	 NO2	 Cl	 2.01

e5	 	 CN	 F	 2.5

e6	 	 CN	 Me	 2.62

e7	 	 Cl	 F	 1.46

e8	 	 ethynyl	 H	 1.37

f2	
O

	 NO2	 F	 2.37

f3	
O

	 NO2	 Me	 2.56

f4	
O

	 CN	 F	 2.55

g1	
O

	 Cl	 F	 2.39

g2	
O

	 ethynyl	 H	 2.68

h1	

O

	 Cl	 F	 1.31

h2	

O

	 ethynyl	 H	 1.22

i1	

O

	 Cl	 F	 1.77

i2	
O

	 ethynyl	 H	 1.76
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Result and Discussion

QSAR Model development and validation
	 There were ten QSAR models obtained 
from multiple linear regression by using training set 
data. All models were listed in Table 2. It could be 
seen that model A1 until model A4 did not show 
a good correlation (R2 < 0.6) between activity 
and electronic descriptors based on regression 
coefficient value. Therefore, only model A6 to A10 
that can proceed to be validated using test set 
data. Statistical parameters in external validation 
was applied to obtain the best QSAR model. Four 
statistical parameters used in this validation which 
are regression coefficient (R2), external predictability 
(rm

2), ratio of observed and predicted (r2-r0
2/r2) and 

PRESS. The QSAR model was considered to be 
valid if the conditions such as R2 higher than 0.6, 
rm

2 more than or equal to 0.5, r2-r0
2/r2 lower than 0.1 

and the lowest PRESS. 

	 Table 3 showed the result of external 
validation of each model. It could be confirm that all 
models have a good external predictability based 
on rm

2 which is higher than 0.5 and model A10 has 
the highest R2, lowest r2-r0

2/r2 and lowest PRESS 
indicating that this model produced a good similarity 
toward Log IC50 experimental. The Fcalc/Ftable of model 
A10 determined to be 2.4067 showed that correlation 
between independent and anticancer activity has the 
95% significance of conviction level. Hence, model 
A10 was chosen as the best QSAR model and used 
to design new molecule that will have a better activity. 
The complete equation of model A10 was: 

Log IC50= -11.688+(-35.522×qC6)+(-21.055× qC10) 
+(-85.682×qC12)+(-32.997×qO22)+(-85.129× 
EHOMO)+(19.724×ELUMO)

	 The value of R2 = 0.8732 indicated that 
model A10 could give a significant correlation 
between independent variables and dependent 
variable which is anticancer activity. Independent 
variables that are included in model A10 are atomic 
net charge (C6, C10, C12, O22), HOMO and LUMO 
energy. This model will be used to design new 
derivative compounds that have a better activity 
compared with gefitinib as standard. Previous study 
showed that small electron withdrawing substituent 
group as R2 and bulkier substituent group as R3 
will increased the activity of compound. Both of 
substituent groups influenced net atomic charge of 
C6. Substituent group in R1 position was projected 
into the solvent to increase activity11. The HOMO 
energy related to the ionization potential and 
characterize the ability of the molecule to be attacked 
by electrophile. On the other side, the LUMO energy 
related to electron affinity31. Therefore, it could be 
apply as guidance in design new molecule. 

Design new compounds
	 Model A10 as the chosen QSAR model was 
utilized as reference in designing new compounds. 
It is shown in QSAR equation of model A10 that the 
more positive atomic charge (C6, C10, C12, O22) 
and HOMO energy made Log IC50 more negative. 
On the other hand, decreasing LUMO energy 
made anticancer activity increased. Therefore, 
recommendations to design new molecule were 
small electron withdrawing in position R2 and bulkier 
donating electron in position R3 to give a more positive 
net charge in atom C6.  Electron donating group will 
increase the HOMO energy and decrease the LUMO 
energy to get the more negative Log IC50. 

Table 2: Electronic descriptors and statistical parameters of QSAR model				 
Model	 Descriptors	 R	 R2	 PRESS

A1	 qC1,qC5,qC12,qO18,qO22,HOMO	 0.759	 0.576	 4.0864
A2	 qC1,qC5,qC13,qC16,qC19,HOMO	 0.713	 0.509	 7.1655
A3	 qC1,qC5,qC12,qC13,qC16,HOMO	 0.585	 0.342	 5.5107
A4	 qC1,qC5,qC12,qC13,qC16,HOMO	 0.692	 0.478	 5.1478
A5	 qC1,qC5,qC16,qC19,qC20,HOMO	 0.781	 0.609	 4.7681
A6	 qC4,qC6,qC12,qO22,HOMO,LUMO	 0.781	 0.61	 12.153
A7	 qC6,qC10,qC12,qO22,HOMO,LUMO	 0.801	 0.642	 4.6404
A8	 qC6,qC10,qC12,qO22,HOMO,LUMO	 0.804	 0.646	 4.6736
A9	 qC6,qC10,qC12,qO22,HOMO,LUMO	 0.811	 0.658	 4.4547
A10	 qC6,qC10,qC12,qO22,HOMO,LUMO	 0.797	 0.636	 4.6782
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Table 3: External validation of QSAR models using test set data

Model	 Descriptors	 R2	 rm
2	 r2-r0

2/r2	 Press	 Fcalc/Ftable

A5	 qC1,qC5,qC16,qC19,qC20,HOMO	 0.2521	 -0.3157	 20.1234	 2.1601	 3.0597
A6	 qC4,qC6,qC12,qO22,HOMO,LUMO	 0.2195	 -1.2565	 206.0114	 3.7867	 2.158
A7	 qC6,qC10,qC12,qO22,HOMO,LUMO	 0.8455	 0.7329	 0.0287	 1.6508	 2.4661
A8	 qC6,qC10,qC12,qO22,HOMO,LUMO	 0.8372	 0.7837	 0.0057	 1.5924	 2.5153
A9	 qC6,qC10,qC12,qO22,HOMO,LUMO	 0.8134	 0.7145	 0.0246	 1.8227	 2.6547
A10	 qC6,qC10,qC12,qO22,HOMO,LUMO	 0.8732	 0.7935	 0.0118	 1.5727	 2.4067

	 Table 4 showed list of newly designed 
molecules based on QSAR equation. It could be seen 
that hydrogen substituent in R1 position produced a 
better activity than the other substituent. It caused by 
hydrogen substituent that cause atomic net charge of 

O22 more positive than the other substituents. Only 
ten compounds that had Log IC50 predicted lower 
than b1 indicating that designed compounds had a 
potency as anticancer activity. 

Table 4: List of newly designed compounds
Code of	 Substituents			   Log IC50

compounds	 R1	 R2	 R3	

X-1	 H	 H	 H	 -10.0764
X-2	 	 H	 H	 1.113517

X-3	 	 H	 H	 1.245037

X-4	 	 H	 H	 1.199838

X-5	 	 H	 H	 1.340669

X-6	 	 H	 H	 2.377267

X-7	 O 	 H	 H	 1.523327

X-8	
O

	 H	 H	 0.715262

X-9	
O

	 H	 H	 1.443281

X-10	
O

	 H	 H	 2.551973

X-11	 CH3	 H	 H	 0.912015
X-12	 H	 NO2	 H	 -9.59521
X-13	 H	 CN	 F	 -9.6
X-14	 H	 CN	 Cl	 -9.375
X-15	 H	 CF3	 Br	 -9.4589
X-16	 H	 COOH	 CH3	 -9.5675
X-17	 H	 COOCH3	 CH2CH3	 -9.8814
X-18	 H	 COCH3	 OH	 -10.5939
X-19	 H	 COH	 OCH3	 -10.8824
X-20	 H	 N(CH3)2	 CH3	 -10.8066
	 b1			   0.3010*
*resulted from 20				  
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Lipinski rules filter
	 Ten of designed compounds that had lower 
Log IC50 was continue to observe bioavailability 
properties including adsorption, distribution, 
metabolism, and excretion (ADME) using Lipinski 
rule of five. This rules are an approach to predict 
drug-likeness of the molecule that should require 
some parameters. There were four parameters, 
consist of molecular weight should lower than 

500, Log P value no more than 5, hydrogen bond 
donors shouldn’t more than 5 and hydrogen bond 
acceptors didn’t more than 10. Table 5 displayed 
result of all designed compounds examined using 
Lipinski rule. Drug molecules should not have more 
than two violation in Lipinski rule19. All the tested 
compounds in this study were not found to violate 
the rule indicating these compounds had drug like 
properties. 

Table 5: Evaluation of Lipinski rule for all design compounds

Number of 	       		  Lipinski rule of five	

compounds	 Mass<500	 Log P<5	 H-bond donor<5	 H-bond acceptor<10	 Log IC50

X-1	 295	 2.85	 2	 6	 -10.0764
X-12	 340	 2.76	 2	 8	 -9.59521
X-13	 338	 2.86	 2	 7	 -9.6000
X-14	 334	 2.31	 2	 7	 -9.3750
X-15	 443	 2.78	 2	 6	 -9.4589
X-16	 352	 1.52	 2	 8	 -9.5675
X-17	 381	 3.20	 2	 8	 -9.8814
X-18	 353	 2.76	 3	 8	 -10.5939
X-19	 353	 2.67	 2	 8	 -10.8824
X-20	 352	 3.22	 2	 7	 -10.8066

Docking study
	 Following result from Lipinski rules filter, 
we analyze the binding site of EGFR firstly by 
redocking analysis of erlotinib. Then, we used that 

binding site to place the new compound. There 
were four compounds (X-1, X-18, X-19, X-20) was 
chosen to proceed with docking analysis, shown 
in Fig. 1. Those compounds had a better activity 

(a) (d)

(c) (b)

Fig. 1. 2D-illustration of protein-ligand interaction: (a) compound X-1 (b) compound X-18 (c) compound X-19 and (d) 
compound X-20. Green dashed line indicated of hydrogen bonds and yellow line indication of π-cation interactions
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than the other compounds due to Log IC50 value. 
Redocking analysis of erlotinib resulted binding site 
which took place on amino acid residue of Met769. 
This binding site was applied to new compounds 
and exhibited similar interaction that occur in the 
binding site. All compounds showed a hydrogen 
bond with amino acid Met769. Additional interaction 
was observed on compound X-18 and X-19. There 
is π-cation interaction on compound X-18 between 
ligand and Lys721 residue in hydrophobic pocket of 
EGFR. One hydrogen bond additional also occurred 
between compound X-19 and Lys721 residue. Many 
researches had been reported that EGFR inhibitor 
should have an interaction with Met769 residue7, 20 ,32 
and additional interaction will make interaction between 
ligand and protein stronger that could inhibit the 
anticancer activity in the EGFR mutant strains such 
as T790M mutation33.

Conclusion

	 Quantitative structure activity relationship 
between quinazoline and anticancer activity had 
been studied using electronic descriptors. The best 

QSAR model show a linear relation between atomic 
net charge (C6, C10, C12, O12), HOMO energy 
and LUMO energy. Those relation was applied to 
design new derivative compounds and produced 
ten compounds which had a better predicted 
activity than b1 as the most active in the existing 
quinazoline derivatives. Lipinski rule of five used to 
filter the compounds based on their physicochemical 
properties and all compounds didn’t violate the rule. 
Docking studies was used to screen out compound 
X-1, X-18, X-19, and X-20 that had better activity and 
resulted hydrogen bond interaction in critical place 
which is Met769 amino acid residue. This finding 
indicated that all new design compound could be 
used as target synthesized molecule.
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