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ABSTRACT 

 The shape and size dependent melting thermodynamics of metallic nanoparticles are 
predicted by application of bond theory model, free of any adjustable parameter. Thermodynamic 
properties like Debye frequency, Curie temperature, melting entropy and enthalpy of Al, Sn, In, Cu, 
β-Fe and Fe3O4 for spherical and non spherical shapes nanoparticles with different size have been 
studied. In this model, the effects of relaxation factor for the low dimension solids are considered. 
The depression in Debye frequency, Curie temperature, melting entropy and enthalpy is predicted. 
The model predictions are supported by the available experimental and simulation results. 

Keywords: Bond Theory, Cohesive Energy, Melting Thermodynamics, 
 Curie Temperature, Nanoparticles.

INTRODUCTION

 The physico chemical properties of the 
nanosolids are a function of its shape and size. 
Nanoparticles with diameter varying from a few 
nanometers to several hundreds of nanometers are 
of great interest for many technological purposes and 
primary research due to their very special physical 
and chemical properties, which are unlike from its 
bulk counterparts1-3. The surface energy of materials 
is a fundamentally important thermodynamic 
quantity to characterize the surface effect such as 
crystal growth, surface faceting, growth and stability 

of thin films, etc.4. Thermodynamic properties such 
as melting, surface melting, superheating, cohesive 
energy, specific heat capacity of nanomaterials 
also differ from those of corresponding bulk 
materials due to surface effects5-10. It is known that 
the melting temperature depression results from 
the high surface-to-volume ratio, and the surface 
substantially affects the interior bulk properties of 
these materials. Many theories have been discussed 
to explain the size dependent melting temperature 
like liquid drop model and Jiang’s model11-12. The 
variation of cohesive energy, Debye temperature, 
specific heat and energy band gap is studied for the 
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polyhedral shapes of nanosolids13-14. The melting 
temperature, Debye temperature are found to 
decrease as the particle size is reduced, however 
the band gap and the specific heat capacity are 
found to increase with decrease in particle size14. 
Neha et al.,15 derived a model to analyze the vacancy 
formation energy of size and shape dependent 
nanoparticle and predicted that as particle size 
reduces the vacancy formation energy increases. 
Experimental Research are carried out on size- 
and shape-dependent thermodynamic properties 
of the actual melting Process of Nanoparticles16. 
By chemical reduction methods, Ag nanospheres, 
nanowires, and nanotubes with different sizes were 
prepared; and differential scanning calorimetry was 
employed to determine the melting temperature, the 
melting enthalpy and the melting entropy, and it is 
investigated that melting thermodynamic properties 
decrease with the particle size decrease16.  Guisbiers 
et al.,17 calculated the melting enthalpy by adopting 
top down approach using classical thermodynamics 
to study the size and shape effects of nanostructured 
materials. It is reported that, particularly for size 
lower than 10 nm, size and shape effect on melting 
entropy. Based on Mott’s equation a physical model 
for size dependent melting enthalpy and entropy 
of Sn and Al nanocrystals are developed18, and 
shown the reduced entropy with size. A unified 
analytical model about the size dependent elastic 
modulus and vibration frequency of Cu, Ag, Si and 
TiO2 nanocrystalline metals, ceramics and nano 
scale semiconductors is explained based on the 
inherent strain and the binding energy change of 
nanocrystals19. It has been registered that when 
the size reduces to nanoscale, ferromagnetic solids 
may exhibit lower Curie temperature20. Based on 
cohesive energy, Fei et al.,20 reported the size and 
shape effects on Curie temperature of ferromagnetic 
nanoparticles. 

 In the latest decade, nanosolids have 
acknowledged more attention because of their 
special properties. All these developed theories and 
experimental facts are substantial to understand the 
nature of thermodynamic properties of nanosolids 
from several prospective. However, another important 
aspects of nanomaterials are shape and relaxation 
factor, which have not been enough attention to know 
the thermodynamic properties of nanomaterials. To 
understand the important role of shape, relaxation 

factor and bond energy, it is essential to study the 
bond energy model of nanomaterials.

 In this paper, a qualitative unified model free 
from any adjustable parameter to study the Debye 
frequency, Curie temperature, melting entropy and 
enthalpy for the size and shape dependent of the 
low dimension nanosolids is established based on 
number of bonds, relaxation factor and bond energy. 
The predictions of the theory for the depression of 
the Debye frequency, Curie temperature, melting 
entropy and enthalpy agree well with the results of 
molecular dynamics simulations and the available 
experimental data. 

Theoretical formulation
 It is registered21 that the distance between 
the surface atoms and the nearest interior atoms of 
solids is larger than the distance between the interior 
atoms. Meaning that, less than half of the volume 
of each surface atom is in the lattice, therefore 
more than half of the bonds of surface atoms are 
dangling bonds. The cohesive energy of the metallic 
nanoparticles is the sum of the bond energy of all 
the atoms. It is well known that the cohesive energy 
is an important factor to calculate the metallic bond, 
which equals to the energy that can divide the metal 
into isolated atoms by destroying all metallic bonds. 
The metallic bonds of each atom equal to the sum 
of interaction energies between the atom and the 
other atoms. In other words, each interior atom forms 
bonds with the surrounding atoms. The cohesive 
energy of a metallic crystal in any shape can be 
written as22.  

 
(1)

 Where, Ebond   is the bond energy and  β  is 
the number of bonds as every interior atom creates 
bonds with the surrounding atoms. The factor ½ is 
due to that each bond belongs to two atoms. 
On simplification, Eq. (1) may be written as 
       

 (2)

 Where  Ecoh(∝)=nβbond/ 2 and c is the shape 
factor, which is defined as the ratio of surface area 
of the particle in any shape to the surface area of 
spherical nanoparticle for the same volume23

 (3)
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 Where S is the surface area of the spherical 
nanoparticle with radius R and is given as S=4pR2. 
Here  S1 is the surface area of the nanoparticle in any 
shape, whose volume is the same as the spherical 
nanoparticle.

 Regarding the atoms of the nanoparticle 
are ideal spheres with radius r then the contribution 
to the particle surface area of each surface atom is 
pr2. The number of surface atom N is defined as the 
ratio of particle surface area to pr2. It is expressed 
as N=S1/ pr2.

On substitution, it can be written as: 
       

 (4)

 Since the volume of the nanoparticle is 
same as the volume of the spherical nanoparticle, 
therefore the number of total atoms n of the 
nanoparticle is the ratio of the particle volume to the 
atomic volume, which may be written as:
       

 (5)

From Eqs. (4) and (5), it may be written as 
   
       

   (6)
      
     
 According to the bond energy model, the 
cohesive energy of nanoparticles is the summation 
of contribution of inner shell and outer shell atoms24, 
which are defined as:         

 (7)

 Where,  is the relaxation factor and it is 
defined as the ratio between the dangling bonds and 
the total bond of the atoms.  In the low dimension 
of nanosolids, the different position of atoms are 
discussed24-25 and reported the value of relaxation 
factor may have the following 0, ¼, ½, and ¾. Thus, 
the relaxation factor is in the range of  0 ≤ g < 1.  
Hence, Eq. (7) may be written as

 (8)
 

 (9)

 (10)

 When, g =3/4, our Eq. (7) is same as Eq. 
(10), and for  g = 1/4,1/2 we get the Eqs. (8) and (9).   
It is reported that the cohesive energy has a linear 
relation with the melting temperature of the solids26 
which is expressed as: 
       

 (11)

 Therefore, the size and shape dependent 
melting temperature of nanomaterials should follow 
the similar relation given as
       

 (12)
       

 (13)
       

  (14)

 For ferromagnetic nanomaterials, the Curie 
temperature is the critical temperature, which is 
determined by the spin-spin exchange interaction27. 
Based on a mean field approximation, the thermal 
vibration energy has a proportional relationship with 
temperature. The thermal vibration energy at curie 
temperature, required to disorder the exchange 
interaction is a measure of the atomic cohesive 
energy27. As a first order approximation, the curie 
temperature can be regarded directly proportional 
to the cohesive energy, which is read as
         

 (15)
 
 Thus, from Eq. (7) and (15), we may write 
Curie temperature of nanomaterials of different 
shapes as
       

 (16)

 According to the Lindemann’s melting 
criterion, which state that a crystal melts when the root 
mean square displacement of atoms exceeds a certain 
fraction of the interatomic distance in the crystal, is 
valid for small particles. The relationship between the 
melting temperature and the Debye temperature of the 
bulk material28 can be expressed as: 
       

 (17)

 Where V is the volume per atom, and M is 
the molecular mass.
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 Since the Debye temperature is linearly 
related to the Debye frequency29, thus from Eq. (7) 
and Eq. (17), the relationship for Debye frequency of 
nanomaterials with its corresponding bulk materials 
is derived as
       

 (18)

 Now, we derive the size and shape 
dependent relationship of melting entropy of 
nanomaterials. The entropy of melting is due 
to vibration and electronic contribution30. For 
nanoparticles the electronic contribution is very 
small. Thus the melting entropy is mainly due to 
vibrational in nature18. 

 The vibrational entropy of melting of solid 
is related to the melting temperature as follow30 
       

 (19)

 Where C is a constant and R is a gas constant. 
Similarly, for nanoparticles it may be written as:
        

 (20)

 From Eqs. (19) and (20), the relationship 
of melting entropy of nanoparticle and its bulk 
counterpart is
       

 (21)

Or,        

 (22)

 The relation between melting entropy and 
melting enthalpy of solids29 is given as 

Likewise, for nanoparticle, we can write
       

 (23)

 Thus from Eqs. (22) and (23), we get the 
relationship of melting enthalpy of nanomaterials as:
     

 (24)

 Eqs. (22) and (24) are the more general 
relation for the size and shape dependent melting 
entropy and enthalpy of nanomaterials. The value of 

N/n depends upon the shape of the nanocrystal and 
can be determined by simple geometry as appeared 
in Table 131.

 Thus, from Eq. (22) and the expressions of 
N/n, we obtain the expression for melting entropy in 
spherical, tetrahedral, hexahedral, octahedral and 
film shapes, respectively as follows

 (25)
       

 (26)
       

 (27)
       

 (28)
       

 (29)

 Also, from Eq. (24), we achieve the 
expression for melting enthalpy in spherical, 
tetrahedral, hexahedral, octahedral and film shapes 
respectively are as follows

 (30)

 (31)

 (32)

 (33)
 

 (34)

RESULTS AND DISCUSSION

 The calculated results for size and shape 
dependent Curie temperature, Debye frequency, 
melting entropy and melting enthalpy, using model 
Eqs. (16), (18), (25), (26), (28), (29,) (30), (31), 
(33) and (34) are reported in Figs. 1-15. Input 
parameters required in calculations are given in 
Tables 1-217-18,31-36. To explain the phase stability 
of magnetic nanomaterials, Curie temperature is 
the most important physical property. Fig. 1 shows 
the findings of the of size and shape variation 
of the Curie temperature of Fe3O4 nanomaterial 
along with the experimental data37. It is reported 
that when the particle size is above 12 nm, the 
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effect of change in Curie temperature is moderate.  
However, when the size of the particle is less than 
12 nm, the variation of the Curie temperature 
is significant. On decreasing the size, the Curie 
temperature keeps on increasing. When the particle 
size is around 4 nm, the Curie temperature reduces 
from 860 K to 500 k in tetrahedral shape; for the 
octahedral, spherical and film shapes the effect is 
relatively less. It is also interesting to know that the 
shape of the ferromagnetic nanoparticles plays an 
important role on the Curie temperature variations 
with size, especially below the size range of  
12 nm. Furthermore, it is observed that the available 
experiment data37 are well located near to our 
predicted results in spherical shape as shown in 
Fig.1. It is clear from our predictions that Curie 

temperature is inversely proportional to the size of 
nanoparticle. The consistency of our findings with the 
available experimental data validates the success 
of our theory.  The decrement of Curie temperature 
is also supported by the theory that there exists the 
different degree of spin-spin interaction between the 
surface atoms and the inner atoms, which leads to 
the variation of the lattice vibration. As a result, it 
changes the Curie temperature of the ferromagnetic 
nanomaterials38.  But, in bulk materials, because of 
negligible fraction of surface atoms, the surface spin 
disorder is insignificant. On reducing the size, the 
ratio of surface atoms to the total atoms is increased; 
therefore, the effect of spin disorder becomes 
substantial and consequently decreases the Curie 
temperature of the ferromagnetic nanometals.

Table 1: N/n, Ratio of number of surface atoms N and total number of atoms n of 
polyhedron shapes of nanoparticles31 

Particle shape N n Edge length (a) N/n

Spherical 2 24 /D d  3 3/D d   4 /d D

Tetrahedral 2 24 3 /a dp  3 3(1/ 2) /a dp  1/32( 2) Rp  4 6 /d a

Hexahedral 2 224 /a dp  3 36 /a dp  1/3(4 / 3)Rp  4 /d a
Octahedral 2 28 3 /a dp  3 32 2 /a dp  1/3(4 / 2)Rp  2 6 /d a
Film - - - 4 / 3d D

Table 2: Input parameters used in the calculations17,18,32-36 

Parameters Al Sn In Cu Fe Fe3O4

d(nm) 0.3164 0.3724 0.324 0.256 0.248 0.222
S(∞)J/mol/K 9.6 9.22 6.75 9.76 6.82 -
H(∞)kJ/mol 10.7 7.08 3.283 13.263 - -

Fig. 1. Variations of size and shape dependent Curie 
temperature of Fe3O4 nanomaterial. The lines are model 

predictions based on Eq. (16) and green diamond symbols 
♦ are the experimental data37. The Curie temperature for the 

bulk material, TCurie (∞) is 860 K27.

 The variation of Debye frequency ratio 
with particle size is calculated using Eq. (18) for 
β-Fe nanocrystal. It is evident from Fig. 2, that on 
decreasing particle size, Debye frequency ratio 
decreases. The variation of Debye frequency in 
spherical, octahedral, tetrahedral and film shaped of 
Fe nanomaterial is depicted in Fig. 2. It is noted that 
when the size is less than 12 nm, the shape effect is 
dominant. When the particle size range is more than 
12 nm, there is a slight change in Debye frequency. 
The graphical representation, which shows the 
decreasing behaviour of Debye frequency of 
nanoparticle depends upon the shape and size of the 
nanosoloids. The comparative variations of Debye 
frequency ratio of Fe nanosolids for the different 
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values of ( = 0.25, 0.5 and 0.75) are presented in 
Fig. 3.  It is reported that when the relaxation factor 
increases, the decrease in Debye frequency ratio 
increases sharp on decreasing the particle size. It 
supports the fact that on increasing relaxation factor, 
surface area increases, as a result Debye frequency 
decreases. 

entropy in tetrahedral shape is sharp in comparison 
to octahedral, spherical and film shapes. It is clear 
from the Fig. 4, when the particle size is less than 
15 nm, the melting entropy decreases rapidly with 
decrease in size of the nanocrystal. However, when 
the particle size is more than 15 nm, the effect is 
not noticeable. Fig. 5 shows the graphical depiction 
of melting entropy of Al nanomaterial in spherical 
shapes for the relaxation factor  = 0.25, 0.5 and 0.75, 
and it is disclosed that on decreasing particle size, 
the melting entropy for  = 0.75 decreased significantly 
around D < 10 nm in comparison to = .25 and 0.5.

Fig. 2. Variations of size and shape dependent Debye 
frequency ratio of β-Fe nanomaterial. The lines are model 

predictions based on Eq. (18)

Fig. 3. Variations of size and relaxation factor dependent 
Debye frequency ratio of β-Fe nanomaterial in spherical 
shape. The lines are model predictions based on Eq. (18)

 We have extended the model theory to 
study the size and shape dependent melting entropy 
and enthalpy of Al, Sn, In and Cu, in the form of 
Eqs. (25), (26), (28), (29,) (30), (31), (33) and (34). 
Fig. 4 compares the model prediction with the 
available experimental data34 for melting entropy of Al 
nanosolid. The graphical representation shows that 
melting entropy decreases as the size decreases. 
The model projection is compared with the available 
experimental data in spherical shape and it is 
reported that our findings for spherical shape are 
consistent with the experimental observations34. The 
variations of melting entropy with size in tetrahedral, 
octahedral and film shapes are plotted in same 
graph for comparison purpose, and it is observed 
that as shape changes melting entropy also varies 
appreciably. The effect of decrease in melting 

Fig. 4. Variations of size and shape dependent melting 
entropy of Al nanomaterial. The lines are model predictions 

based on Eqs. (25), (26), (28) and (29); green diamond 
symbols ♦ are the experimental data34

Fig. 5. Variations of size and relaxation factor dependent 
melting entropy of Al nanomaterial in spherical shape. The 

lines are model predictions based on Eq. (25)

 Melting entropy calculated by Eqs. (25), 
(26), (28) and (29) for Sn nanosolid is reported in 
Fig. 6 along with the available experimental data33. 
It is obvious from the graph that the trend of melting 
entropy with size is reliable with the experimental 
observations. It is found that when the size D < 15 
nm, the experimental values are in between of our 
findings for spherical and tetrahedral shapes. Above 
D >15 nm, there is small variation in entropy as size 
increases. It is also obvious that on changing shapes 
behaviour, the variation of entropy changes with size. 
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The change in entropy is minimum for film shape 
and maximum for tetrahedral shape at a particular 
size of the Sn nanomaterial.  Melting entropy of Sn 
nanosolid for different values of relaxation factor is 
shown in Fig. 7, and it is predicted that on decreasing 
particle size melting entropy decreases with the 
increase of relaxation factor.

the experimental observations40. It is very certain 
from our projections that the model predictions 
are consistent to the simulations results in case of 
spherical nanoparticles. The comparison behaviour 
of melting entropy in all shapes are shown in Fig. 10, 
it is noticed that when particle size less than 10 nm, 
more effects are observed in comparison to when 
size more than 10 nm. 

Fig. 6. Variations of size and shape dependent melting 
entropy of Sn nanomaterial. The lines are model 

predictions based on Eqs. (25), (26), (28) and (29); green 
diamond symbols ♦ are the experimental data33

Fig. 7. Variations of size and relaxation factor dependent 
melting entropy of Sn nanomaterial in spherical shape. The 

lines are model predictions based on Eq. (25)

 Figure 8 presents the model predictions 
of Eqs. (25), (26), (28) and (29) along with the 
available experimental data for melting entropy of 
In nanosolid as a function of size.  As it is evident 
from the graph that when the size range is less than  
12 nm, melting entropy shows a big change 
with size. On the other hand, when size is more 
than 12 nm, a very small change is observed. 
As we see for the spherical nanosolids, the 
experimental observations39 are very close to our 
model predictions. It is also observed that the change 
depends upon the shape of the nanoparticles; for 
tetrahedral shape change is maximum and for film 
it is minimum; and for the rest in between them. The 
decreasing nature of melting entropy of Cu nanosolid 
with size is projected, as seen in Fig.10 along with 

Fig. 8. Variations of size and shape dependent melting 
entropy of In nanomaterial. The lines are model predictions 

based on Eqs. (25), (26), (28) and (29); green diamond 
symbols ♦ are the experimental data39

Fig. 9. Variations of size and relaxation factor dependent 
melting entropy of In nanomaterial in spherical shape. The 

lines are model predictions based on Eq. (25)

Fig. 10. Variations of size and shape dependent melting 
entropy of Cu nanomaterial. The lines are model 

predictions based on Eqs. (25), (26), (28) and (29); Star 
symbols ⁎  are the experimental data40
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 Figures 11-14 show the predictions of 
melting enthalpy along with the experimental data 
[33-34, 39-40] with size and shape by using Eqs. 
(30), (31), (33) and (34). The melting enthalpy nature 
of Al nanosolid with decreasing size is projected 
in Fig 11. It is apparent that the calculated results 
from Eq. (30) for spherical nanosolid are very close 
to the available experimental data34 in spherical 
shape; specially, when the size is close to 20 nm 
and little deviation to octahedral shape on reducing 
size. The size and shape dependence of melting 
entropy of Sn nanomaterial is shown in Fig. 12 along 
with the experimental data33. However, we see the 
slight variation of enthalpy with the experimental 
values on lower size range, but the trend is more 

Fig. 11. Variations of size and shape dependent melting 
enthalpy of Al nanomaterial. The lines are model 

predictions based on Eqs. (30), (31), (33) and (34); Star 
symbols ⁎ are the experimental data34

Fig. 12. Variations of size and shape dependent melting 
enthalpy of Sn nanomaterial. The lines are model 

predictions based on Eqs. (30), (31), (33) and (34); Star 
symbols ⁎ are the experimental data33

Fig. 13. Variations of size and shape dependent melting 
enthalpy of In nanomaterial. The lines are model 

predictions based on Eqs. (30), (31), (33) and (34);  
Star symbols are the experimental data39.

Fig. 14. Variations of size and shape dependent melting 
enthalpy of Cu nanomaterial. The lines are model 

predictions based on Eqs. (30), (31), (33) and (34); green 
diamond symbols ♦ are the experimental data40

or less same. The variations of melting enthalpy of 
In and Cu nanosolids are projected in Figs. 13-14 
along with the available experimental data39-40. It is 
certain that as we decrease the size the melting 
enthalpy decreases. One can observe that the shape 
influences a lot in calculation of melting enthalpy. In 

case of tetrahedral shape, the maximum deviation is 
observed in comparison to octahedral, spherical and 
film shapes. The competitive behaviour of melting 
enthalpy of Cu nanometal  with relaxation factor   
g= 0.25, 0.5 and 0.75 is shown in Fig. 15. It is 
observed that on increasing the relaxation factor, the 
melting enthalpy decreases sharply on reducing the 
size of the nanomaterials. 

Fig. 15. Variations of size and relaxation factor dependent 
melting enthalpy of Cu nanomaterial in spherical shape. 

The lines are model predictions based on Eq. (30)
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CONCLUSION 

 We proposed a simple model free from any 
adjustable parameter based on bond energy theory. 
In low dimension nanoscale solids, the relaxation 
factor is incorporated in our theory to calculate 
the Curie temperature, Debye frequency, melting 
entropy and the melting enthalpy of the nanosolids 
in different shapes such as spherical, octahedral, 
tetrahedral and film shapes. It is observed that 
all these effects are more appreciable when the 
particle size is less than around 15 nm. Moreover, 
it is observed that the effects of shape influence 
more when the size less than 15 nm. Also, is 
verified that on increasing relaxation factor, all these 

properties increase appreciable on decreasing 
size. In general, we have seen that with decreasing 
size, the relative significance of all these effects 
increases. The reasonable agreement between the 
model predictions and the available experimental 
and simulation results are found. Our model theory 
has potential applications for the scholars who are 
engaged in experimental research. 
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