

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

www.orientjchem.org

ISSN: 0970-020 X CODEN: OJCHEG 2018, Vol. 34, No.(4): Pg. 1719-1734

Industrial Applications of Clay Materials from Ghana (A Review)

R. B. ASAMOAH¹, E. NYANKSON¹, E. ANNAN¹, B. AGYEI-TUFFOUR¹, J. K. EFAVI¹, K. KAN-DAPAAH², V. A. APALANGYA³, L. N. W. DAMOAH¹, D. DODOO-ARHIN¹, E. K. TIBURU², S. K. KWOFIE², B. ONWONA-AGYEMAN and A.YAYA^{1,4*}

¹Department of Materials Science & Engineering, CBAS, University of Ghana, Legon, Ghana. ²Department of Biomedical Engineering, CBAS, University of Ghana, Legon, Ghana. ³Department of Food Process Engineering, CBAS, University of Ghana, Legon, Ghana. ⁴Institut des Matériaux Jean Rouxel (IMN), UMR 6502, CNRS, Université de Nantes, France. *Corresponding author E-mail: ayaya@ug.edu.gh

http://dx.doi.org/10.13005/ojc/340403

(Received: June 29, 2018; Accepted: July 30, 2018)

ABSTRACT

Clay minerals are phyllosilicate groups naturally found in soils in all parts of the world. They have proven to be among the most essential industrial minerals because of their unique physicochemical properties and versatile applications within a wide range of fields including ceramics, construction, and environmental remediation, biomedical as well as cosmetics. Clay minerals are also primary to the production of other materials such as composite for secondary applications. In Ghana, clay mineral deposits are commonly found in several areas including soil horizons as well as geothermal fields and volcanic deposits, and are formed under certain geological conditions. This review seeks to explore the geographical occurrence and discusses the current uses of various local clay materials in Ghana in order to highlight opportunities for the utilization of these materials for other applications.

Keywords: Clay minerals, Ceramics, Properties, Application, Ghana.

INTRODUCTION

Though clay deposits are ubiquitous in Ghana and have important domestic applications, their physicochemical properties for such application has not been fully explored.1 The importance of clay is demonstrated mainly in various applications that are documented as well as those classified as traditional uses without prior scientific knowledge.² In Ghana, the use of clay extend from traditional uses such as geophagy to contemporary use in pottery, construction and water purification. Clay is overly distributed and each deposit has unique properties that can be tailored towards a particular application. The clay deposits in the regions are given in Fig. 1. According to Kesse (1985), clays are mainly of either alluvial or residual sources and are formed from rock dissolution and sedimentation.3 The deposits may be found covered by a few meters thickness of superficial soil such as humus. The

This is an Open Access article licensed under a Creative Commons Attribution-Non Commercial-Share Alike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/), which permits unrestricted BY NC SA Non Commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

various deposits of clay shown in Fig. 1, consist of different kinds of clay minerals as studied by the Ghana Geological Survey Department-Ceramics Laboratory (1999). According to the study, clay deposits possesses properties relating to weight shrinkage, moisture content, plasticity and raw colour.⁴ Structurally, they are natural layered material primarily occurring in soils with relatively smaller particle size components.⁵ The chemical structures of clay minerals are dominated by arrays of planar SiO, and Al₂O₃ structural hydroxyls and water. Also, different materials such as feldspar, mica and quartz, are mostly produced from weathered rocks and other volcanic activities. These rocks are formed under high temperatures and pressure beneath the earth surface.⁶ The dissolution of primary rock minerals release ions which crystalize in aqueous environment for the formation of these clays. Even though clay are mostly associated with soil, the components of clay is generally porous and normally filled with water and air compared to ordinary soil which is amorphous in nature and disaggregated.7 Other contaminants may also complicate the formation of clay and this may result in the non-homogeneous nature of the mineral particles. An important adage of the association of clay with soil is that mineral particles can diffuse into the pore structures of the clay materials hence making it plastic and introduces different properties and application for the material.⁸ They also have varying water content and this enables their swelling ability which results in their plasticity characteristics.^{9,10} The properties of clay also allows molding and shaping leading to cohesiveness in the material.¹¹ The properties of clay materials may be further impacted by modifying their structure through processes such as composite formulations. Modified clays consequently result in a charge and surface properties suitable for nanocomposites, organoclays, acid and induced clays synthesis.12,13 Clay-polymer composites have also altered chemical constituents and structure of nanoclays for various applications. The applications of modified clay just as natural clay are greatly achieved by knowledge of the modification procedure and its associated properties.14

The applications of clays are numerous spanning across disciplines such as geology, construction, environmental remediation, pharmaceutical and cosmetics industries. These applications continue to improve through synthesis of other materials such as zeolites and clay mineralpolymer nano-composites using clay as template.¹⁵ In Ghana, clay mineral deposits are densely dispersed across the entire land area. Every region in Ghana has a measure of clay deposits.¹⁶ The local clays differ by colour and other properties such as cohesion, viscosity and fired strength. The geographical location for each clay materials confer unique physico-chemical properties which ultimately determines the type of material produced and its application.¹⁷ This paper reviews local clays in Ghana and their diverse applications. The current review provides the characteristic of clay minerals deposits in the country to relate their usefulness for the ceramics, environmental remediation and healthcare disciplines.

Synthesis Methods; Using Clay as Template

The properties of clay minerals are also subject to change through modification.¹⁹ The structure and composition of clay minerals can be altered to obtain diverse functionalities. Kaolinite consist of alternating octahedral and silicate tetrahedral structures. The tetrahedral sheets (SiO₄) and octahedral sheets $(AIO_{2}(OH)_{4})$ are bonded by Van der Waals forces and hydrogen bonding.20 Cheng (1998) ²¹, modified the structure of kaolin by the introduction of potassium acetate in the interlayer spacing of kaolin clay mineral. Potassium acetate breaks the interconnecting Van der Waals forces and allows the formation of hydrogen bonding between adjacent layers. The interlayer spacing of kaolin then increases from about 7.8 Å to about 14.70 Å.21 Grafting reactions of covalent bonds can sequentially take place between the hydroxyl of octahedral and organic molecules (Al-O-C) which consequently alters the properties of clay mineral such as thermal, chemical, surface area, etc.²² The modified clay has characteristics which is significantly different from the unmodified counterpart. For instances, properties such as clay porosity may be altered. The change in clay porosity influences its use in applications such as adsorption of organic compounds.²³ Ion exchange is a preferred medium for modifying clay with organic molecules. Cations are not strongly bonded to clay minerals hence small molecule cations can replace them. Surfactants containing short hydroxyl groups, benzyl, aliphatic chains and long ones are used to increase basal spacing between layers.²⁴ The ion exchange, changes surface properties of clay minerals which can act as adsorbents. Intercalation of clay by organic molecules has led to well defined materials of extreme structural and chemical performance for example in clay-polymer nanocomposite. Clay minerals can also be modified through acid-induced and salt-induced methods which are good adsorbents in catalysis for degrading oil. Thermally and mechanically induced clay is another form of modified clay. Local clay minerals in Ghana have been modified through a number of processes such as hydrothermal synthesis¹⁵ and composite preparations^{5,12,13,14} to create other materials such as zeolites, electroporcelain insulators, etc. Additionally, modified clays can have applications in medicine, energy and environment.

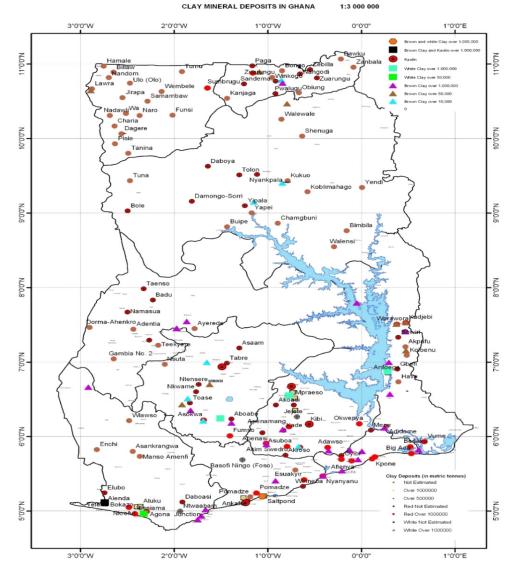


Fig. 1. A map of the Clay mineral deposits in Ghana. Source: Geological Survey Department, Ghana, showing the clay deposits spread across the entire land area. The country has 238,535km2 land size with significant amount of clay reserves in commercial quantities¹⁸

Clay Minerals distribution in Ghana

The clay minerals in Ghana are deposited across all the regions in many areas of the entire land mass, Table 1. According to the findings, the clays in Ghana are mainly of either alluvial or residual sources. Clays are formed from rock dissolution and sedimentation and may cover few meters from the superficial soil; normally humus.²⁷

Greater Accra region Alajo 48 600 Tema Afienya East 24 194 661 Arshaiman 18 677 175 Tema Afienya East 24 194 661 514 894 Prampram B 74 380 Prampram C 43 771 Ada Kaseh/Bedaku 42 661 830 Brong Ahato Region Susan Valley 661 185 Bolgatanga Gambibigo 12 419 998 Sunyani Adantia 530 665 Sumbrungu 4 020 Sumbrungu 4 020 Sunyani Adantia 530 665 Sumbrungu 4 020 Sumbrungu 4 020 Kawkaw Framse 1 680 Asamankese Asamankese 840 000 Kawkaw Framse 4 1 687 Kaim Abonose 4 087 Akim Abonase 4 561 00 Nkawkaw Framse 4 1 87 Akim Abonase 4 867 00 Akim Abonase 4 861 00 Cape Ochiso 1 285 084 Akim Abonase 4 861 00 Akim Abonase 4 51 702 Cape Ochiso 1 541 702 Kasamankese	Area	Location	Reserve (Tones) Area	Location F	Reserve (Tones)
region Alajo 48 600 Tema Afienya East 24 194 681 Ashaiman 18 677 175 21 779 929 Mobole 514 894 Prampram A 74 380 Ada Kaseh/Bedaku 42 661 830 Prampram C 43 771 Ada Kaseh/Bedaku 42 661 830 Accra Oyibi 6 735 Jave Belgatanga Gambiogo 12 419 988 Brong Ahato Region Susan Valley 661 183 Big Ada 51 242 553 Sunyani Adantia 530 665 Upper Region 8 477 333 Navrongo Sobolo 649 997 Eastern Region Adinima/Asuoya 2 400 099 Asamankese Asamankese Nkawkaw Framase 41 687 Asamankese Akim Swedru 3173 335 Kibi Tamfoi 12 85 084 Akim Mosaso 4 661 000 Akim Swedru 3173 335 Central Region Nkuntraw 7 527 168 Simbrolo Simbrolo 31 700 200 Atara kwa 195 000 Gomaa Gomaa Brolo	Greater Accra					
Alajo 48 600 18 677 175 Tema Afienya East 21 94 681 Arampram A 21 779 929 Mienya Mest 5 514 894 Prampram B 74 380 Mobole 15 000 000 Prampram B 74 380 Mobole 15 000 000 Prampram B 74 380 Big Ada 51 242 553 Accra Kwabenya 2 326 596 Upper Region 12 419 988 Brong Ahato Region Susan Valley 661 188 Bolgatanga Gambiolog 12 419 989 Sunyani Adantia 530 665 Navrongo Sobolo 649 997 Eastern Region Adinima/Asuoya 2 240 099 Asamankese 840 000 Nawkaw Framase 41 887 Asamankese 840 000 Nakawkaw Framase 41 887 Asamankese 840 000 Kakukaw Framase 41 887 Asamankese 840 000 Kakum Valley 10 27 000 Ochins o 10 27 000 Ochins o 10 27 000 Cast Ampia Ajumako <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Prampram A Prampram D Prampram C 21 779 929 43 771 Mobole 15 000 000 Prampram C Mono 43 771 Ada Kaseh/Bedaku 42 661 830 Big Ada 51 242 553 Big Ada 51 242 553 Accra Kwabenya 2 326 596 Upper Region Elogatanga Brong Ahafo Region Susan Valley 661 188 Bolgatanga Gambibigo 12 419 998 Sunyani Adantia 530 665 Tono 8 477 333 Tono 8 477 333 Kawkawa Framase 41 687 Asamankese 840 000 Akim Swedru 33 173 355 Kibi Tarmosi 12 85 084 Akim Awisa 12 85 553 Akim Awisa 12 85 553 Anyinam Mosaso 444 000 Akim Awisa 10 27 000 Okwanya 3 4 662 222 Central Region Nkuntraw 7 527 168 Essuakyir No.1 80000 Simbrolo 3 100 000 Atam Waley 4 2800 Simbrolo 3 100 000 Simbrolo 3 100 000 Atara Kwa 195 000	0	Alajo	48 600	Tema		24 194 681
Prampram D Prampram C Kpone 74 380 10 960 115 Oyibi Ada Kaseh/Bedaku Big Ada 42 661 830 51 242 553 Accra Waybenya 2 325 596 Upper Region Big Ada 51 242 553 Accra Susan Valley 661 186 Dolgatanga Gambibigo 12 419 998 Sunyani Adantia 530 665 Upper Region Sumbrungu 4 020 Sunyani Adantia 530 665 Navrongo Sobolo 649 997 Eastern Region Adinima/Asuoya 2 240 099 Abepotia Asamankese Apimmang 2 801 250 Nkawkaw Framase 41 687 Akim Awisa 12 85 53 Anyinam Mosaso 4081 434 Akim Oda Akim Awisa 12 27 000 Central Region Nkuntraw 7 527 168 Kasuu 43 462 222 Central Region 18 00 000 Simbrolo 3 100 000 Cape Ochiso 15 4400 Akim Avisa 5 1702 127 Coast Ampia Ajumako 195 000 Gomae Gomoa Brofo 288 99 Domenase 3 952 551			18 677 175			5 514 894
Prampram C 43 771 Ada Kaseh/Bedaku 42 661 830 Accra Kpone 0 960 115 Big Ada 51 242 553 Brong Ahafo Region Susan Valley 661 188 Bolgatanga Gambibigo 12 419 998 Sunyani Adantia 530 665 Sumbrungu 4 020 Sunyani Adantia 530 665 Sumbrungu 4 020 Sunyani Adantia 530 665 Sumbrungu 4 020 Sunyani Adantia 530 665 Tono 8 477 333 Navrongo Sobolo 649 997 Asamankese 840 000 Nkawkaw Framase 41 687 Akim Swedru 33 173 355 Kibi Tamfoi 12 85 084 Akim Awisa 12 85 553 Anyinam Mosaso 444 000 Akim Awisa 12 85 563 Anyinam Mosaso 444 700 Akim Awisa 12 85 563 Anyinam Mosaso 142 000 Simbrofo 3 100 000 Atar Kakum Valley 42 800 Simbrofo					Mobole	15 000 000
Kone 10 960 115 Big Ada 51 242 553 Accra Kwabenya 2 326 596 Upper Region Susan Valley 661 188 Bolgatanga Gambibigo 12 419 998 Sunyani Adantia 530 665 Navrongo Sobolo 649 997 Eastern Region Adihima/Asuoya 2 240 093 Asamankese Apinmang 2 801 250 Nkawkaw Framase 41 687 Akim Awisa 1 285 553 Akim Awisa 1 285 553 Anyinam Mosaso 444 000 Akim Awisa 1 285 563 Akim Awisa 1 285 563 Anyinam Mosaso 444 000 Akim Oda Akim Awisa 1 285 553 Aran kwa 12 000 000 Akim Awisa 1 800 000 Simbrofo 3 100 000 Atran kwa 12 000 000 Kasua 51 702 127 707 3 6877 Cape Ochiso 15 441 702 Kasua 51 702 127 707 Agaiga 259 200 Koaliga 259 200 Marusa Nyanyanu 1 07191				Ada	Kaaah/Dadaku	40.661.000
Óyibi 6 735 Accra Kwabenya 2 326 596 Brong Ahafo Region Susan Valley 661 188 Tanoso 12 419 998 Sunyani Adantia 530 665 Navrongo Sobolo 649 997 Eastern Region Adihima/Asuoya 2 240 099 Asamankese Agamankese 84 000 Nawrongo Sobolo 649 997 Asamankese 840 000 Akim Swedru 33 173 335 Kibi Tamtoi 1 285 084 Akim Awisa 1 285 553 Akim Awisa 1 285 553 Anyinam Mosaso 444 000 Akim Oda Adawso 1 027 000 Central Region Nkuntraw 7 527 168 Essuakyir No.2 1 800 000 Cape Ochiso 15 441 702 Kasua 51 702 127 Coast Ampia Ajumako 195 000 Wineba Nyanyanu 1 107 191 Ajumaku Essuakyir No.1 6 800 000 Gomoa Gomoa Brofo 268 989 Dunkwa Subin Valley 162 000		•	-	Aua		
Accra Brong Ahafo Region Kwabenya 2 326 596 Lipper Region Upper Region Susan Valley Tanoso 16 200 200 Adantia 661 188 530 665 Gambibigo Sumbrungu 12 419 998 4 020 Sunyani Addihima/Asuoya 2 240 099 Tono 8 477 333 Eastern Region Adihima/Asuoya 7 614 793 Abepotia Asamankese 4 1687 Asamankese Asamankese 8 400 000 Akim Swedru 33 173 335 Nkawkaw Framase 41 687 Asamankese Atim Abonase 4 620 1250 Anyinam Mosaso 4 081 434 Akim Oda Akim Abonase 1 285 553 Anyinam Mosaso 4 081 434 Akim Oda Adawso 1 027 000 Okwanya 34 862 222 Central Region Nkuntraw 7 527 168 Kakum Valley 42 800 Simbrofo 1 800 000 Qape Ochiso 15 441 702 Kasua 51 702 127 20 80 93 20 93 268 989 20 93 268 989 20 93 268 989 20 93 268 989 20 93 268 989 20 979 38 659 452 38 694 38 694 38 694 <td< td=""><td></td><td></td><td></td><td></td><td>Dig Ada</td><td>51 242 555</td></td<>					Dig Ada	51 242 555
Brong Ahafo Region Sunyani Susan Valley Tanoso Adantia 661 18 530 665 Upper Region Bolgatanga Sumbrungu Tono 12 419 998 4 020 8 477 333 Sunyani Adantia 530 665 Navrongo Sobolo 649 997 Eastern Region Nkawkaw Adihima/Asuoya Abepotia 2 240 099 7 614 793 Asamankese Asamankese 840 000 Apinmang 2 801 250 Nkawkaw Framase 41 687 Akim Swedru 31 73 335 Kibi Tamfoi 1 285 084 Akim Oda Akim Swedru 31 73 335 Anyinam Mosaso 444 000 Akim Oda Akim Abonase 4 561 000 Akum Valley 42 800 Akim Abonase 4 561 000 Adawso 1 027 000 Central Region Nkuntraw 7 527 168 Essuakyir No.2 1 800 000 Simbrofo 31 00 000 Atran kwa 12 000 000 Atran kwa 162 000 Komenda Domenase 3 952 551 Aunta Kuhu Essuakyir No.1 6 800 000 Gomoa Gomoa Brofo 268 989 Dunkwa Subin Valley 162 000 <td< td=""><td>Accra</td><td></td><td></td><td></td><td></td><td></td></td<>	Accra					
Sunyani Tanoso Adantia 16 200 200 530 665 Sumbrungu Tono 4 020 8 477 333 Sunyani Adantia 530 665 Navrongo Sobolo 649 997 Eastern Region Adihima/Asuoya Abepotia 2 240 099 7 614 793 Asamankese Asamankese 840 000 Apimang 2 801 250 Nkawkaw Framase 41 687 Akim Swedru 31 173 335 Kibi Tamfoi 1 285 084 Akim Awisa 1 285 553 Anyinam Mosaso 444 000 Akim Awisa 1 285 553 Anyinam Mosaso 444 000 Akim Awisa 1 287 000 Central Region Nkuntraw 7 527 168 Essuakyir No.2 1 800 000 Cape Ochiso 15 441 702 Kasua 51 702 127 Coast Ampia Ajumako 195 000 Wineba Nyanyanu 1 107191 Ajumaku Essuakyir No.1 6 80 000 Gomoa Domenase 3 952 551 Northern Region Alenda Wharf 2 956 522 Sekondi Inchandam 266 600 Alenda	Brong Ahafo Regior			Upper Region		
Sunyani Adantia 530 665 Tono 8 477 333 Navrongo Sobolo 649 997 Eastern Region Adihima/Asuoya 2 240 099 Abepotia 7 614 793 7 614 793 Asamankese Aginmang 2 801 250 Nkawkaw Framase 41 687 Akim Awisa 3 173 335 Anyinam Mosaso 444 000 Akim Awisa 1 285 553 Anyinam Mosaso 444 000 Akim Awisa 1 287 000 Central Region Nkuntraw 7 527 168 Essuakyir No.2 1 800 000 Kakum Valley 42 800 Kasua 51 702 127 Coast Ampia Ajumako 195 000 Wineba Nyayanu 1 107191 Ajumaku Essuakyir No.1 6 800 000 Gomoa Brofo 268 989 Dunkwa Subin Valley 162 000 Komenda Domenase 3 952 551 Tamale Koblimahako 9 455 892 Kunkuo 234 582 Naryaei 38 694 Western Region Alenda Wharf 2 956 522 Sekondi I		-		Bolgatanga		12 419 998
Navrongo Sobolo 649 997 Eastern Region Adihima/Asuoya Abepotia 2 240 099 7 614 793 Asamankese Asamankese Adamakese Apinmang Akim Swedru 33 173 335 Nkawkaw Framase 41 687 Akim Swedru 33 173 335 Kibi Tamfoi 1 285 084 Akim Avisa 1 285 553 Anyinam Mosaso 4 081 434 Akim Oda Adawso 1 027 000 Central Region Nkuntraw 7 527 168 Kim Abonase 4 680 000 Simbrofo 3 100 000 Cape Ochiso 15 441 702 Kasua 5 17 02 127 Coast Ampia Ajumako 195 000 Wineba Bornoa Bornoa 268 989 Dunkwa Subin Valley 162 000 Komenda Domenase 3 952 551 Northern Region Kobimahako 9 455 892 Kunkuo 234 582 Kpaliga 259 200 Tamale Shama 7 163 082 Tamale Kobimahako 9 455 892 Sekondi Inchandam 266 600 Minuku	a				•	
Eastern Region Adihima/Asuoya 2 240 099 Asamankese Adu 00 Nkawkaw Framase 41 687 Asamankese Adin mwisa 1 285 084 Anyinam Mosaso 444 000 Akim Swedru 33 173 335 Anyinam Mosaso 444 000 Akim Awisa 1 285 553 Anyinam Mosaso 444 000 Akim Awisa 1 285 553 Akim Awasa 1 027 000 Okwanya 34 862 222 Central Region Nkuntraw 7 527 168 Essuakyir No.2 1 800 000 Atran kwa 12 000 000 Mprumen 35 877 Okwanya 34 862 222 Central Region Nkuntraw 7 527 168 Essuakyir No.2 1 800 000 Atran kwa 12 000 000 Wineba Simbordo 3 100 000 Ajumaku Essuakyir No.1 6 800 000 Gomoa Gomoa Brofo 268 989 Dunkwa Subin Valley 162 000 Komenda Domenase 3 952 551 Northern Region Alenda Whart 2 956 522 Sekondi	Sunyani	Adantia	530 665		Iono	8 477 333
Abepotia 7 614 793 Asamankese Apimang 2 801 250 Nkawkaw Framase 41 687 Akim Swedru 33 173 335 Kibi Tamfoi 1 285 084 Akim Swedru 33 173 335 Anyinam Mosaso 444 000 Akim Abonase 4 561 000 Abornosu 4 081 434 Akim Oda Akawso 1 027 000 Okamosu 4 081 434 Akim Oda Adawso 1 027 000 Okamosu 4 081 434 Akim Oda Adawso 1 00000 Kakum Valley 42 800 Simbrofo 3 100 000 Atran kwa 12 000 000 Mprumen 35 877 Cape Ochiso 15 441 702 Kasua 51 702 127 Coast Ampia Ajumako 195 000 Wineba Nyanyanu 1 107191 Ajumaku Essuakyir No.1 6 800 000 Gomoa Gomoa Brofo 268 989 Dunkwa Subin Valley 162 000 Komenda Domenase 3 952 551 Northern Region Alenda Wharf				Navrongo	Sobolo	649 997
Abepotia 7 614 793 Asamankese Apimang 2 801 250 Nkawkaw Framase 41 687 Akim Swedru 33 173 335 Kibi Tamfoi 1 285 084 Akim Swedru 33 173 335 Anyinam Mosaso 444 000 Akim Abonase 4 561 000 Abornosu 4 081 434 Akim Oda Akawso 1 027 000 Okamosu 4 081 434 Akim Oda Adawso 1 027 000 Okamosu 4 081 434 Akim Oda Adawso 1 00000 Kakum Valley 42 800 Simbrofo 3 100 000 Atran kwa 12 000 000 Mprumen 35 877 Cape Ochiso 15 441 702 Kasua 51 702 127 Coast Ampia Ajumako 195 000 Wineba Nyanyanu 1 107191 Ajumaku Essuakyir No.1 6 800 000 Gomoa Gomoa Brofo 268 989 Dunkwa Subin Valley 162 000 Komenda Domenase 3 952 551 Northern Region Alenda Wharf	Eastern Region	Adihima/Asuova	2 240 099		Asamankese	840 000
Nkawkaw Framase 41 687 Akim Swedru 33 173 335 Kibi Tamfoi 1 285 084 Akim Awisa 1 285 553 Anyinam Mosaso 444 00 Akim Awisa 1 285 553 Anyinam Mosaso 4081 434 Akim Oda Akim Awisa 1 027 000 Abomosu 4 081 434 Akim Oda Adawso 1 027 000 Okwanya 34 862 222 Central Region Kakum Valley 42 800 Simbrofo 3 100 000 Aran kwa 12 000 000 Mprumen 35 877 Case Simbrofo 3 58 77 Coast Ampia Ajumako 195 000 Wineba Nyanyanu 1 107191 Ajumaku Essuakyir No.1 6 800 000 Gomoa Gomoa Brofo 268 989 Dunkwa Subin Valley 162 000 Komenda Domenase 3 952 551 Northern Region Tamale Kpaliga 2 956 522 Sekondi Inchandam 2 66 600 Aluku 17860 944 Shama 7 163 082	Lastern negion			Asamankese		
Anyinam Mosaso Abomosu 444 000 4 081 434 Akim Abonase Akim Abonase 4 561 000 Adawso Okwanya Central Region Nkuntraw 7 527 168 Kakum Valley Akim Abonase 4 561 000 Adawso Nkuntraw 7 527 168 Kakum Valley Essuakyir No.2 1 800 000 Mprumen 35 877 Cape Ochiso 15 441 702 Kasua 51 702 127 Coast Ampia Ajumako 195 000 Wineba Nyanyanu 1 107191 Ajumaku Essuakyir No.1 6 800 000 Gomoa Gomoa Bomoa 268 989 Dunkwa Subin Valley 162 000 Komenda Domenase 3 952 551 Northern Region Koblimahako 9 455 892 Kpaliga Kunkuo 234 582 Western Region Alenda Wharf 2 956 522 Sekondi Inchandam 266 600 Aluku 17860 944 Takoradi Diccove (Mfruma) 9 469 979 Teleku Bokase 74 456 122 Wasa Akropong 614 249 Nim Zimirim 9 343 117 Wasa Asankraggwa 8 629 200 <tr< td=""><td>Nkawkaw</td><td></td><td>41 687</td><td></td><td></td><td>33 173 335</td></tr<>	Nkawkaw		41 687			33 173 335
Abomosu 4 081 434 Akim Oda Adawso Adawso Okwanya 1 027 000 34 862 222 Central Region Nkuntraw 7 527 168 Adawso Okwanya 1 027 000 34 862 222 Central Region Nkuntraw 7 527 168 Essuakyir No.2 1 800 000 Atran kwa 12 000 000 Mirofo 3 100 000 Simbrofo 3 100 000 Cape Ochiso 15 441 702 Kasua 51 702 127 Kasua 51 702 127 Coast Ampia Ajumako 195 000 Wineba Nyanyanu 1 107191 Ajumaku Essuakyir No.1 6 800 000 Gomoa Gomoa Brofo 268 989 Dunkwa Subin Valley 162 000 Komenda Domenase 3 952 551 Northern Region Alenda Wharf 2 956 522 Sekondi Inchandam 266 600 Aluku 17860 944 Takoradi Inchandam 266 600 Shama 7 163 082 Nim Zimirim 9 343 117 Wasa Asankragywa 8 629 200 Enchi 226 330 Bou-Bamakpolo	Kibi	Tamfoi	1 285 084			1 285 553
Central Region Okwanya 34 862 222 Central Region Nkuntraw Kakum Valley 7 527 168 Essuakyir No.2 1 800 000 Atran kwa 12 000 000 Mprumen 35 877 Cape Ochiso 15 441 702 Kasua 51 702 127 Coast Ampia Ajumako 195 000 Wineba Nyanyanu 1 107191 Ajumaku Essuakyir No.1 6 800 000 Gomoa Gomoa Brofo 268 989 Dunkwa Subin Valley 162 000 Komenda Domenase 3 952 551 Northern Region Tamale Koblimahako 9 455 892 Kunkuo 234 582 Tamale Koblimahako 9 455 892 Tamale Kunkuo 234 582 Myankyala 259 200 Tamale Yapei 38 694 Wyankyala 113 550 239 Takoradi Dixcove (Mfruma) 9 469 979 Teleku Bokase 74 456 122 Wasa Akropong 614 249 Nim Zimirim 9 343 117 Wasa Asankraggwa 8 629 200 Enchi 226 330	Anyinam					
Central Region Nkuntraw Kakum Valley 7 527 168 42 800 Atran kwa Essuakyir No.2 1 800 000 Simbrofo 3 100 000 Mprumen Cape Ochiso 15 441 702 Kasua 51 702 127 Coast Ampia Ajumako 195 000 Wineba Nyanyanu 1 107191 Ajumaku Essuakyir No.1 6 800 000 Gomoa Gomoa Brofo 268 989 Dunkwa Subin Valley 162 000 Komenda Domenase 3 952 551 Northern Region Koblimahako 9 455 892 Tamale Kunkuo 234 582 Nyankyala 48 000 Yapei 38 694 Yapei 38 694 Western Region Alenda Wharf 2 956 522 Sekondi Inchandam 266 600 Aluku 17860 944 Esiama-Kankam 113 550 239 Takoradi Dixcove (Mfruma) 9 469 979 Wasa Akropong 614 249 Nim Zimirim 9 343 117 Wasa Asankraqgwa 8 629 200 Nizima Bokazo 221 600 000 Amanfi Manso Amanfi 597 780		Abomosu	4 081 434	Akim Oda		
Nkuntraw 7 527 168 Essuakyir No.2 1 800 000 Kakum Valley 42 800 Simbrofo 3 100 000 Atran kwa 12 000 000 Mprumen 35 877 Cape Ochiso 15 441 702 Kasua 51 702 127 Coast Ampia Ajumako 195 000 Wineba Nyanyanu 1 107191 Ajumaku Essuakyir No.1 6 800 000 Gomoa Gomoa Bornoa Subin Valley 162 000 Komenda Domenase 3 952 551 Northern Region Koblimahako 9 455 892 Kunkuo 234 582 Kunkuo 234 582 Myankyala 48 000 Yapei 38 694 Yapei 38 694 Western Region Koblimahako 9 455 892 Kunkuo 234 582 Muku 17860 944 Tamale Yapei 38 694 Shama 7 163 082 Dixcove (Mfruma) 9 469 979 Teleku Bokase 74 456 122 Wasa Akropong 614 249 Nim Zimirim 9 343 117 Wasa Asantragywa	Central Region				Okwanya	34 002 222
Kakum Valley 42 800 Simbrofo 3 100 000 Atran kwa 12 000 000 Mprumen 35 877 Cape Ochiso 15 441 702 Kasua 51 702 127 Coast Ampia Ajumako 195 000 Wineba Nyanyanu 1 107191 Ajumaku Essuakyir No.1 6 800 000 Gomoa Gomoa Brofo 268 989 Dunkwa Subin Valley 162 000 Komenda Domenase 3 952 551 Northern Region Tamale Koblimahako 9 455 892 Kunkuo 234 582 Kpaliga 259 200 Tamale Yapei 38 694 Western Region Alenda Wharf 2 956 522 Sekondi Inchandam 266 600 Aluku 17860 944 Shama 7 163 082 Shama 7 163 082 Teleku Bokase 74 456 122 Wasa Akropong 614 249 Wasa Akropong 614 249 Nim Zimirim 9 343 117 Wasa Asankragywa 8 629 200 Enchi 226 330 Nzima East 221 60	ochtrar negion	Nkuntraw	7 527 168		Essuakvir No.2	1 800 000
Cape Coast Ochiso 15 441 702 4mpia Ajumako Kasua 51 702 127 Nyanyanu Ampia Ajumako 195 000 Wineba Gomoa Nyanyanu 1 107191 Ajumaku Essuakyir No.1 6 800 000 Gomoa Gomoa Brofo 268 989 Dunkwa Subin Valley 162 000 Komenda Domenase 3 952 551 Northern Region Koblimahako 9 455 892 Kunkuo 234 582 Kpaliga 259 200 Tamale Kunkuo 234 582 Kpaliga 259 200 Tamale Yapei 38 694 Western Region Alenda Wharf 2 956 522 Sekondi Inchandam 266 600 Aluku 17860 944 T860 944 Shama 7 163 082 Dixcove (Mfruma) 9 469 979 Teleku Bokase 74 456 122 Wasa Akropong 614 249 Nim Zimirim 9 343 117 Wasa Asankraqgwa 8 629 200 Bou-Bamakpolo 31 493 579 Enchi 226 330 Asankraqgwa 8 629 200 Nzima Nzima East		Kakum Valley	42 800			3 100 000
Coast Ajumaku Ampia Ajumako 195 000 Wineba Gomoa Nyanyanu 1 107191 Ajumaku Essuakyir No.1 6 800 000 Gomoa Gomoa Gomoa Brofo 268 989 Dunkwa Subin Valley 162 000 Komenda Gomoa Brofo 268 989 Northern Region Koblimahako 9 455 892 Kunkuo 234 582 Yapei 38 694 Yapei 38 694 Western Region Nyanyanu 1 107191 Gomoa Western Region Alenda Wharf 2 956 522 Sekondi Inchandam 266 600 Aluku 17860 944 Shama 7 163 082 Takoradi Dixcove (Mfruma) 9 469 979 Western Region Nim Zimirim 9 343 117 Wasa Asankraqgwa 8 629 200 Bou-Bamakpolo 31 493 579 Enchi 226 330 Manso Amanfi 597 780 Nzima Nzima East 241 190 133 Manso Amanfi 396 548 396 548 Kaasi 1086 993 Nkawie Mfensi 396 548 1		Atran kwa				
Ajumaku Dunkwa Northern Region Essuakyir No.1 Subin Valley 6 800 000 162 000 Gomoa Komenda Gomoa Brofo Domenase 268 989 3 952 551 Northern Region Koblimahako 9 455 892 Kpaliga Kunkuo 234 582 Western Region Kunkuo 234 582 Yapei 38 694 Western Region Alenda Wharf 2 956 522 Sekondi Inchandam 266 600 Aluku 17860 944 Shama 7 163 082 Shama 7 163 082 Esiama-Kankam 113 550 239 Takoradi Dixcove (Mfruma) 9 469 979 Western Region Subin Zimirim 9 343 117 Wasa Asankragywa 8 629 200 Bou-Bamakpolo 31 493 579 Enchi 226 330 Enchi 226 330 Nzima Nzima East 241 190 133 Manso Amanfi 597 780 Nzima Nasai 164 570 Obuasi Asokua 33 865 955 Kaasi 1086 993 Nkawie Mfensi 396 548 Sisai 113 400 Afari 2 055 900 D						
Dunkwa Northern Region TamaleSubin Valley162 000KomendaDomenase3 952 551Northern Region TamaleKoblimahako9 455 892 KpaligaKunkuo234 582Western RegionKunkuu259 200 NyankyalaTamaleKunkuo234 582Western RegionAlenda Wharf2 956 522 AlukuSekondiInchandam266 600 Shama7 163 082Esiama-Kankam113 550 239 Teleku BokaseTakoradiDixcove (Mfruma)9 469 979 9 469 979Mim Zimirim9 343 117 Bou-BarnakpoloWasaAsankraqgwa8 629 200 Enchi226 330Nzima Ashanti RegionNzima East241 190 133 Ashanti RegionAsokua33 865 955 Mkawie33 865 955 MasaKumasiMomasi Aboabo164 570 SisaiObuasi NkawieAsokua Afari2 055 900 Jankoba139 999KumasiAboabo Sisai81 000 162 017Akatawsu100 560 Awrenfena268 801						
Northern Region Tamale Koblimahako Kpaliga Nyankyala 9 455 892 259 200 48 000 Tamale Kunkuo Yapei 234 582 38 694 Western Region Alenda Wharf Aluku 2 956 522 Aluku Sekondi Inchandam 266 600 Shama 7 163 082 Esiama-Kankam 113 550 239 Teleku Bokase Takoradi Dixcove (Mfruma) 9 469 979 Wasa Akropong 614 249 Wasa Akropong 614 249 Nim Zimirim 9 343 117 Wasa Asankraqgwa 8 629 200 Bou-Bamakpolo 31 493 579 Enchi 226 330 Nzima Ashanti Region Nzima East 241 190 133 Manso Amanfi 597 780 Kumasi 164 570 Obuasi Asokua 33 865 955 38 65 955 Kaasi 1 086 993 Nkawie Mfensi 396 548 Sisai 113 400 Afari 2 055 900 Dichemso-Valley 21 061 Jankoba 139 999 Kumasi Aboabo 81 000 Ahatawsu 100 560 Dichemso-Aprapong 162 017 Awrenfena 268 801						
Tamale Koblimahako 9 455 892 Kunkuo 234 582 Kpaliga 259 200 Tamale Yapei 38 694 Western Region Alenda Wharf 2 956 522 Sekondi Inchandam 266 600 Aluku 17860 944 Shama 7 163 082 Shama 7 163 082 Esiama-Kankam 113 550 239 Takoradi Dixcove (Mfruma) 9 469 979 Teleku Bokase 74 456 122 Wasa Akropong 614 249 Nim Zimirim 9 343 117 Wasa Asankraqgwa 8 629 200 Bou-Bamakpolo 31 493 579 Enchi 226 330 Bokazo 221 600 000 Amanfi Manso Amanfi 597 780 Nzima Nzima East 241 190 133 Ashanti Region Morasi 164 570 Obuasi Asokua 33 865 955 Kaasi 1 086 993 Nkawie Mfensi 396 548 396 548 Sisai 113 400 Afari 2 055 900 Jankoba 139 999 Kumasi Aboabo 81 000		Oubin valicy	102 000	Romenaa	Domenase	0 002 001
Nyankyala 48 000 Western Region Alenda Wharf 2 956 522 Sekondi Inchandam 266 600 Aluku 17860 944 Takoradi Dixcove (Mfruma) 9 469 979 Besiama-Kankam 113 550 239 Takoradi Dixcove (Mfruma) 9 469 979 Teleku Bokase 74 456 122 Wasa Akropong 614 249 Nim Zimirim 9 343 117 Wasa Asankraqgwa 8 629 200 Bou-Bamakpolo 31 493 579 Enchi 226 330 Bokazo 221 600 000 Amanfi Manso Amanfi 597 780 Nzima Nzima East 241 190 133 Asankraqgwa 33 865 955 Kaasi 1 086 993 Nkawie Mfensi 396 548 Sisai 113 400 Afari 2 055 900 Jankoba 139 999 Kumasi Aboabo 81 000 Ahatawsu 100 560 Dichemso-Aprapong 162 017 Awrenfena 268 801 Santang No.1 162 017 Awrenfena 268 801 Santang No.2		Koblimahako	9 455 892		Kunkuo	234 582
Western Region Alenda Wharf 2 956 522 Sekondi Inchandam 266 600 Aluku 17860 944 Takoradi Dixcove (Mfruma) 9 469 979 Esiama-Kankam 113 550 239 Takoradi Dixcove (Mfruma) 9 469 979 Teleku Bokase 74 456 122 Wasa Akropong 614 249 Nim Zimirim 9 343 117 Wasa Asankraqgwa 8 629 200 Bou-Bamakpolo 31 493 579 Enchi 226 330 Bokazo 221 600 000 Amanfi Manso Amanfi 597 780 Nzima Nzima East 241 190 133 Asankraqgwa 33 865 955 Kaasi 1086 993 Nkawie Mfensi 396 548 Sisai 113 400 Afari 2 055 900 Dichemso-Valley 21 061 Jankoba 139 999 Kumasi Aboabo 81 000 Ahatawsu 100 560 Dichemso-Aprapong 162 017 Awrenfena 268 801 Santang No.1 162 017 Awrenfena 268 801		1 0	259 200	Tamale	Yapei	38 694
Alenda Wharf 2 956 522 Sekondi Inchandam 266 600 Aluku 17860 944 Takoradi Dixcove (Mfruma) 9 469 979 Bail Teleku Bokase 74 456 122 Takoradi Dixcove (Mfruma) 9 469 979 Nim Zimirim 9 343 117 Wasa Asankraqgwa 8 629 200 Bou-Bamakpolo 31 493 579 Enchi 226 330 Bokazo 221 600 000 Amanfi Manso Amanfi 597 780 Nzima Nzima East 241 190 133 Asankraqgwa 33 865 955 Kaasi 1086 993 Nkawie Mfensi 396 548 Sisai 113 400 Afari 2 055 900 Dichemso-Valley 21 061 Jankoba 139 999 Kumasi Aboabo 81 000 Ahatawsu 100 560 Dichemso-Aprapong 162 017 Awrenfena 268 801 Santang No.1 162 017 Awrenfena 268 801		Nyankyala	48 000			
Aluku 17860 944 Shama 7 163 082 Esiama-Kankam 113 550 239 Takoradi Dixcove (Mfruma) 9 469 979 Teleku Bokase 74 456 122 Wasa Asankraqgwa 8 629 200 Nim Zimirim 9 343 117 Wasa Asankraqgwa 8 629 200 Bou-Bamakpolo 31 493 579 Enchi 226 330 Bokazo 221 600 000 Amanfi Manso Amanfi 597 780 Nzima Nzima East 241 190 133 Amanfi Manso Amanfi 597 780 Nzima Kasai 1 086 993 Nkawie Mfensi 396 548 Sisai 113 400 Afari 2 055 900 Dichemso-Valley 21 061 Jankoba 139 999 Kumasi Aboabo 81 000 Ahatawsu 100 560 Dichemso-Aprapong 162 017 Awrenfena 268 801 Santang No.1 162 017 Santang No.2 32 400 Subin Valley 162 017 Awrenfena 268 801	Western Region	Alanda Wharf	2 056 522	Sokondi	Inchandam	266 600
Esiama-Kankam 113 550 239 Takoradi Dixcove (Mfruma) 9 469 979 Teleku Bokase 74 456 122 Wasa Asankraqgwa 8 629 200 Nim Zimirim 9 343 117 Wasa Asankraqgwa 8 629 200 Bou-Bamakpolo 31 493 579 Enchi 226 330 Bokazo 221 600 000 Amanfi Manso Amanfi 597 780 Nzima Nzima East 241 190 133 Amanfi Manso Amanfi 597 780 Nzima Nzima East 164 570 Obuasi Asokua 33 865 955 Kaasi 1 086 993 Nkawie Mfensi 396 548 Sisai 113 400 Afari 2 055 900 Dichemso-Valley 21 061 Jankoba 139 999 Kumasi Aboabo 81 000 Ahatawsu 100 560 Dichemso-Aprapong 162 017 Awrenfena 268 801 Santang No.1 162 017 Santang No.2 32 400 Subin Valley 162 017 Awrenfena 268 801				Sekonul		
Teleku Bokase 74 456 122 Wasa Akropong 614 249 Nim Zimirim 9 343 117 Wasa Asankraqgwa 8 629 200 Bou-Bamakpolo 31 493 579 Enchi 226 330 Bokazo 221 600 000 Amanfi Manso Amanfi 597 780 Nzima Nzima East 241 190 133 Amanfi Manso Amanfi 597 780 Nzima Nzima East 164 570 Obuasi Asokua 33 865 955 Kaasi 1 086 993 Nkawie Mfensi 396 548 Sisai 113 400 Afari 2 055 900 Dichemso-Valley 21 061 Jankoba 139 999 Kumasi Aboabo 81 000 Ahatawsu 100 560 Dichemso-Aprapong 162 017 Awrenfena 268 801 Santang No.1 162 017 Santang No.2 32 400 Subin Valley 162 017 Awrenfena 268 801				Takoradi		
Bou-Bamakpolo 31 493 579 Enchi 226 330 Nzima Bokazo 221 600 000 Amanfi Manso Amanfi 597 780 Nzima Nzima East 241 190 133 Amanfi Manso Amanfi 597 780 Nzima Nzima East 241 190 133 Amanfi Manso Amanfi 597 780 Nzima Womasi 164 570 Obuasi Asokua 33 865 955 Kaasi 1 086 993 Nkawie Mfensi 396 548 Sisai 113 400 Afari 2 055 900 Dichemso-Valley 21 061 Jankoba 139 999 Kumasi Aboabo 81 000 Ahatawsu 100 560 Dichemso-Aprapong 162 017 Awrenfena 268 801 Santang No.1 162 017 Santang No.2 32 400 Subin Valley 162 017 Santang No.2 32 400						
Bokazo 221 600 000 241 190 133 Amanfi Manso Amanfi 597 780 Nzima Ashanti Region Womasi 164 570 Obuasi Asokua 33 865 955 Kaasi 1 086 993 Nkawie Mfensi 396 548 Sisai 113 400 Afari 2 055 900 Dichemso-Valley 21 061 Jankoba 139 999 Kumasi Aboabo 81 000 Ahatawsu 100 560 Dichemso-Aprapong 162 017 Awrenfena 268 801 Santang No.1 162 017 Santang No.2 32 400 Subin Valley 162 017 Santang No.2 32 400			9 343 117	Wasa	Asankraqgwa	8 629 200
Nzima Ashanti Region Nzima East 241 190 133 Womasi 164 570 Obuasi Asokua 33 865 955 Kaasi 1 086 993 Nkawie Mfensi 396 548 Sisai 113 400 Afari 2 055 900 Dichemso-Valley 21 061 Jankoba 139 999 Kumasi Aboabo 81 000 Ahatawsu 100 560 Dichemso-Aprapong 162 017 Awrenfena 268 801 Santang No.1 162 017 Santang No.2 32 400 Subin Valley 162 017 Kurasi Aboabo						
Ashanti Region Womasi 164 570 Obuasi Asokua 33 865 955 Kaasi 1 086 993 Nkawie Mfensi 396 548 Sisai 113 400 Afari 2 055 900 Dichemso-Valley 21 061 Jankoba 139 999 Kumasi Aboabo 81 000 Ahatawsu 100 560 Dichemso-Aprapong 162 017 Awrenfena 268 801 Santang No.1 162 017 Santang No.2 32 400 Subin Valley 162 017 Kumasi 162 017	NI-inc.			Amanfi	Manso Amanfi	597 780
Womasi 164 570 Obuasi Asokua 33 865 955 Kaasi 1 086 993 Nkawie Mfensi 396 548 Sisai 113 400 Afari 2 055 900 Dichemso-Valley 21 061 Jankoba 139 999 Kumasi Aboabo 81 000 Ahatawsu 100 560 Dichemso-Aprapong 162 017 Awrenfena 268 801 Santang No.1 162 017 Santang No.2 32 400 Subin Valley 162 017 Kumasi 162 017		INZIMA East	241 190 133			
Kaasi 1 086 993 Nkawie Mfensi 396 548 Sisai 113 400 Afari 2 055 900 Dichemso-Valley 21 061 Jankoba 139 999 Kumasi Aboabo 81 000 Ahatawsu 100 560 Dichemso-Aprapong 162 017 Awrenfena 268 801 Santang No.1 162 017 Santang No.2 32 400 Subin Valley 162 017 Santang No.2 32 400	Ashana negion	Womasi	164 570	Obuasi	Asokua	33 865 955
Sisai 113 400 Afari 2 055 900 Dichemso-Valley 21 061 Jankoba 139 999 Kumasi Aboabo 81 000 Ahatawsu 100 560 Dichemso-Aprapong 162 017 Awrenfena 268 801 Santang No.1 162 017 Santang No.2 32 400 Subin Valley 162 017 Santang No.2 32 400						
KumasiAboabo81 000Ahatawsu100 560Dichemso-Aprapong162 017Awrenfena268 801Santang No.1162 017Santang No.232 400Subin Valley162 017					Afari	2 055 900
Dichemso-Aprapong 162 017 Awrenfena 268 801 Santang No.1 162 017 Santang No.2 32 400 Subin Valley 162 017						
Santang No.1 162 017 Santang No.2 32 400 Subin Valley 162 017	Kumasi					
Santang No.2 32 400 Subin Valley 162 017					Awrentena	268 801
Subin Valley 162 017						
	Volta Region	2				

Table 1: Clay Deposits in Ghana grouped by region and area³

Но	Adidome No. 1	7 755 319	Bowiri	Kalakpa	501 440
Anfoega	Adidome No. 1	469 800		Tuwotsive	1 944
	Tangidome	7 614		Amanfro	200 000
	Nuzeme	10 083	Dayi	Dayi River Basin	997 900
	Toga	42 163	Katekrachi	Woroto	7 027 707
Gbefi-	Kpetoe	29 160		Adankpe	2 273 361
Hoeme	Avehiboe	27 540	Hohoe	Aduator	35 554 085
	Valexo	16 300	Kpoglo		9 413 582
	Aklamapata	6 318	Kadjebi	Kadjebi	97 742 979
	Have	6 430			
Kudzra	Agbeditive	12 961			

Table 2: Properties of some clay deposits from some regions in Ghana⁴

Clay/Sample No.	Wet-Dry Shrinkage (%)	Moisture Content (%)	Plasticity (Rule of Thumb)	Water of Plasticity (By Weight)	Colour of Raw Clay
Western Region					
Esiama (ESA)					
ESA1	2.00	10.54	Low	Low	
ESA2	3.28	21.11	Medium	High	
ESA3	4.52	25.00	Medium	High	
ESA4	2.83	16.19	Medium	High	
Nkroful(NKA)				Ū	
NKF1A	4.16	19.18	High	Medium	
NKF1B	1.9	6.45	Low	Low	
NKF2A	3.84	17.28			
NKF2B	2.59	7.89	Low	Low	
NKF3A	4.39	17.39	Medium	Medium	
NKF3B	2.32	11.9	Low	Low	
NKF4A					
NKF4B	3.00	9.23	Low	Low	Yellow Ochre
Teleco-Bokazo (TB)					
TB1	4.13	18.91	Low	High	White
TB2	2.26	25.00	Low	High	White
TB3	3.46	26.24	Low	High	White
TB4	2.51	25.21	Low	High	White
Central Region				Ū	
Abonku (AB)					
AB1	6.12	18.11	High	High	Brown
AB2	6.37	18.75	High	High	Light Brown
AB3	4.68	14.28	High	High	Light Brown
Pomase (PM)			Ũ	Ū	U
PM1	4.56	20.00	Low	High	
PM2	3.54	20.00	High	Low	Silvery Beige
PM3	2.92	8.11	High	Low	Silvery Green
Basofi-Ningo (BN)			0		,
BN1	4.33	13.33	Low	Medium	Light Mangolia
BN2A	2.14	2.4.0	Low	Medium	Near White
BN2B	4.16	14.62	High	Medium	Greyish White

BN2C	4.36	0.00	High	Medium	Greyish White
Cape Coast (QP) QP Eastern Region	2.18	5.19	Low	Low	Near White
Amanfrom (AKA) AKA3B Asuboa (AS)		8.40	Low	Low	
AS1A		11.80			
AS1B		20.00	Low	Low	Earthy
AS2A		17.07	Low	Low	Dark Green
AS2B		17.00			
AS3B		19.00	Medium	Low	Millitary Green
Akoasi (AK)					-
AKA1		21.43	Medium	Low	Light Brown
AKA2		20.00	Low	Medium	Earthy
AKA3		18.43			
Ahenasi (AB)					
ABA1A					
ABA1B		13.83	Medium	Low	Dark Green
ABA2A		20.00	Medium	Low	Green
ABA2B		15.81			
ABA3A		18.92			
Apampatia (APP)					
APP1A		24.37	Low	High	Pink

The various deposits consist of different kinds of clay minerals as observed from studies by the Ghana Geological Survey Department-Ceramics Laboratory (1999).⁴ These materials are collected from different location as shown in Table 2. As indicated, they possess different properties such as weight shrinkage, moisture content, plasticity and raw colour.

Properties and Chemical Composition of Some Selected Clay minerals in Ghana

The clay minerals are basically composed of repeating tetrahedral and octahedral planar sheets.²⁸ Tetrahedral sheets have a central silicon ion (Si⁴⁺) bonded to four oxygen ions (O²⁻) whiles octahedral sheets have a general central ion of aluminium, magnesium or iron bonded to six oxygen ions (O²⁻) or hydroxyl ions (OH⁻).²⁹ The tetrahedral and octahedral sheets form a polymeric aluminosilicate layer which is mostly crystalline in structure. Isomorphous substitution within the sheets of clay leads to different kinds of clay mineral compositions leading to varied properties such as colour, cohesion, ionic exchange, surface area, etc.³⁰ Local clay minerals in Ghana also vary among these properties as shown in Table 2. The variance in properties promotes different applications.³¹

Impurities such as Fe₂O₃, TiO₂, K₂O and Na₂O vary among clay samples from the different localities in Ghana.32,33 Colourization of clay is generally due to the presence of certain elements such as Fe in the clay mineral framework.³⁴ For example Fe²⁺ can convert to Fe³⁺ through oxidation in the soils and can confer their coloration to the clay material. In addition, the chemical interaction of clay minerals with other organic compounds present in the environment can also influence the colour of the clay materials.³⁵ Clay chroma is also dependent on its pH and increase in pH due to mineral complexes can increase the overall chroma of the clay materials.³⁶ The local clay minerals have plasticity varying from high to low and can infer specific properties leading to the formation of highly expandable and non-expandable clays such as smectites (montmorillonite) and kaolin respectively. Plastic clays such as smectite clays have water surrounding the interlayer cations which causes them to swell in the hydrated form hence, making them highly expandable. Interlayer spaces between sheets increases their surface area comparably and

1724

also ionic exchange capacity which promotes soil fertility and other applications.³⁷ These characteristics have been reported to aid in the substitution of iron mostly within their octahedral sheets.³⁸ Non-plastic clays such as kaolin sheets occur in stack and have no interlayer spacing leading to a relatively small surface area, low ionic exchange and low plasticity among others.³⁹

A number of plastic clay minerals have previously been reported by the Geological Survey Department of Ghana.⁴ Kaolin is discovered in commercial quantities in most parts of Ghana, including Anfoega, Kibi, Saltpond-Abandze, and Teleku-Bokazo among others.⁴⁰ A study conducted on Aferi clay deposits in Tanoso near Kumasi found kaolinite and montmorillonite (smectite groups) clay minerals which are plastic, and exhibit different coloration⁴ Also, similar work conducted by Amoanyi (2012) reported the presence of kaolinite and muscovite in Mfensi Clay deposits in the Ashanti Region.⁴¹ The chemical analysis of kaolin samples collected from various parts of the country are shown in Table 3. These non-plastic clay minerals are mostly white, light brown, grey and yellow in colour. Minor inclusions of iron in these clays are responsible for the colourization in this materials.42 Chemical analysis performed on Aferi and Mfensi as shown in Table 4, revealed additional minerals in their framework indicating their compositional difference due to their location.43

 Table 3: Chemical Analysis of various Kaolin

 Samples⁴⁴

Chemical Composition	Kibi	Saltpond- Abandze	Teleku- Bokazo
SiO ₂	44.72	43.7	69.3
Al ₂ O ₃	38.82	35.5	19.3
Fe ₂ O ₃	0.12	2.4	2.3
FeO	0.45		
CaO	0.21		0.7
H ₂ O		16.8	
Loss of ignition	13.13		6.4
Total	97.45	98.4	98.4

 Table 4: Major Chemical Composition of some

 Aferi and Mfensi Clay Samples⁴⁵

Chemical Composition (wt%)	Aferi Clay¹	Aferi Clay²	Mfensi Clay ¹	Mfensi Clay ²	Mfensi Clay ³
Si ₂ O	48.88	48.9	58.56	65.6	58.6
Al ₂ O ₃	26.56	26.6	23.44	19.5	23.4
Fe ₂ O ₃	6.66	6.7	3.63	0.8	3.63
CaŌ	0.24	0.2	0.14	0.2	0.1
MnO	0.01	0	0.02	0.2	0
MgO	1.61	1.6	1.41	0.4	1.4
Na ₂ O	1.73	1.7	2.06	0.9	2.1
K ₂ Ō	0.13	0.1	1.28	0.9	1.3
TiO,	0.79	0.8	0.9	0.6	0.9
P_2O_5	0.06		0.13		
SO ₃	0.17		0.18		

Applications of Clay in Ghana

The clay industry in Ghana is focused on processing, fabrication and production of various household gadgets such as porcelains, pots, etc. There is limited research undertaken to understand the physicochemical properties of these clay minerals, as the application of clay materials is influenced by their physical and chemical properties which determine their suitability for specific usage.46 Kaolin is mostly cited as an ideal example of nonplastic or non-expandable clay minerals contrary to smectites that are perfectly plastic or expandable. The differences in these clay types are tabulated in Table 5. As shown in Tables 6 and 7, the differences in properties of these clays influence wide ranges of usefulness including biological, ceramics, construction and water purification.

The application of clay materials in Ghana is mostly found in the ceramics industry which is mainly in construction and whitewares manufacturing.48 In recent times, elevated interest has been shown in the uses of these minerals for environment remediating in Ghana. The biological implications of clay materials are also an area of intense interest due to their geophagy practices amongst Ghanaians especially pregnant women. Research institutes in Ghana are also investigating into the usage of local clay in as an enhanced material for various biomedical applications in collaboration with foreign other research institute. The following section provides brief research findings in the aforementioned areas commonly conducted in Ghana.

Non-expandable (Kaolin)	Expandable (Smectite)
1:1 layer	2:1 layer
White or near white	Tan, olive, green, white
Little or no substitution	Tetrahedral and Octahedral substitution
Minimum layer charge	High layer charge
Low cation exchange capacity	High cation exchange capacity
Hexagonal flakes	Thin flakes
Low swelling or cohesion	High swelling or cohesion
Low surface area	High surface capacity
Very low adsorptive capacity	Very High adsorptive capacity
Low viscousity	High viscousity

Table 5: Comparison between the properties of some clay minerals⁴⁷

Table 6: Industrial applications of kaolin clay minerals⁴⁷

Paper coating	Cracking catalyst	Enamels	Bleaching
Paper filing	Fiber glass	Pastes and glues	Fertilizers
Extender in paint	Cement	Insecticides carriers	Plaster
Ceramic raw material	Pencil Leads	Medicines	Filter aids
Filler in plastics	Adhesive	Sizing	Cosmetics
Filler in rubber	Tanning leather	Textiles	Crayons
Extender in ink	Pharmaceuticals	Food additives	Detergents
Roofing granules	Linoleum	Polishing compounds	

Table 7: Industrial applications of smectite clay minerals⁴⁷

Drilling mud	Cat box absorbents	Adhesives	Emulsion stabilizer
Foundry bond clay	Beer and wine clarification	Pharmaceuticals	Crayon
Pelletizing iron ores	Ceramics	Food additives	Cement
Sealants	Pencil leads	De-inking of paper	Desiccants
Animal feed bonds	Medical formulations	Tape-joining compounds	s Cosmetics
Bleach clay	Polishing and clearing agents	Paper	Paint
industrial oil absorbents	Detergents	Fillers	Aerogels
Agricultural carriers			

Ceramics

The characterisation and analysis of clay have influenced the ceramics industry tremendously. Structural clay products which are mostly found in the construction industry are mostly considered heavy clay products.^{49,50} For example, it has been revealed that, the structural integrity of ceramics is influenced by their composition and chemical properties. Further works have also shown that, clay can be molded leading to enhanced cohesive properties with adequate plasticity without undergoing excessive cracking and breakage.^{51,52} It is desirable that clays forming structural products do not contain carbonates since these ions turn to swell leading to crack formation.⁵³ Evidence from research findings conducted in Ghana, which then revealed that swelling of clays may cause ceramic products to bloat when fired.⁵⁴ This further agrees with other researchers worldwide indicating that, the properties of clay minerals for ceramic products must be carefully characterized to inform product design.⁵⁵ Based on this it has been realized that better and efficient ceramic products are being produced by using other techniques in order to nullify the swelling effect of mild bloating and shrinkage.⁵⁶

Structural Products for Construction: Bricks, Tiles

The structural products from clay for the construction industry in Ghana are mainly bricks and tiles as shown in Table 5. It is evident that, low plasticity found in kaolin clay minerals are suitable for the production of structural products.⁵⁷ Thus, the Anfoega clay deposits which contains kaolin of commercial guantities are used by the construction industry is due to its suitability.58 In the past, the Geological Survey Department of Ghana has also examined the Anfoega, Kibi, and Saltpond clays in which they found to be suitable for the manufacturing of other additional products such as roofing tiles and facing tiles. Structural products are mainly popular with non-plastic clays which is commonly kaolin based. However, plastic clays in the right proportions with non-clay materials have been successful for the production of bricks. Bauxite, red mud and plastic clay from Ghanaian communities of Awaso and Tetegbu respectfully formed a composites to produce bricks of optimal mechanical strength.59 The properties of clay minerals for structural products are tolerable among Ghanaian clays. Composite formulations may also improve clay suitability for structural products.60

Concrete

The Council for Scientific and Industrial Research (CSIR) Ghana has investigated into the use of pozzolans (aluminosilicate materials) which are readily available in most regions (Awasso and Anfoega) of the country as binder for the production of cement. CSIR findings indicated that, Pozzolans acquire cementious properties when they react with calcium hydroxide (CaOH), in the presence of water. It was also indicated that the overall strength of concrete material is enhanced by pozzolana clay modifications.61,62 Pozzolana clays have fine homogeneous particle sizes which allows denser packing for water tightness and has therefore the potential to replace portions of Ordinary Portland Cement (OPC) in concretes.63 Research has revealed that, to obtain optimal strength in concrete materials, a 25 % pozzolana clay with respect to the bulk material may be added as a binder.64 A comparative study of pozzolan with OPC shows that, improvements in strength was achieved by a combination of pozzolan with OPC, see Fig. 2.65

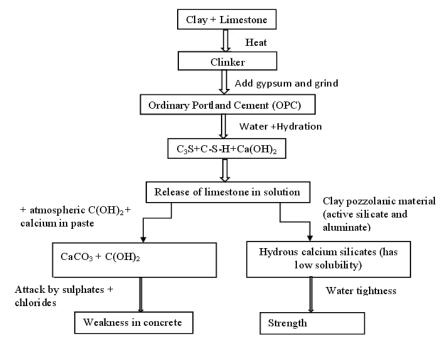


Fig. 2. A schematic of the reaction between pozzolana clay and cement

Whitewares

These are ceramics that are mostly used for domestic applications including the manufacturing of products such as dinner ware, sanitary ware, floor and wall tiles, pottery, spark plugs, electrical porcelain, chemical and refractory porcelain among others.⁶⁶ Furthermore, a combination of non-clay materials and others impurities such as quartz and

feldspar, clay minerals are versatile for the whiteware industry. The production of electric porcelain and other ceramics to replace environmentally non-friendly foreign ones have been investigated to be technically viable using Ghanaian local clay minerals.⁵

Environmental Remediation and Protection

The remediation and protective effects of clay minerals have shown detoxifying characteristics on heavy metals and other organic contaminants, as well as enriching the nutrient qualities of the soil.⁶⁷ The ideal features of clay including high permeability, cation exchange capability, catalysis, adsorption, large surface area and swelling ability of clay minerals makes them useful for protecting and reclaiming important environmental resources such as water and land.⁶⁸

Water Purification

Clay minerals have high cation exchange capability and therefore their composites can contribute to water safety through their ability to remove metals, organic and inorganic contaminants.69 The presence of heavy metal ions (As, Pb, Zn) and organic compounds are the general causes of water pollution which makes water unsuitable for domestic usage.70 Other works in this area seeks to develop clay catalytic materials that can filter and degrade most of the contaminant organic compounds. For example, the combination of clay and lime removed about 70% of dye that decolourizes water.71 The adsorptive properties of clay are very important for the removal of heavy metals and this has been demonstrated using Na-montmorillonite intercalated with dodecylamine.72 The rate of adsorption of metal ions by clay minerals is inversely proportional to the surface area of the clay material and can enhance the electrostatic attraction between aluminosilicate clay mineral surface and the metal ions contributing to the adsorption properties of these clays.73,74 Such mechanism has been used in hard water purification which is due to the presence of polyvalent metals, Ca2+ and Mg2+.75

Soil Fertility

Most soil infertility result from the transfer of chemical species.⁷⁶ The problem normally arises from the inability of receptors to absorb transferred chemical species. Soils can be remediated for agricultural use by the effective transfer and reception of cations (K⁺, Na⁺, Ca²⁺, Zn²⁺, Fe²⁺, Mn²⁺, NH⁴⁺ etc.) and anions (NO₃⁻, PO₄⁻³⁻, HCO₃⁻, SO₄⁻²⁻, SO-, etc.) to the appropriate surface.⁷⁷ The ability of a clay material to remediate the soil depends on the ionic exchange capability of the clay mineral (Fig. 3). In other words, the greater the ionic exchange capability of the clay mineral, the higher its ability to remediate the soil through transfer of chemical species.78 Their exchange capabilities differ among clay mineral forms. The rate of adsorption also depends on the desired application. Clay mineral deposits in Ghana are formed by weathering, erosion and sedimentation.3 These clays have essential cations for exchange.79 In the design of soil fertilizers, cations and anions are formulated for the exchange.⁸⁰ Clay minerals such as bentonite of the smectite group have charged surface for suitable ionic exchange.⁸¹ Colloidal clay minerals in soil have high impermeability, viscosity and elasticity.82 The impermeability of clay prevents swelling of fertilizers which promotes their equitable use in fertilizing the soil for farming.83 It also increases soil fertility by promoting aeration, controls heat exchange and soil temperature. Expandable clays such as smectites increases drying to which in turn increase soil pH to the benefit of growing plants in the soil.84 Soil environmental remediation can be achieved by clay materials with high electrostatic surface.⁸⁵ The adsorptive and crack resistant nature of clay materials is important for remediating waste lands.⁸⁶ Aferi and Mfensi clays in Ghana are plastic and anti-leakage. Plastic and anti-leakage soils are utilized for landfills. These local clays in Ghana are suitable for reclaiming waste lands as well.87

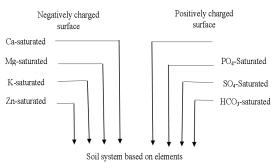


Fig. 3. Soil additive elements in exchangeable form 88

Nuclear Waste Disposal

Radioactive materials possess harmful health risks due to their chemical toxicity. High-levels of radioactive materials are disposed from nuclear reactors.⁸⁹ The active radionuclei are disposed as waste in metal containers buried deep underground.90 A multi-barrier compartment system is proposed as a better alternative over the current single barrier system. Multi-barrier systems provides assured security of containment and prevents possible leakage into drains.91 Clays such as smectites have high adsorptive potentials that enables it bind with other materials against leach have proven water impermeability and high swelling capability to act as sealants.92 A multi-barrier system composed of clay and metals (canisters) would therefore be advantageous to effectively contain high-levels radioactive waste materials.93 Clay natural materials and artificially engineered metals confines harmful radioactive waste for years to protect the biosphere. Clay-cement composite provides durable mechanical strength to immobilize radioactive waste.94 A mixture of cement with clay compared with cement and other materials have comparably reliable sorption competence to prevent leachability of radioactive waste.95 Long-term storage and disposal of radioactive waste could involve rather aggressive processes. Immobilization is critical to the safe storage or disposal of radioactive waste.96

Healthcare Applications

Clay materials used in drugs and other health benefits are processed natural clays.⁹⁷ Natural clay treatment improves the chemical and physical properties such as single ionic charge carrier and fine particle size which enhances their property for a particular use.⁹⁸ Chemical and structural features are prime factors influencing the use of clay in pharmaceutical, cosmetic, food packaging and other health applications.99 The ideal characteristics of clay for health uses is hampered by the presence of impurities.¹⁰⁰ Some components of the interlayer elements and certain ionic attachments to the surface may be biologically unfriendly. The inclusions of elements such as arsenide, zirconium, mercury, lead, lithium, cobalt, copper, nickel, molybdenum, vanadium, etc. in the clay minerals are potentially toxic to biological systems.¹⁰¹ The medical properties of clay minerals have been known by Ghanaians for centuries. They are especially consumed by geophagic people and especially pregnant women. The mineral component of clay such as iron, calcium, and zinc, improves health. However, these clays are mostly unprocessed hence contains potentially toxic contaminants such as Pb, As, Hg, Cd, etc.¹⁰² These toxic elements unknowingly affect individual's health. The health applications of clay minerals may encompass biomedical applications, and food packaging.¹⁰³

Biomedical Applications

Pharmacokinetics (design and the production of medicinal consumables and medical devices) and cosmetics are classes of biomedical applications. Clay materials have desirable surface area and adsorptive qualities. These materials also have negligible toxicity, are biocompatible which means they can be used in most pharmaceutical, cosmetic products and in drug delivery applications.¹⁰⁴⁻¹⁰⁵, The clay materials also have antibacterial, antiinflammatory and antiseptic properties, etc.¹⁰⁶ These are included in medical drugs for purposes such as treatment of diarrhoea, gastrointestinal and other medical conditions.¹⁰⁷ The right administration of bentonite (type of smectite clay) is reported to treat cases such as itching, chicken pox, etc. and for enhancing healing drug delivery. Bentonite is also used in wound healing for soothing wounds, cuts and bruises as well as for muscle damage.¹⁰⁸ Clay materials have also found applications in cosmetic products. They are used in the stabilization of oil-in-water emulsions.109-110 These are also used against perspiration and for covering blemishes. It gives opacity to the skin against sun radiations and to remove toxins from skin pores.111 Clays in combination with polymers improve the strength of hydrogels.¹¹² Hydrogels have applications for delivering drugs and in tissue engineering to grow new cells, tissues and some cartilages.¹¹³ Tiburu et al.,¹⁵, used clay minerals from the Northern Region of Ghana for the enhancement of bone growth in vitro. Alternatively, bone growth could be inhibited by clay minerals.¹⁰¹ Clay materials have high ionic exchange capability.¹¹⁴ The ionic exchange capability of clays is used in drug delivery to carry appropriate ionic drugs. Drugs are loaded through various means of bonding and attachments onto the surface of the clay particles.¹¹⁶ The hollow nature of tubular clays such as allophanes, imogolites and halloysites are also used for drug delivery purposes.¹¹⁷ The drugs are accepted by corresponding ions or charged surfaces present in the biological system. Ionic exchange is the predominant means for drugs to interact with clay minerals particles.118 The claydrug ion exchange is possible when clay mineral particle has a permanent charge or a charge controlled by pH.¹¹⁹⁻¹²⁰ Clay minerals such as smectites and vermiculites have a charge of cation. They normally interact with amines or heterocyclic functional groups.¹²¹ Allophanes, imogolites and aluminium oxides have pH dependent charges. These commonly interact with carboxylates.¹²² High molecular weight drugs are normally unionized hence bonded by adsorption.¹²³ Chymotrypsin drug formed interaction with montmorillonite clay mineral particles through adsorption by electrostatic forces.¹²⁴ Clays with neutral charges form hydrophobic associations with drugs through hydrogen bonding and Van der Waals forces of interaction.¹²⁵ The surface of clay minerals successfully bonds to DNA and RNA by hydrogen bonding.¹²⁶ Drug concentration, pH, temperature, electrolyte concentration, valence charge and dielectric constant are factors which determine the assembly of drugs onto clay mineral particle surfaces.127

Food Packaging and Storage

Wines are expected to be free from suspended matter. They appear dull and non-transparent even if their smell and flavour remains.¹²⁸ Clarification is done in wine tasting to remove visible particles in the liquid wine. Clarification may be defined as the separation of insoluble substances such as dead fungi, yeast, protein, cells, and bacteria. The process which precedes bottling may be through fining, filtration, pasteurization, and centrifugation.¹²⁹ Clay minerals are utilized for the clarification of wine such as white wine. Bentonite clay is used as a fining agent for the agglomeration and settling of colloids in wines. Clarification by clay agents is used both in alcoholic and non-alcoholic beverages. The clarification capability of clay is enabled by its adsorptive property. Suspended materials in wine therefore bind to the surface of bentonite to achieve clarification.¹³⁰ The bleaching process of most edible oils is done to improve its appearance and performance. During bleaching, impurities are removed to improve the high quality standard of oil for consumption. Bleaching of oil is done to decolour, reduce chlorophyll content, remove residual soap and gum, remove trace metals and oxidation products.131 The bleaching process is achieved by the mixing of oil and adsorbent bentonite clay followed by filtration. The conversion of carboxylic acid to esters in the presence of alcohol and acid catalyst defines esterification reactions.132 Esters are characterized by their characteristic odour hence normally used as synthetic flavours, cosmetics, etc. The acid treatment of clay gives excellent catalytic properties in esterification reactions. The esterification of fatty-acids was enabled by acid-activated natural smectite clay as catalyst.133 The global fruit and vegetable industry store their products using refrigerators or storage rooms. Whiles the former consumes much electric power, the later mostly as a result of excessive heat leads to the spoilage of food causing significant loss of income and revenue. New research has highlighted the potentials of clay as an alternative. A low cost technology and eco-friendly bentonite clay pyramid provides an efficient storage of the food. The technology which can be a preferred alternative preserves physiological weight and organoleptic qualities.134

Clothing and Paints

Textiles are expected to improve in the quality of material and dye-ability. The fabric industries are required to enhance clothing characteristics such as susceptibility to flame and thermal degradation. Textiles coated with thin layer of nanoclay as compared to raw textiles have improved characteristics. In addition, textiles coated nanoclay of bentonite, acid and electrolyte admixtures improve dye-ability. Nanoclay interacts with both direct and basic dye through favourable ion exchange and hydrogen bonding. Nanoclay increases water content.¹³⁵ This enables the quality of paint through increased diffusion of dye colour. Clays are found to increase the stability efficiency of paints which are basically oil emulsions.¹³⁶ Clays in emulsions which is due to their adsorptive character, absorbs water to prevent water penetration into paint which could degrade paint.137

Detergents

The qualities of a preferred detergent are emulsifying ability and suspension of fats.¹³⁸ Metallic earth ions such as Ca²⁺ and Mg²⁺, hinders the electrical abilities of detergents and entry into fabrics. The ion exchange of clay causes clay to bind to metal ions and improve the washing capability of detergents.¹³⁵ Clay properties such as large surface area, ion exchange and adsorption results in important qualities of lather and light foam, dissolution of detergent for fibre penetration, adsorption of impurities from fibre, softening of hard water by ion exchange, agglomeration of fats resulting in their suspension from foam when clay is used in detergents.¹³⁶

Energy

Global energy is in constant shortfall and is insufficient. New methods continue to be explored for a more sustainable alternative to meet rising demands. Cooling and heating loads for residential purposes account for a considerable proportion of general energy consumption.139 Phase change materials such as hydrated salt, fatty acids and paraffin in combination with adsorptive materials such as bentonite can store heat in latent form. Such composite has a good heat transfer rate to increase heat per unit volume relative to structures of unlike materials. Electrical carriers require good insulation. Clay has been studied to provide good insulation to electrical carriers.^{5,41,43,138} Electrical groundings have approximately 0 V. Clay materials have been investigated to improve electrical grounding. A mixture of clay minerals with Na₂CO₃, MgSO₄, MgCO₃, Na₂CO₃ are expected to improve electrical grounding.139

CONCLUSION

This review highlights some of the research undertakings in the field of clays ceramics in Ghana

 Albarelli, J. Q.; Santos, D. T.; Cocero, M. J; Meireles, M. A. A. *Materials.*, **2016**, *9*(6), 494.

- Downes, D. R.; Colum, J.; Envtl, L. Minnesota Intellectual Property Review., 2000, 25, 253-282.
- Kesse, G. O.; Balkema, A. A. Journal of Water Resource and Protection., 1985, 1(3), 522-530.
- 4. Ghana Geological Survey Dept. Ghana *Geological Survey.*, **1999**, *1*, 11-15.
- Dowuona, A. N. N.; Yaya, A.; Nyankson, E.; Efavi, J. K.; Damoah, L. N.W; Dodoo-Arhin, D.; Apalangya, V.; Annan, E.; Tiburu, E.K.; Onwona-Agyeman, B.; Tomiczek, B. *Jour. of Ceramic Processing Research.*, **2018**, *19*, 95-100.
- 6. Bradl, H. Academic Press., **2005**, *6*(1), 68-89.
- 7. Hillel, D. Academic press., 2003, 1, 56-90.
- 8. Murthy, V.N. CRC Press., 2002, 1, 10-25.
- 9. Hounslow, A. CRC Press, 1995. 1, 107-112.
- 10. Dondi, M.; Raimondo, M.; Zanelli, C. Applied

and the important applications derived from these materials research. The synthesis and processing of clays have also be highlighted in the text.

The potential applications are directly linked to the understanding of the materials properties of local clay deposits base on this review, the usefulness of clay deposits in Ghana ranges from the development of pozzolans for structural products such as bricks and tiles, to environmental remediation and other products such as electrical insulators. The applications of clay also extends to other economically viable areas sincluding pottery and construction industry.

In order to derive the full potentials of the economic gains of clay minerals in Ghana, the following two recommendations are proposed

• Pursue in-depth research into the potential utility of the various clay deposits in areas such as medical applications, water remediation, energy storage and food packaging

ACKNOWLEDGEMENT

A.Yaya acknowledges support from the Carnergie BANGA-Africa Project, University of Ghana for funding this study.

REFERENCES

Clay Science., 2014, 96, 91-109.

- Bertolino, S. R.; Gastaldi, M. R.; Zimmermann, U.; Laguens, A. Applied Clay Science., 2016, 131, 158–174.
- Tiburu, E. K.; Salifu, A. A.; Aidoo, E. O.; Fleischer, H. N. A.; Manu, G.; Yaya, A.; Zhou, H.; Efavi, J. K. *Journal of Nano Research.*, **2017**, *48*, 156-170,
- Efavi, J.K.; Tiburu, E. K.; Yaya, A.; Damptey, L.A.; Bowen-Dodoo, E.; Asimeng, B.; Zhuang, J. *Jour. of Ceramic Processing Research.*, 2016, *17*(10), 1068-1073.
- 14. Efavi, J.K.; Yaya, A.; Adeborna, S.; Fobil, *J. Advanced Materials Research.*, **2014**, *10*, 936.
- Tiburu, E.K.; Fleischer, H.N.; Aidoo, E.O.; Salifu, A.A.; Asimeng, B.O. Journal of Biomimetics, Biomaterials and Biomedical Engineering., 2016, 28, 66-77.

- 16. Uddin, M. K. *Chemical Engineering Journal.*, **2017**, *308*, 438–462.
- 17. Chatel, G.; Novikova, L.; Petit, S. *Applied Clay Science.*, **2016**, *119*, 193–201.
- Ghana Geological Survey Dept. Ghana Geological Survey, 2009, 1, 14-17.
- 19. Uddin F. Metallurgical and Materials Transactions., **2008**, *39*(12), 2804-2814.
- 20. Komadel, P. *Applied Clay Science.*, **2016**, *1*, 84–99.

21. Cheng, H.; Liu, Q.; Yang, J.; Du, X.; Frost, R.L. *Applied Clay Science.*, **2010**, *50*(4), 476-80.

- Tonle, I.K.; Diaco, T.; Ngameni, E.; Detellier, C. Chemistry of Materials., 2007, 19(26), 6629-36.
- 23. Davis, M.E. *Nature.*, **2002**, *417*(6891), 813-821.
- 24. Singla, P.; Mehta, R.; Upadhyay, S.N. Green and Sustainable Chemistry., **2012**, *2*(1) 21–25.
- 25. Goudie A.S; Middleton N. J. *Earth-Science Reviews.*, **2001**, *56*, 179-204.
- Ngulube, T.; Ray, J.; Masindi, V; Maity, A. Journal of Environmental Management., 2017, 191, 35–57.
- Michalkova, A.; Martinez, J.; Zhikol, O.A.; Gorb, L.; Shishkin, O.V.; Leszczynska, D. Journal of Physical Chemistry., 2006, 110(42), 21175-21183.
- Pavlidou, S.; Papaspyrides, C.D. Progress in polymer science., 2008, 33(12), 1119-98.
- 29. Lu, S.; Sun, F.F.; Zong, Y.T. *Catena.*, **2014**, *114*, 37-44.
- Christie, A.B.; Thompson, B.; Brathwaite, B. New Zealand Mining., 2000, 27, 26-43.
- Andrews, A.; Gawu, S.K.Y.; Appiah, M.; Indome, A.; Fudzi, A. A. *J. Springer Science.*, **2014**, *55*(2), 143 – 147.
- Al-Juboury, A. I. Acta Geologica Polonica., 2009, 59(2), 269-282.
- Churchman, G. J.; Gates, W. P.; Theng, B. K. G.; Yuang, G. *Development in Clay Science.*, 2006, *1*, 625-675.
- MacEwan, D. M.; Wilson, M. J. Soil Science Society of America., 1980, 5, 197-248.
- 35. Smith, T. Durham University, 1978, 1, 56-78.
- Cornell, R.M.; Schwertmann, U. John Wiley & Sons., 2003, 13, 139-148.
- 37. Ryan, W. Pergamon Press., 2013, 2, 799-814.
- Tagbor, T, A.; Boakye, K. A.; Sarfo-Ansah, J.; Atiemo, E. Int. Journal of Engineering Research and Applications., 2015, 5(8), 28-33.
- 39. Amoanyni, R.; Kwawukume, P. S.; Francis,

M. Y. International Journal of Engineering Research in Africa., **2012**, *8*(1), 1-15.

- 40. Gillson, J. L.; *Economic Geology.*, **1960**, *55*(4), 629-44.
- 41. Yaya, A.; Knowles K. M. *Research Horizons.*, **2017**, *32*, 30-31.
- 42. Ghana Geological Survey Dept. Ghana *Geological Survey.*, **2006**, *1*, 12-15.
- Yaya A.; Tiburu, E. K.;, Vickers, M. E.;, Efavi, J. K.;, Onwona-Agyeman, B.; Knowles, K. M. *Applied Clay Science.*, **2017**, *150*, 125-130.
- 44. Crini, G. *Bioresource technology.*, **2006**, *97*(9), 1061-85.
- 45. Murray, H. H. *Clay minerals.*, **1999**, *34*(1), 39-39.
- 46. King, J. R. *Woodhead publishing-Elsevier.*, **2001**, *1*, 5-9.
- 47. Dondi, M. Applied Clay Science., **1999**, *15*, 337-366.
- 48. Semiz, B. *Applied Clay Science.*, **2017**, *137*, 83–93.
- 49. Hui, C.; Zhi, L.; Qin, A.; Hu, T.; Ping, H. *Applied Clay Science.*, **2016**, *119*, 3–7.
- 50. Iskender, E. *Measurement.*, **2016**, *93*, 359–371.
- Vrolijk, P. J.; Urai, J.L.; Kettermann, M. Journal of Structural Geology., 2016, 86, 95–152.
- Kwame, J.; Damoah, L.; Yaw, D.; Dodoo,
 D.; Tetteh, D. *Applied Clay Science.*, **2012**, 65(66), 31–36.
- 53. Dordio, A. V.; Miranda, S.; Ramalho, J. P. *Journal* of Hazardous Materials., **2017**, *323*, 575–583.
- 54. Carretero, M.I.; Pozo, M. *Applied Clay Science.*, **2010**, *47*, 171–181.
- 55. Lyons, S.C. Engineering Corporation, United States patent., **1978**, *4*, 125-411.
- 56. Tano-Debrah, K.; Bruce-Baiden, G. *Nature Science Report and Opinion.*, **2010**, *2*(6), 77-81.
- Konadu, D. S.; Annan, E.; Buabeng, F. P.; Yaya,
 A. American Journal of Materials Science.,
 2013, 3(5), 110-119.
- Abo, O.; Fan, M.; Feo, L.; Hui, D. Composites Part B., 2016, 98, 314–329.
- 59. Bediako, M.; Gawu, S.K.; Adjaottor, A.A. *Construction and Building Materials.*, **2012**, *29*, 667-71.
- Bediako, M.; Atiemo E. Journal of scientific research & reports., 2014, 3(23), 3018–3030.
- 61. Brandt, A.M. CRC Press., 2017, 2, 8-15.
- Amankwah, E. O.; Bediako, M.; Kankam, C. K. International Journal of Materials Science and Applications., 2014, 3(3), 410–419.
- 63. Sabir, B.B.; Wild, S.; Bai, *J. Cement and Concrete Composites.*, **2001**, *23*(6), 441-54.

- 64. O'Bannon, L. Dictionary of ceramic science and engineering: *Springer Science.*, **1984**, *3*, 56-79.
- Wuana, R.A.; Okieimen, F.E. *Ecology ISRN.*, 2011, *59*, 58-66.
- Lin, J.; Chan, Y.; Lan, Y. MDPI Materials., 2010, 3(4), 2588–2605.
- Yaya, A.; Agyei-Tuffour, B.; Dodoo-Arhin, D.; Annan, E.; Nyankson, E.; Konadu, D. S.; Sinabobye, E.; Baryeh, E. A.; Ewels, C. P. *Global Journal of Engineering, Design and Technology.*, 2014, 1(2), 32-41.
- 68. Förstner, U.; Wittmann, G.T. Springer Science & Business Media., **2012**, *62*, 109-115.
- 69. Donald, I.W. John Wiley & Sons., **2010**, *1*, 337-357.
- Nicotera, I.; Enotiadis, A.; Angjeli. K.; Coppola.
 L.; Ranieri, G.A.; Gournis, D. *Journal of Physical Chemistry.*, 2011, 115(29), 9087-97.
- 71. Theng, B.K.; 2012, *Elsevier.*, **2012**, *2*, 117-129.
- Krishna, A. S.; Ramachandran, R.; Kalidhasan, S.; Rajesh, V.; Rajesh, N. *Chemical Engineering Journal.*, **2012**, *57*, 396–405.
- Pashley, R.M.; Israelachvili, J.N. Journal of Colloid and Interface Science., 1984, 97(2), 446-55.
- Post, W.M.; Kwon, K.C. Global change biology., 2000, 6(3), 317-27.
- 75. Scherr, S. J.; Satya, Y. I. F. *Intl Food Policy Res Inst.*, **1995**, *1*, 33-37.
- Liang, B.; Lehmann, J.; Solomon D.; Kinyangi, J.; Grossman, J.; O'neill, B.; Skjemstad, J.O.; Thies, J.; Luizao, F.J.; Petersen, J.; Neves, E.G. Soil Science Society of America Journal., 2006, 70(5), 1719-30.
- Doe, E. D.; Awua, A.; Achoribo, S.E.A.; Donko, S.; Baidoo, I.; Opata, N.S.; Ampong, A.G. Elixir *Appl. Biology.*, **2012**, *47*, 8633-8636.
- 78. Barber, S.A. John Wiley & Sons., **1995**, *1*, 78-89.
- 79. Gillman, G.P. *Applied Clay Science.*, **2011**, *53*(3), 361–365.
- 80. Craig, R.F. Soil mechanics, Springer., 2013, 7, 1-5.
- 81. De Boodt, M.F. *Springer US.*, **1990**, *214*, 517-556.
- 82. Biswas, T.D.; Mukherjee, S.K. *Tata McGraw-Hill Education.*, **2001**, *1*, 77-85.
- Kar, P.; Mishra, B.G. *Biochemical Pharmacology.*, **2016**, *1*, 1962–1969.
- 84. Sparks, D.L. Academic press., 2003, 2, 78-79.
- Sarfo-Ansah, J. Doctoral dissertation, Kwame Nkrumah University of Science and Technology, Kumasi., 2010, 1, 23-34.

- Slovic, P.; Layman, M.; Flynn, J.H. Science and Policy for Sustainable Development., 1991, 33(3), 6-30.
- Chapman, N.; Hooper, A. Proceedings of the Geologists' Association., 2012, 123(1), 46-63.
- Biedscheid, J. A. Water Environment Research., 2001, 72(6), 1283-339.
- Ismadji, S.; Soetaredjo, F.E.; Ayucitra, A. Springer., 2015, 325, 74-83.
- Selli, P.; Leupin, O.X. *Clays and Clay Minerals.*, 2013, 61(6), 477-98.
- 91. Pearlman, L. US *Environmental Protection Agency.*, **1999**, *1*, 1-61.
- 92. Pusch, R.; Yong, R.N. CRC Press., 2006, 76, 1-38.
- 93. Ewing, R.C.; Weber, W.J.; Lian, J. *Journal of Applied Physics.*, **2004**, *95*(11), 5949-71.
- López-Galindo, A.; Viseras, C.; Cerezo, P. *Applied Clay Science.*, 2007, 36(1), 51-63.
- 95. Droy-lefaix, M.T.; Tateo, F. Applied clay science., **2000**, *17*(5), 207-21.
- 96. Kiliaris, P.; Papaspyrides, C.D. *Progress in Polymer Science.*, **2010**, *35*(7), 902-958.
- 97. Pais, I.; Jones, Jr. J.B. *The handbook of trace elements. CRC Press*, **1997**, *1*, 1-24.
- Abebe, Y.; Bogale, A.; Hambidge, K.M.; Stoecker, B.J.; Bailey, K.; Gibson, R.S. *Journal* of Food Composition and Analysis., 2007, 20(3), 161-8.
- 99. Emamifar, A. Advances in nanocomposite technology., **2011**, *1*, 12-15.
- Aguzzi, C.; Sandri, G.; Cerezo, P.; Carazo, E.; Viseras, C. *Clay Minerals.*, **2016**, *7*(10), 22-36.
- Tiburu, E.K.; Kankpeyeng, B.W.; Nkumbaan, S.N.; Salifu, A.A; Zhuang, A. Journal of Biomimetics, Biomaterials and Biomedical Engineering., 2017, 30, 45-60.
- 102. Choy, J.H.; Choi, S.J.; Oh, J.M.; Park, T. *Applied Clay Science.*, **2007**, *36*(1), 22-32.
- Asantewah, M.; Korankye, M.; Darko, G.; Dodd, M. *Toxicology Reports.*, **2016**, *134*, 644–651.
- 104. Hauser, R.L. *United States patent US 9.*, **2015**, *011*, 934,
- López-Galindo A.; Viseras C.; Cerezo P. *Applied Clay Science.*, 2007, 36(1), 51-63.
- 106. Zhou, D.; Abdel-Fattah, A.; Keller, A.A. Environmental science & technology., **2012**, 46(14), 7520-6.
- Viseras, C.; Aguzzi, C.; Cerezo, P.; Lopez-Galindo A. *Applied Clay Science.*, **2007**, *36*(1), 37-50.

- Zeng, QH.; Yu, A.B.; Lu, G.Q.; Paul, D.R. Journal of nanoscience and nanotechnology., 2005, 5(10), 1574-92.
- 109. Tanaka, Y.; Gong, J.P.; Osada, Y. *Progress in Polymer Science.*, **2005**, *30*(1), 1-9.
- Bailey, S.E.; Olin, T.J.; Bricka, R.M.; Adrian, D.D. Water research., **1999**, *33*(11), 2469-79.
- Iliescu, R.I.; Andronescu, E.; Voicu, G.; Ficai, A.; Covaliu, CI. *Applied Clay Science.*, **2011**, *52*(1), 62-68.
- 112. Szczepanik, B. *Applied Clay Science.*, **2017**, *141*, 227–239.
- Nowara, A.; Burhenne, J.; Spiteller, M. Journal of Agricultural and Food Chemistry., 1997, 45(4), 1459-63.
- 114. Mok, S.; Tiwari, D. *Applied Clay Science.*, **2012**, *59*(60), 84–102.
- 115. Bergaya, F.; Lagaly, G. Developments in clay science., **2006**, *1*, 1-8.
- 116. Suresh R; Borkar S.N; Sawant V.A; Shende V.S; Dimble S.K. International Journal of Pharmaceutical Sciences and Nanotechnology., 2010, 3(2), 901-905.
- 117. Hanudin, E.; Matsue, N.; Henmi, T. *Clay Science.*, **1999**, *11*(1), 57-72.
- Appasaheb, P.S.; Manohar, S.D.; Bhanudas, S.R.; Anjaneri, N. *Journal of Advanced Pharmacy Education & Research.*, **2013**, *3*(4). 108-189.
- Osmond, G.; North, P.; Zealand, N. Clays & Clay Minerals For Pollution Control., 2006, 1(5), 625–675.
- Yu, W.H.; Li, N.; Tong, D.S.; Zhou, C.H.; Lin, C.X.; Xu, C.Y. *Applied Clay Science.*, **2013**, *80*, 443-52.
- Mignon, P.; Ugliengo, P.; Sodupe, M. *Journal of Physical Chemistry C.*, **2009**, *113*(31), 13741-9.
- Sandri, G.; Bonferoni, M. C.; Rossi, S.; Ferrari,
 F.; Aguzzi, C.; Viseras, C.; Caramella, C.
 Biomaterials., **2016**, *2*, 1545-1554.
- 123. Singleton, V.L.; Sieberhagen, H.A.; De Wet, P.; Van Wyk, C. J. American Journal of Enology

and Viticulture., 1975, 26(2), 62-69.

- 124. Peynaud, E.; Blouin, J. *John Wiley & Sons.*, **1996**, *1*, 56-57.
- 125. Nyankson E.; Annan E.; Agyei-Tuffour B.; Bensah Y.D; Konadu D.S.; Yaya A.; Onwona-Agyeman B.; **2018**, Accepted Manuscript, Cogent Engineering, https://doi.org/10.1080 /23311916.2018.1476017
- 126. Butzke, C. Woodhead Publishing; Purdue University, **2010**, Retrieved at: www.extention. purdue.edu/extmedia/fs/fs--w.pdf
- 127. Vermeiren, W.; Bouvart, F.; Dubut, N. *United* States patent US., **2014**, *8*, 624, 071.
- 128. Bender, M.L. *Chemical Reviews.*, **1960**, *60*(1), 53-113.
- 129. Zatta, L.; Ramos, L.P.; Wypych, F. *Applied Clay Science.*, **2013**, *80*, 36-44.
- Al-Arfaj, A.A.; Murugan, A.M.; Chinnathambi, A.; Al-Hazmi, M.I. *Journal of Food, Agriculture* & Environment., **2013**, *1*, 175-80.
- Gowri, S.; Almeida, L.; Amorim, T.; Carneiro, N.; Pedro, S. A.; Fátima, E. M. *Textile Research Journal.*, **2010**, *80*(13), 1290-306.
- 132. Mulqueen, P. Advances in colloid and interface science., **2003**, *106*(1), 83-107.
- Herrera, N.N.; Letoffe, J.M.; Putaux, J.L.; David, L.; Bourgeat-Lami, E. *Langmuir.*, 2004, *20*(5), 1564-71.
- 134. Hofmann, A.F. *Biochemical Journal.*, **1963**, *89*(1), 57.
- Malakul, P.; Srinivasan, K.R.; Wang, H.Y.; Industrial & engineering chemistry research., 1998, 37(11), 4296-4301.
- Li, Z.; Jaroniec, M.; *Chemistry of materials.*, 2003, *15*(6), 1327-33.
- Balaras, C.A.; Droutsa, K.; Argiriou, A.A.; Asimakopoulos, D.N. *Energy and buildings.*, **2000**, *31*(2), 143-54.
- 138. Nelson, J.K.; Hu, Y. *Journal of Physics D, Applied Physics.*, **2005**, *38*(2), 213.
- 139. Campanella, R.G.; Weemees, I.; *Canadian Geotechnical Journal.*, **1990**, *27*(5), 557-67.