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ABSTRACT

Gout and oxidative stress have been strongly associated with hyperuricemia, a metabolic
defect marked by high levels of uric acid (UA) in the serum. Hyperuricemia has been managed by
the use of drugs that  inhibit xanthine oxidase. The recent account on synthesis of 4-aryl/heteroaryl-
4H-fused pyrans as XO inhibitors provided excellent opportunity to uncover the crucial properties
of these compounds that confer XO inhibitory action. In here, multiple linear regression analysis of
DRAGON-type descriptors showed that the Randic Shape Index (PW3), and a size descriptor
P_VSA_v_3account for the 75% of the variability of IC50 values. Correlation studies with familiar
QSAR descriptors indicate that the observed activity is primarily influenced by the molecular
ovality and volume, and partly by charge distribution. The Comparative Molecular Field Analysis
(CoMFA) models provide further insights on the steric and electronic features of this class of XO
inhibitors.

Keywords: Xanthine oxidase inhibitors (XOI), hyperuricemia, gout, fused pyrans,
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INTRODUCTION

Gout, oxidative stress, and other systemic
disorders like cardiovascular and other metabolic
diseases have been strongly associated with
hyperuricemia, a disorder in the metabolism
marked by high levels of uric acid (UA) in the serum1.
The management of hyperuricemia involves
reducing the production, increasing the excretion,
and mopping out of excess uric acid2. The reduction
of UA level in the blood has been accomplished by
dispensing xanthine oxidase (XO) inhibitors. XO is
responsible for the conversion of purine to UA in

the latter part of the metabolic pathway, particularly
the catabolism of hypoxanthine to xanthine followed
by hydroxylation of xanthine to uric acid3,4. During
purine oxidation, XO utilizes dioxygen as electron
acceptor that is converted to reactive oxygen species
(ROS) in the process. The ROS derived from XO has
been linked to several disease conditions including
carcinogenesis, atherosclerosis, inflammation, and
chronic obstructive pulmonary disease (COPD)5.
Therefore, the selective inhibition of XO may pave
the way for multi-targeted chemotherapy for gout,
cardiovascular disease, cancer, and oxidative
damage6.
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The current treatment for hyperuricemia
involves purine-based XO inhibitors primarily
Allopurinol6,7 along with 2-alkyl hypoxanthines8,9,
and pterins10. However, Allopurinol potentially yields
toxic purine metabolites that have been implicated
in several adverse effects such as skin rashes,
drowsiness, allergic reactions, and gastrointestinal,
hepatic, renal and hematological problems5,6,11-13.
These drawbacks have prompted the search for
non-purine based XO inhibitors that lead to the
discovery of recently approved drug Febuxostat14

and its derivatives Piraxostat15  and FYX-05116. Other
classes of non-purine XO inhibitors reported in
recent years include azaflavones17, pyrazolines18,
acetamides19, naphthopyrans20, heteroaryl
pyrimidinones21, isocytosines22, thiadiazolo-
pyrimidones23, benzaldehydes24, and xanthones25.

Recently, a series of forty-one 4-aryl/
heteroaryl-4H-fused pyrans, has been prepared
and tested for xanthine oxidase (XO) inhibition26.
This family of compounds offers great opportunity
to identify the relevant properties inherent in these
compounds that dictate their xanthine oxidase
inhibitory activity. A routine approach in drug design
is the generation of quantitative structure-activity
relationship (QSAR) models, which relate the
observed bioactivity to the molecular properties27

as exemplified in our previous works28,29. QSAR
studies are useful in the ligand-based design of
next generation drug candidates with improved
pharmacodynamics and pharmacokinetics
properties. A QSAR study on this sizeable class of
compounds unravels the crucial chemical properties
and the extent of the contribution of each predictor
to effect XO inhibition. Thus, in this study over 4000
DRAGON-type descriptors were generated for each
member of the pyran family. The structure-derived
predictors that influence the variation of experimental
XO activity were determined by multiple linear regression
analyses. The generated QSAR models were
supplemented with Comparative Molecular Field
Analysis (COMFA) on the same set of pyran XO inhibitors.
In COMFA30, the 3D structure of a molecule defined by
an array of grid structures is subjected to a probe
atom or functional group to calculate the steric and
electrostatic fields at certain points outside the grid27.
The results of this work provide critical insight in the
development of next generation of fused pyrans as
therapeutic agents for hyperuricemia.

MATERIALS AND METHODS

Data Collection
The biological data (IC50) of 4-aryl/

heteroaryl-4H-fused pyrans (Table 1) included in
this study were obtained from literature26.
IC50denotes the concentration of the test compound
that exerts 50% inhibition of the biological action.
The 3D structures of all compounds were generated
using Spartan 14® (Wave function, Inc.) software.
Geometry optimization was performed at semi-
empirical PM3 level of theory prior to the generation
of molecular electrostatic potential map and other
isosurfaces. The CoMFA models were created with
the use of BIOVIA Discovery Studio (DS) 2017
software (http://accelrys.com). The QSAR
descriptors were computed (using the DRAGON 5
software (http://www.talete.mi.it). Over 4000
descriptors were computed including 0D properties
(constitutional); 1D descriptors (i.e. atom-centered
fragments, functional groups, properties, and
information descriptors); 2D descriptors (i.e.
connectivity, edge adjacency, molecular walk
counts, topological, topological charge indices,
eigenvalue-based indices, Burden eigenvalues,
and 2D autocorrelation descriptors); and 3D
descriptors (i.e. geometry, charge, Randic molecular
profiles, 3D-MoRSE, RDF, GETAWAY, and WHIM
descriptors)31.

QSAR Model Building
To establish a quantitative relationship

between structure-based properties (dependent
variables) and experimental activity (independent
variable) of pyrans, a multiple linear regression
(model was derived with the use of forward stepping
protocol32 in SPSS version 20 that ran on MacOS
10.11 system. In order to relate the k independent
variables or descriptors (Xi) to the dependent
variable Y, a linear function, with parameters α and
β,were obtained in the form:

To preliminarily assess the quality of the
fitted equation, the amount of the variability in the
dependent variable that is explained by the
regression equation was determined by calculating
the squared correlation coefficient (r2)33. In addition,
bivariate correlation studies were done to check for
multi-collinearity among the predictors.

  (1)
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QSAR model validation
The predictive ability of the QSAR model

was evaluated using Leave-One-Out (LOO)34 and
Leave-Group-Out (LGO)35 techniques. In LOO
method, a single entry (row) is removed from the
dataset containing n entries, then a new equation
is generated based on n–1 dataset left.
Subsequently, the equation is used to calculate the
response variable y  for the compound that had
been removed. This process is done repeatedly until
all y  values in the dataset are obtained. In the LGO
approach, the test set (a group of compounds
omitted in each instance) is usually 20% of n. A
model is then generated based on the remaining
80% of the dataset, also called as training set. The
generated model is used to calculate the y values
for the excluded compounds. After which, the
original dataset of n compounds is restored and
another round of test set selection, refitting based
on new training set, and prediction of y values for
the compounds in the test set. This process is
continued until all the y values for n dataset have
been calculated. In this work, four more cycles of y
value calculations were done in order to obtain an
average of five predicted values for each compound.

The cross-validated r2 value, (also known
as q2) was determined to assess the statistical
validity of the model. The q2values for the cross-
validated models were calculated from the model
PRESS(prediction error sum of the squares)
according to equations 2 and 3, respectively.

Both r2 and q2 are useful indicators of model
validity. While the r2value quantifies the goodness-
of-fit, the q2value determines the goodness of
prediction33.

Further more, to verify the absence of
chance correlation, y-randomization36 was
performed by randomly scrambling the y values
while keeping the x values intact.  Accordingly, the
QSAR model was used to predict the randomly
scrambled y values.

RESULTS AND DISCUSSION

QSAR in drug discovery
Drug discovery in modern times follows a

repetitive, cyclic work flow involving three major steps
that include design, synthesis, and evaluation33. One of
the two approaches in drug design,called ligand-based
discovery, is appropriate in cases where a set of
compounds with common biological action is known.
QSAR study can be performed on a set of compounds
in order to decipher the structure-based properties that
influence the experimental bioactivity.The deep
understanding of the relationship between molecular
structure and bioactivity is useful in the design of a lead
compound and its derivatives.

QSAR models are mathematical equations
derived from systematic analysis of diverse
descriptors or properties of a compound using
appropriate statistical techniques. A supervised
univariate method of analysis called multiple linear

(2)

  (3)

Table. 1: Structures of 4-aryl/heteroaryl-4H-
fused Pyrans26
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regression (MLR) has been commonly employed
in QSAR studies. MLR provides quantitative
description of the relation between the relevant
molecular descriptors and the experimental data.

DRAGON-Type Descriptors and QSAR Model
In this study, over 4000 molecular

descriptors were calculated for each of the 41 XO
inhibitors using the DRAGON software. The output
of DRAGON as text file was converted to Microsoft
Excel®format and, in turn, exported to SPSS®. After
removing the descriptors that have zero or invariant
values throughout the dataset of 41 compounds,
only 3062 independent variables (descriptors) were
left.With a sample size of 41, the QSAR model
should contain at most 8 descriptors, following the
rule-of-thumb in model development of having 1
independent variable per 5 samples)33,37.
Incidentally, the multiple linear regression analysis
of this dataset using both Enter and Stepwise
methods returned eight equations consisting of one,
two, three up to eight variables, respectively. The
eight-variable model includes the following
descriptors: PW3, P_VSA_v_3, Sp Diam_AEA (ed),
RDF045u, SpMax2_Bh(m), H8m, R4i, and Mor15s,
in order of decreasing contribution to the variability
of the dependent variable (IC50).

Nevertheless, the correlation analysis on
these descriptors revealed notable multi-collinearity
involving several descriptors, particularly the four
least important contributors to XO inhibitory activity.
Thus, it is instructive to remove these four descriptors
namely, Sp Max2_Bh(m), H8m, R4i, and Mor15s.
The r2 value was hardly eroded (Δr2 = 0.067) by the
exclusion of the four variables, and thus the
resulting QSAR model (Equation 4) with just four
predictors remains adequate in explaining the
variability of IC50.

The MLR analysis showed that only 7% of
the variability of IC50 values was explained by the
four excluded descriptors combined.  On the other
hand, the four included predictors in the model
account for 90% of the variation in XO inhibitory
activity of fused pyrans. Specifically, the Randic

shape index Path/Walk 3 (PW3)alone explains
more than half (57%) of the variation of response
variable, and the combined PW3 and a size index
P_VSA_v_3, account for 75% of the fluctuations in
IC50 values. The negative coefficient of PW3
indicates that its value should increase in order to
minimize IC50 and improve the potency of the XO
inhibitor. The graph theoretical index Path/Walk 3
introduced by Randic38 has been demonstrated to give
regressions of high quality for a number of
physicochemical properties. Meanwhile, P_VSA_v_3,
which stands for P-VSA on van der Waals volume, bin 3,
is obviously a size descriptor.  P-VSA-like descriptors
are defined as the amount of van der Waals surface
area (VSA) having a property P in a certain range39.

To appreciate the remarkable influence of
a poorly understood graph theoretical index like
PW3 on the observed activity of a compound, the
DRAGON-type descriptors were correlated with
typical QSAR variables such as those that can be
derived from Spartan software (e.g. MW, area,
volume, etc.).  The interrelatedness of the two groups
of descriptors is evident in Table 2.  It can be seen
that PW3 is highly significantly inversely correlated
with Ovality and LogP.  These results indicate that a
more spherical and more hydrophilic pyran-based
lead tends to be a more potent XO inhibitor. Similarly,
the negative coefficient of P_VSA_v_3, which is
highly significantly correlated with size-dependent
properties like MW, area, volume, and polarizability,
indicates that a larger and more polarizable variant
of fused pyran tends to have smaller IC50. Further
more, a molecule with smaller SpDiam_AEA(ed)
and larger RDF045u values tends to enhance
potency, albeit these descriptors have minor
contributions to observed XO inhibitory activity.
SpDiam_AEA(ed) is an edge adjacency index while
RDF045u is a radial distribution function descriptor
(http://www.talete.mi.it).

QSAR Model Validation
The predictive ability of the QSAR model

was evaluated by performing cross-validation using
both leave-one-out (LOO) and leave-group-out
(LGO) methods. The results detailed in Table 3 and
illustrated graphically in Figure 1 demonstrate the
robustness (large q2) and thus the utility of the QSAR
model in the design of next generation XO inhibitors.
The random distribution of residuals around Z-score(4)

IC50   =  507.335 (±37.711)  - 1747.216 (±100.700) PW3 - 0.139 (±0.015) P_VSA_v_3 

+  25.837 (±4.061) SpDiam_AEA(ed)- 1.344 (±0.235) RDF045u 

n = 41      r2 =  0.902   F = 82.6     Sig = 0.000 



2221BILLONES et al., Orient. J. Chem.,  Vol. 33(5), 2217-2225 (2017)

value of 0 and within ±3 (Fig. 2) indicates the
absence of any bias or systematic error, and outliers
with the use of the QSAR model.  Furthermore, the
results of y-randomization validation also indicate
the absence of chance correlation, with a negligible
correlation coefficient (r = 0.089) for the jumbled
experimental IC50 values and the calculated values.

3D QSAR by CoMFA
Finally, Comparative Molecular Field

Analysis (CoMFA) was also performed on the same
set of 4-aryl/heteroaryl-4H-fused pyrans to further
shed light on the structural features needed to effect
XO inhibition. The 3D QSAR model was built using
Partial Least Squares (PLS) regression using
energy grids as descriptors. The energy grids were
computed using two probe types, a positive point
charge H+ and van der Waals Carbon, designed to
measure electrostatic and steric effects,
respectively. In model building, the most
uncorrelated descriptors were chosen.  The dataset
of 41 compounds was split into two; the 11
compounds were randomly selected to constitute
the test set, while the remaining 30 compounds
served as the training set.  Then, the log IC50 model
was successfully created and validated.  The
external validation using the test set yielded a
predictive squared correlation coefficient, q2 of 0.49,
which is above the threshold value40 of 0.3, although
lower than practical cut-off41 of 0.6. Although the 3D

QSAR model is not as robust as Equation 4, the
insights it offers are consistent with that of the QSAR
model consisting of DRAGON-derived indices (vide
infra).

The results of CoMFA (Fig. 4) indicate that
a new molecule must have stronger van der Waals
(vdW) attractive interaction at the 4-aryl position
and at distal end of the heteroaryl moiety (i.e. green
vdW isosurface) of the fused pyran. These spots
almost coincide with the red electrostatic potential
(EP) isosurface, where there should be no negative
functionalities. In addition, the EP isosurface of the
3D QSAR model favors the presence of
electronegative groups at the proximal end (i.e. blue
isosurface) of the heteroaryl fragment as well as
the amino/nitrile-substituted side of the core pyran.
Compounds 20 – 25, the most active class of fused
pyrans satisfy these requirements, the additional
benzene fused to the pyranone having set the stage
for van der Waals interaction while the lactone
functionality provided the negative electrostatic
potential. Apparently, the compounds with larger
heteroaryl group (i.e. 20 – 30, 36 – 41) are generally
more active agents. Furthermore, the chromen-2-
one-4H-fused pyrans (20 – 25), having negative
potential at the right position, are more active than
their naphthalene counterparts (26 – 30). These
observations are consistent with the QSAR model
derived from DRAGON-type descriptors and the 3D

Table. 2 : Correlations coefficients for the top four most important DRAGON-type descriptors and
Spartan-derived QSAR descriptors

PW3 P_VSA_V_3 SpDiam_AEA(ed) RDF045u

MW -0.348* 0.737** -0.060* 0.077
Area -0.313* 0.701** 0.235 0.244
Vol -0.258 0.747** 0.333* 0.235
PSA -0.184 -0.546** -0.420** -0.066
Ovality -0.445** 0.398* -0.170 0.126
Acc Area 0.082 0.746** 0.525** 0.157
LogP -0.411** 0.541** 0.079 -0.008
P Area -0.201 -0.501** -0.424** -0.070
Acc P Area -0.173 -0.518** -0.437** -0.086
Polarizability -0.259 0.752** 0.333* 0.232
HBA -0.160 -0.546** -0.488** -0.086
Abs Hardness -0.144 0.493** 0.173 0.016

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).
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Table. 3: Essential QSAR descriptors, experimental, and predicted IC50 values of 4-aryl/heteroaryl-
4H-fused Pyrans as xanthine oxidase inhibitors

Compound PW3 P_VSA SpDiam_RDF045u Expt’l Calc Calc Scrambled Calc IC50

_v_3 AEA(ed) IC50 IC50 IC50 Expt’l (Y-scra
(LOO) (LGO)a IC50

b mbling)b

1 0.360 96.335 6.882 14.791 22.2 23.08 23.02 12.4 9.74
2 0.359 135.868 6.617 14.849 10.9 12.39 12.34 1.67 9.95
3 0.361 89.615 6.617 15.521 13.4 14.33 14.14 4.32 9.07
4 0.366 81.909 6.675 15.998 3.58 7.93 8.05 8.4 8.31
5 0.366 105.006 6.675 18.605 3.08 0.31 0.19 3.01 8.16
6 0.359 129.508 6.617 17.512 4.32 9.99 9.70 5.5 9.47
7 0.354 120.122 6.715 21.455 12.58 18.37 18.30 22.2 9.56
8 0.349 144.624 6.624 15.517 33.12 26.21 26.56 1.97 11.30
9 0.364 94.751 6.887 19.032 12.4 10.18 10.07 8.39 8.53
10 0.363 134.284 6.589 14.066 6.4 5.75 5.64 7.57 9.47
11 0.365 88.031 6.589 17.067 8.4 4.08 4.09 12.6 8.23
12 0.371 80.325 6.680 14.322 3.2 0.94 0.74 9.7 7.88
13 0.371 103.422 6.680 11.233 2.24 2.26 3.06 17.4 8.61
14 0.363 127.924 6.589 14.85 4.01 5.80 5.91 19.87 9.28
15 0.356 125.35 6.886 14.77 26.4 25.95 25.77 26.4 10.60
16 0.356 164.883 6.588 14.464 14.4 13.07 12.86 10.87 10.69
17 0.358 118.63 6.588 15.128 17.4 15.10 15.42 1.9 9.81
18 0.362 134.021 6.679 18.14 7.4 4.15 4.05 7.5 9.10
19 0.356 158.523 6.588 15.794 9.4 12.67 12.66 3.58 10.42
20 0.364 137.123 6.957 16.967 7.43 9.55 9.43 1.3 9.41
21 0.363 176.656 6.836 17.116 5.5 1.90 1.77 0.59 9.80
22 0.365 130.404 6.836 17.441 4.5 4.69 4.73 13.4 8.97
23 0.369 122.697 6.836 12.871 0.9 5.58 5.88 3.08 9.05
24 0.369 145.794 6.836 14.982 0.59 -1.35 -1.37 9.4 8.97
25 0.363 176.656 6.836 17.16 1.3 2.17 2.32 7.4 9.79
26 0.362 145.601 6.852 14.785 9.5 12.05 11.74 10.9 9.97
27 0.361 185.134 6.734 14.82 7.5 4.70 4.58 6.4 10.38
28 0.363 138.882 6.734 14.843 8.5 7.84 7.91 8.5 9.60
29 0.367 154.272 6.734 12.79 1.9 1.47 1.74 9.5 9.54
30 0.361 178.774 6.734 15.727 2.9 4.82 5.07 34.3 10.17
31 0.356 92.149 6.886 14.891 34.3 28.86 29.29 3.2 10.22
32 0.356 131.682 6.588 15.368 16.4 16.61 16.71 2.9 10.19
33 0.358 85.43 6.588 16.942 19.87 17.08 16.62 7.43 9.17
34 0.362 100.82 6.679 14.481 10.87 14.14 12.94 4.01 9.30
35 0.356 125.322 6.588 16.404 12.6 16.49 16.17 33.12 9.96
36 0.361 145.601 6.938 17.112 9.7 13.00 13.02 16.4 9.86
37 0.36 185.134 6.819 17.126 7.57 5.51 5.65 12.58 10.27
38 0.362 138.882 6.820 18.735 8.39 6.45 6.27 2.24 9.24
39 0.366 131.175 6.819 18.046 1.97 1.53 2.89 0.9 8.72
40 0.366 154.272 6.819 17.583 1.67 -1.26 -1.42 14.4 9.05
41 0.36 178.774 6.819 18.144 3.01 5.56 6.00 4.5 10.04

a Average of 5 sets;  b One of 5 iterations with r = 0.089.
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Fig. 1.  Calculated IC50 values by the use of Leave-One-Out (LOO) (left) and Leave-Group-Out (LOO)
(right) cross-validation methods versus Experimental IC50 data. q2

LOO = 0.86,  q2
LGO = 0.85, n = 41

Fig. 2. Z Scores for LOO (left), r2 = -0.05; and LGO (right), r2 = -0.04 cross-validation methods

Fig. 3. Calculated IC50 values by the use of MLR
model based on scrambled experimental IC50 data
versus experimental IC50. rY-randomization = 0.089,  n = 41

QSAR model. Both models point to a larger
molecule with increased van der Waals attraction
at the distal part of the heteroaryl group as well as
the 4-aryl moiety. Moreover, a more negative
potential at the proximal side of the heteroaryl

fragment (that also tends to increase the
hydrophilicity) further confers XO inhibitory activity.

CONCLUSION

Quantitative structure-activity relationship
(QSAR) studies have been carried out on a family
of 4-aryl/heteroaryl-4H-fused pyrans that are active
against xanthine oxidase, a crucial enzyme in the
production of uric acid in the body. The QSAR model

Fig. 4. Training set molecules aligned with the is
osurface of the 3D QSAR model coefficients on van
der Waals grids (left) and electrostatic potential grids

(right)
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created by performing multiple linear regression
analysis on a dataset consisting of 41 compounds,
with over 4000 Dragon-type descriptors each,
unveils the crucial molecular properties that confer
XO inhibitory action. In particular, the Randic Shape
Index Path/Walk 3 (PW3), and the size descriptor
P_VSA-like on van der Waals Volume, bin 3
(P_VSA_v_3), which are highly significantly
correlated with hydrophilicity and molecular size,
respectively, account for three quarters of the
variation in IC50 values. A more spherical,
hydrophilic, and larger fused pyran tends to be a
more active XO inhibitor.  This is in accord with
Comparative Molecular Field Analysis (CoMFA),
which points to a compound with larger heteroaryl

fragment that enhances van der Waals attraction at
the distal end, and a negative functionality at its
promixal side with respect to the pyran core.  These
findings provide useful insights in the design of
more active drug candidates for hyperuricemia.
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