Synthesis, characterization of some new 1-phenyl (3-chloro- 4-methoxy, 2-methoxy-5-methyl)- 4(substituted) phenyl benzene-azo acetyl acetone-3,5-dimethyl pyrazoles

ALOK K. PAREEK*, P.E. JOSEPH and DAYA S. SETH

School of Chemical Sciences, Department of Chemistry, ST. John's College, Agra - 282 002 (India).

(Received: April 15, 2010; Accepted: May 20, 2010)

ABSTRACT

This review introduces the synthesis of some newly 1-phenyl (3-chloro-4-methoxy, 2-methoxy-5-methyl)- 4(substituted) phenyl benzeneazo acetyl acetone-3,5-dimethyl pyrazoles (4a-4l, 5a-5l) containing different selected functional groups have been synthesized by condensing (3-chloro-4methoxy, 2-methoxy-5-methyl) phenyl benzeneazo acetyl acetone hydrazone (1a,2a) with (R^I)-malon phenyl anilic acid hydrazide (3a-3i,3j,3j,,3k,3k,-3l) in alcoholic medium, presence of glacial acetic acid as a catalyst. The identity of newly synthesized compounds were confirmed on the basis of their spectral studies viz- IR, physical properties, elemental analysis.

Key words: Synthesis, Substituted Acetyl Acetone Hydrazones, Substituted Acid Hydrazides, Characterization, GAA, Condensation, Pyrazoles, Spectral Analysis .

INTRODUCTION

Pyrazole is an important class of heterocyclic compounds plays an interesting role in medicinal chemistry. Various substituted pyrazole and it's derivatives containing two Nitrogen-atoms in five membered parent ring. Since a very long time the usefulness and great therapeutic value of pyrazole nucleus has been recognised and the wide range of biological activities^{1,2}. Pyrazole ring has fairly developing area of synthetic chemistry. Besides traditional interest in the synthesis of drugs. Some pyrazole derivatives also reported to have anaesthetic properties^{3,4} and strong anti-bacterial^{5,6} activities. Pyrazoles possess as anti-tumer ⁷, anti-depressant⁸, analgesic⁹ agents.

Keeping these facts in view in continuation of our previous work¹³⁻¹⁵. in the present paper some new novel substituted pyrazoles have been synthesized by the condensation reaction of (R) phenyl benzene-azo acetyl acetone hydrazones with (R^I)-malon phenyl anilic acid hydrazides with few drops of glacial acetic acid.

EXPERIMENTAL

Material and Methods

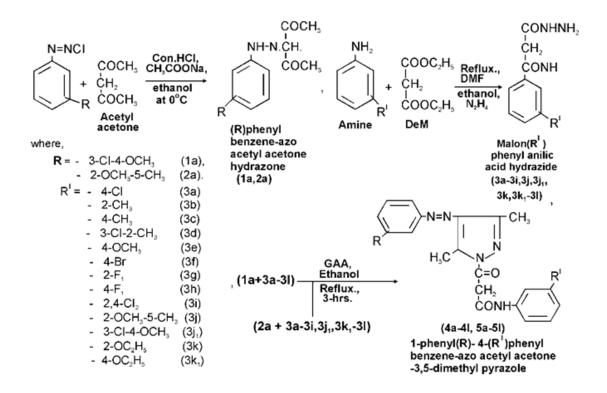
The all melting points were determined in Electro-Thermal apparatus in open capillary tubes and are uncorrected. The chemicals are used in the synthesis were of analytical grade and obtained from Sigma-Aldrich Company. The purity of newly synthesized compounds was checked by TLC using silica-gel-coated Al-Plates (Merck), IR spectra (Kbr in cm⁻¹) were recorded on Perkin-Elmer spectrum RX-1 FT-IR spectrophotometer at ST. John's College Agra. Physical and analytical data are furnished in Table-1.

General procedure for the synthesis of (R) phenyl benzene-azo acetyl acetone hydrazone (1a, 2a)

To the substituted amine(R;0.025 mole) was diazotised by adding concentrated HCI (8 ml)

with distilled water, cooled the solution in ice-bath at 0°C, cold aqueous solution of NaNO₂ (0.025 mole) was added slowly drop-wise in to the cooled diazotised solution after that it was added drop-wise in the cooled solution of sodium acetate (0.12 mole) and acetyl acetone (0.025 mole) in ethanol (25 ml), during stirring the solid product of benzene-azo acetyl acetone was separated out, filtered, washed with cold water, recrystallised by ethanol 99%, it was identified to be (R) phenyl benzene-azo acetyl acetone hydrazone (1a, 2a).

General procedure for the synthesis of malon (R¹) phenyl anilic acid hydrazide (3a-3i, $3j_1$, $3k_1$, $3k_1$, $3k_1$ -3l)


To the substituted aniline (0.025 mole), freshly distilled diethyl malonate (0.05 mole) was added in presence of dimethyl formamide, reaction mixture was refluxed for about 45-60 minutes, cooling, concentrated the product over the boiling water-bath, now treated with hydrazine hydrate 99% with ethyl alcohol (20 ml), thus the obtained solid was recrystallised by hot ethanol, it was identified to be malon (R^I) phenyl anilic acid hydrazide (3a-3i,3j,3j₁, 3k,3k₁-3l)

General procedure for the synthesis of 1-phenyl - (R)- 4 - (R') phenyl benzene-azo acetyl acetone - 3,5-dimethyl pyrazole (4a- 4l, 5a-5l)

To (1a, 2a; 0.001 mole) dissolved with absolute ethanol (15 ml) and (3a-3i,3j,3j,3k,3k,-3l; 0.001 mole) was added in equi molar quantity (1:1), refluxed 3 hours in the presence of glacial acetic acid few drops, cooling, filtered, the resulting solid product was recrystallised by hot absolute ethanol. It was identified to be 1-phenyl (R)-4-(R^I)-phenyl benzene-azo acetyl acetone-3,5 -dimethyl pyrazole (4a-4l, 5a-5l).

RESULTS AND DISCUSSION

The infrared spectra in Kbr-disc of the newly synthesized compounds have been recorded in the frequency region 4000-500 cm⁻¹. IR spectral data are recorded in the Table-2. The infrared spectrum of compounds (3j,3k,3l) showed -NH stretching vibrations in the range 3448.0-3448.2 cm⁻¹, stretching vibrations in the region 3020.0-3040.0 cm⁻¹ indicates the -CH str., presence of aromatic C=O confirm by the stretching vibrations in the region 1733.1-1773.9 cm⁻¹, -CONH group are

sahoo	Molecular	Molecular	Vield	ΔW	•	<u>%</u> Δn	% Analytical data	ar Vield M P % Analvtical data	-		colour
2222	Formula		%	ပို	с		H		z		10000
)			cal.%	(found)	cal.%	(found)	cal.%	(found)	
1a	C ₁₂ H ₁₃ N ₂ O ₃ Cl ₁	268.70	73.24	131°	53.64	(53.66)	4.87	(4.88)	10.42	(10.46)	sporty yellow
2a	C ₁₃ H ₁₆ N ₂ O ₃	248.28	57.73	138°	62.88	(62.91)	6.49	(6.50)	11.28	(11.30)	deep sunset
Зa	C ₂ ,H ₁₉ N ₅ O ₃ Cl ₂	460.33	53.13	264°	54.79	(54.81)	4.16	(4.17)	15.21	(15.26)	dark limon
Зb	C ₂₂ H ₂₂ N ₅ O ₃ Cl ₁	439.91	44.00	237°	60.06	(60.08)	5.04	(5.02)	15.92	(15.95)	magnolia
30	C ₂₂ H ₂₂ N ₅ O ₃ CI,	439.91	46.73	260°	60.06	(60.09)	5.04	(2.06)	15.92	(15.96)	wild yellow
3d	C ₂₂ H ₂₁ N ₅ O ₃ Cl ₂	474.36	48.33	221°	55.70	(55.68)	4.46	(4.44)	14.76	(14.80)	light magnolia
Зe	C ₂₂ H ₂₂ N ₅ O ₄ Cl ₁	455.91	60.28	249°	57.96	(57.97)	4.86	(4.87)	15.36	(15.39)	sandalwood
Зf	C ₂₁ H ₁₈ N ₅ O ₃ Cl ₁ Br ₁	504.79	60.55	252°	49.96	(49.98)	3.79	(3.81)	13.87	(13.91)	light raw silk
3g	C ₂₁ H ₁₀ N ₅ O ₃ Cl,F ₁	443.88	43.21	243°	56.82	(56.81)	4.31	(4.32)	15.78	(15.80)	light sugarcane
зh	C ₂₁ H ₁₉ N ₅ O ₃ Cl ₁ F ₁	443.88	54.90	259°	56.82	(56.84)	4.31	(4.33)	15.78	(15.82)	cream caress
3i	C ₂₁ H ₁₈ N ₅ O ₃ Cl ₃	494.78	45.47	255°	50.97	(50.98)	3.66	(3.67)	14.15	(14.19)	wild yellow
3	C ₂₂ H ₂₄ N ₅ O4Cl	469.94	53.86	266°	58.78	(58.79)	5.14	(5.12)	14.90	(14.95)	light garlic pod
ň	C ₂₅ H ₂₄ N ₅ O4Cl,	469.94	49.50	261°	58.78	(58.77)	5.14	(5.11)	14.90	(14.92)	wheat sprig
3	C ₂₂ H ₁₈ N ₅ O ₃ Cl ₂ F ₃	528.34	46.53	248°	50.01	(50.02)	3.43	(3.41)	13.25	(13.29)	deep wild yellow
4a	C ₂₂ H ₂₂ N ₅ O ₃ Cl,	439.91	59.79	266°	60.06	(60.07)	5.04	(5.05)	15.92	(15.96)	deep gold rush
4b	C ₂₈ H ₂₈ N ₅ O ₃	419.49	52.21	240°	65.85	(65.84)	6.00	(6.02)	16.69	(16.72)	light promise
40	C ₂₃ H ₂₅ N ₅ O ₃	419.49	58.90	244°	65.85	(65.87)	6.00	(6.03)	16.69	(16.71)	dark orange frost
4d	C ₂₃ H ₂₄ N ₅ O ₃ Cl ₁	453.94	57.25	253°	60.85	(60.83)	5.32	(5.30)	15.43	(15.45)	light candy
4e	C ₂₂ H ₂₅ N ₅ O ₄	435.49	73.88	243°	63.43	(63.46)	5.78	(5.80)	16.08	(16.12)	dull promise
4f	C ₂₂ H ₂₂ N ₅ O ₃ Br,	484.37	69.61	254°	54.55	(54.57)	4.57	(4.59)	14.46	(14.50)	dull promise
4g	C ₂₂ H ₂₂ N ₅ O ₃ F ₁	423.45	56.64	262°	62.40	(62.38)	5.23	(5.24)	16.54	(16.56)	light candy
4	C ₂₂ H ₂₂ N ₅ O ₃ F,	423.45	62.96	258°	62.40	(62.42)	5.23	(5.26)	16.54	(16.58)	candy
<u>4</u>	C ₂₂ H ₂₁ N ₅ O ₃ Cl ₂	474.36	48.23	260°	55.70	(55.71)	4.46	(4.45)	14.76	(14.78)	light ceramic
4j	C ₂₃ H ₂₄ N ₅ O4Cl,	469.94	57.22	255°	58.78	(58.80)	5.14	(5.12)	14.90	(14.94)	light candy
¥	C ₂₄ H ₂₇ N ₅ O ₄	449.52	53.19	249°	64.12	(64.14)	6.05	(6.07)	15.58	(15.63)	deep candy
4	C ₂₃ H ₂₁ N ₅ O ₃ CI ₁ F ₃	507.91	40.88	248°	54.39	(54.41)	4.16	(4.18)	13.78	(13.82)	light candy

Table 1: Physical and Analytical data of newly synthesized compounds

Pareek et al., Orient. J. Chem., Vol. 26(4), 1569-1572 (2010)

1571

codes	-NH cm ⁻¹	-CH cm ⁻¹	Ar C=O cm ⁻¹	-CONH cm ⁻¹	C=C cm ⁻¹	N-N cm ⁻¹	N=N cm ⁻¹	CH ₂ cm ⁻¹	C-N cm ⁻¹	mono
	stretching	stretching	stretching	stretching	stretching	stretching	stretching	stretching	stretching	subs.
3j	3448.2	3020.0	1773.9	1654.6	1560.3	1508.2	1492.5	1385.0	1258.0	668.2
Зk	3448.0	3040.0	1733.1	1636.1	1559.5	1507.7	1458.0	1374.5	1257.6	668.2
31	3448.2	-	1735.1	1637.3	1560.0	1508.3	1458.5	1375.5	1258.6	668.8
4h	3448.9	3020.0	1735.2	1654.4	1560.0	1508.4	1458.6	1375.5	1237.6	669.3
4j	3466.6	3027.0	1735.0	1654.0	1542.3	1508.2	1458.5	1375.2	1236.6	668.7
4k	3447.9	3053.2	1773.1	1654. 1	1588.5	1507.8	1458.4	1351.3	1244.6	688.1

Table 2: Spectral data of newly Synthesized Compounds IR absorption bands in v cm⁻¹

confirm by the stretching vibrations in the region 1636.1-1654.6 cm⁻¹, 1560.0-1559.5 cm⁻¹ (-C=C str.), 1507.7-1508.3 cm⁻¹ confirm the pyrazole ring N-N,1458.0-1492.5 cm⁻¹ indicates the N=N str., $-CH_2$ group is confirm by stretching vibrations in the region 1374.5-1385.0 cm⁻¹, 1257.6-1258.6 cm⁻¹ (-C-N str.), mono substitution are present in the region 668.2-668.8 cm⁻¹. These observations are lent support to the assigned structure of compounds (3j,3k,3l) and other compounds (3a-3i).

IR spectrum of newly synthesized compounds (4h,4j,4k) absorption bands in the region 3447.9-3466.6 cm⁻¹ indicates -NH str., while

absorption bands in the range 3020.0-3053.2 cm⁻¹ (-CH str.), 1735.0-1773.1 cm⁻¹ (aromatic -C=O), 1654.0-16 54.4 cm⁻¹ indicates the -CONH group, 1542.3-15 88.5 cm⁻¹ confirm the presence of -C=C str., 1507.8-1508.4 cm⁻¹ indicates pyrazole ring N-N str., while absorption in the range 1458.4-1458.6 cm⁻¹ indicates -N=N str., stretching vibrations in the region 1351.3-1375.5 cm⁻¹ confirm the presence of -CH₂ group, 1236.6-1244.6 cm⁻¹ (C-N str.), mono substitution are present in the region 668.7-688.1 cm⁻¹. By above observations the assigned structure of newly synthesized compounds (4h, 4j,4k) was in agreement and other compounds (4a-4g,4i,4l).

REFERENCES

- M.S.Kartikeyan, B.S.Holla and N.S.Kumari, Eur. J. Med.Chem., 42: 30(2007).
- P.J.Parmar, S.I.Rajput and A.G.Doshi, Asian J. Chem., 17(4): 2539(2005).
- 3. M.B.Nisbet., J. Chem.Soc., 1568 (1938).
- 4. N.A.Velyshko and I.T.Depeshko, *Zh. Obshch. Khim.*, **23**: 320(1953).
- 5. N.K.Mandal, R.Sinha and K.P.Banerjee, *Chem.Abstr.*, **104**: 34034v (1986).
- 6. M.D.Ankhiwala and H.B.Naik, *Chem.Abstr.*,**14**(4): 816847(1991).
- E.C.Taylor, H.Patel, H.Kumar., *Tetrahedron*, 48: 8089-8100(1992).
- Y.R.Prasad, A.L.Rao, L.Prasanna, K.Murali, P.R.Kumar., *Bio-Org. Med.Chem. Lett.*, **15**: 50 30-5034 (2005).
- R.G.Micetich and R.B.Rastogi, Can.CA., 1730808 (Cl.Co.7DL31/12),(1982).

- F.Manna, F.Chimenti, R.Fioranti, A.Bolasco, D.Secci, P.Chimenti, X.Ferlini, G.Scambia, *BioOrg.Med.Chem.Lett.*, 15: 4632-4635 (2005).
- J.H.Ahm, H.M.Kim, S.H.Jung, S.K.Kang, K.R. Kim, S.D.Ree, S.D.Yang, H.D.Cheon, S.S. Kim, *BioOrg.Med.Chem.Lett.*, **14**: 4461-4465 (2004).
- 12. I.M.Abdou, A.M.Saleh and H.F.Zohdi, *Molecular*, **9**: 109-111(2004).
- Alok K. Pareek, P.E. Joseph and Daya S. Seth, *Orien.J.Chem.*,**26**(1): 229-232 (2010).
- 14. Alok K. Pareek, P.E. Joseph and Daya S. Seth, *BioMed.Phar.J.*,**3**(1): 191-195 (2010).
- Alok K. Pareek, P.E. Joseph and Daya S. Seth, Orien. J. Chem., 26(3):bill no. 4350 (2010).