
INTRODUCTION

Coal is a heterogeneous substance which
consists of the combustible (organic matter) and
non-combustible (moisture and mineral matter)
materials. Coal grindability, usually measured by the
Hardgrove Grindability Index (HGI), is of great
interest since it is an important practical and
economic property for the coal handling and
utilization, particularly for pulverized-coal-fired
boilers.

Grindability index of coal is an important
technological parameter to understand the
behaviour and assess the relative hardness of coals,
from the varying ranks and grades during the
comminution. Comminution behavior or grindability
of coal which is a measure of its resistance to
crushing and grinding is related to its physical
proper ties, chemical and petrographical
compositions1. The examination of the grindability
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ABSTRACT

In this research, the effect of different parameters of coal composition (coal chemical properties)
were studied, to estimate the coal HGI values index. To estimate the HGI values artificial neural networks
(ANNs) and linear multivariable regression methods were used for 400 data. In this work, ten input
parameters, such as moisture, volatile matter (dry), fixed carbon (dry), ash (dry), total sulfur (organic
& pyretic) (dry), Btu/lb (dry), carbon (dry), hydrogen (dry), nitrogen (dry) as well as oxygen (dry), were
used. For selecting the best method to predict HGI values, the responses of aforementioned methods
were compared. The results of ANNs, show that the training and test data’s square correlation coefficients
(R2) achieved at 0.962 and 0.82 respectively. The equation of linear multivariable regression for HGI
values were produced. Square correlation coefficients, (R2), from regression achieved at 0.76. Sensitivity
analysis showed that volatile matter (dry), Btu/lb (dry), carbon (dry), hydrogen (dry), fixd carbon (dry),
nitrogen (dry) and oxygen (dry) are the most effective parameters on the HGI.
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of coal  is important for any kind of utilizations such
as coal beneficiation, carbonization and many
others. The energy cost of grinding is significant at
5 to 15 kWh/ton2.

Sengupta developed an equation derived
by the regression of proximate analysis data with
all the  components, e.g. moisture, ash, volatile
matter, and fixed carbon percent on air-dried basis,
to find out the grindability index termed as Statistical
Grindability Index (SGI) from that equation
correlation coefficient of this relationship achived
0.93 ³. Ural. et al, E. Jorjani et al and H.B. Vuthaluru
studied the effects of mineral matter content and
elemental analysis of coal  on HGI Turkish, Kentucky
and Australia coals, respectivly4,5,6. They found that
water, moistuer, coal blending, acid-soluble mineral
matter content, Na2O, Fe2O3, Al2O3, SO3, K2O and
SiO2 positively contribute to the grindability of the
coals. High ash and water- and acid-soluble content
samples present higher HGI values, whereas, high
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ash, high TiO2, MgO and low water- and acid-soluble
content samples have lower-HGI value4,5,6. The
relationships between grindability, mechanical
properties, and cuttability of coal were investigated
by many researchers through studies that came up
with close correlations between HGI and some coal
properties7. B. Tiryaki showed that there are strong
relationships between HGI of coal and the hardness
characteristics7.

In order to determin the comminution
behavior of coal for size reduction, it is necessary
to use the tests based on size reduction. One of
usual methods for determining the grindability of coal
is Hardgrove index method. Soft or hard coals were
evaluated for the grindability - toward 100. Coal HGI
depends on the coalification, moisture, volatile
matter (dry), fixed carbon (dry), ash (dry), otal sulfur
(organic & pyretic) (dry), Btu/lb (dry), carbon (dry),
hydrogen, nitrogen (dry) and oxygen(dry)
parameters. These parameters are effective on the
HGI values, for example if carbon contents in coal
is more than 60%, HGI moves to maximum range8.
In this investigation, neural network in mathematic
software package MATLAB for the estimation of the
HGI of coals was used.

MATERIAL AND METHODS

Artificial Neural Networks (ANNs)
Neural networks are simplified models of

the biological structure found in human brains1.
Derived from their biological counterparts, ANNs are
based on the concept that a highly interconnected
system of simple processing elements (also called
“nodes” or “neurons”) can learn complex nonlinear
interrelationships existing between the input and
output variables of a data set9. Neural networks are
powerful tools that have the ability to identify the
underlying highly complex relationships from input–
output data only10. Over the last 11 years, artificial
neural networks (ANNs), and particularly feed-
forward artificial neural networks (FANNs), have
been extensively studied to present process models,
and their use in industry has been rapidly growing11.
The main advantages of the ANN models are: (1)
no particular knowledge is needed about the system
being modeled, unknown effects could be involved
through a proper design of the input–output patterns;
(2) the relative simplicity of neural network

architecture12.

The ANNs can be applied successfully in
learning, relating, classifying, generalizing,
characterizing and optimizing functions13. These
application processes of an ANN model design
include the steps below:
1. Collecting the whole data in one place
2. Determining the train and test sets.
3. Converting the data into the ANN inputs.
4. Determining, training and testing the network

topology.
5. Repeating the 1st, 2nd, 3rd and the 4th steps

as long as required to determine the optimal
model, and.

6. The application of the optimal ANN model.

For developing ANN model of a system, a
feed-forward architecture namely MLP1 is most
commonly used. This network usually consists of a
hierarchical structure of three layers described as
input, hidden, and output layers, comprising I, J,
and L number of processing nodes, respectively14.
General  MLP architecture with two hidden layers is
shown in Figure 1. When an input pattern is
introduced to the neural network, the synaptic
weights between the neurons are stimulated and
these signals propagate through the layers and an
output pattern is formed. Depending on how close
the formed output pattern is to the expected output
pattern, the weights between the layers and the
neurons are modified in such a way that if next time
the same input pattern is introduced, the neural
network will provide an output pattern, closer to the
expected response1.

Data Set
One of the most important stages in the

ANN technique is data collection. The data was
divided into training and testing datasets using the
sor ting method to maintain the statistical
consistency. Datasets for testing were extracted at
regular intervals from the sorted database and the
remaining datasets were used for training. The same
datasets were used for all networks to make a
comparable analysis of different architecture. In the
present study, 400 datasets were collected among
which 20% were chosen for testing and validating.
Our data collected from Illinois State Geological
Survey web site (http://www.isgs.illinois.edu/maps-
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data-pub/coal-maps/nonconf_masterfile.xls). These
data were collected from Illinois state coal mines
and geological database.

Input Parameters
In the current study, input parameters

include moisture, ash (dry), volatile matter (dry),
Fixed carbon (dry), total sulfur (dry), Btu/Ib (dry),
carbon (dry), hydrogen (dry), nitrogen (dry)  and
oxygen (dry) for predicting the HGI. The ranges of
input variables to HGI prediction for the 400 samples
are shown in Table 1.

RESULTS AND DISCUSSION

Prediction of the HGI Using Linear Multivariable
Regression

Multiple regression is an extension of the
regression analysis that incorporates additional
independent variables into the predictive equation.
However, the previous empirical studies provide the
guidelines for selecting the dependent variables
which are to be used in the predictor development15.
Here, a multivariate relation was established using
the same input variables as the neural network
model. The linear  multivariable regression equation
resulted in the following equation:

HGI=67- 3.16 oxygen- 3.02 nitrogen- 0.23 hydrogen
-2.37carbon -0.00585Btu/Ib -1.53total S +3fixed
carbon -1ash +3volatile matter +1.13moisture

...(1)

Fig. 2 shows the correlation between the
experimental HGI data and predicted HGI from the
linear  multivariable regression. As shown in the
Figure 2, the square correlation coefficient (R2) is
0.76.

Relation of HGI and Individual Constituents
Li et al., and Sengupta et al., examined

the relation between the coal properties with HGI
using a second order regression equation and found
that the correlation coefficients of moisture and ash
with HGI were -0.45 and 0.31, respectively16.
Sengupta, using a second-order regression
equation (correlation coefficient of 0.93), found that
the correlation between the HGI and coal properties
should be non-linear3. In a recent study, linear
multivariable regression was used for the
determination of the coefficient between some
important coal properties and HGI. Figure 4 and
Table II shows the coefficient between some
important coal properties ( moisture, volatile matter
(dry), fixed carbon (dry), ash (dry), total sulfur
(organic & pyretic) (dry), Btu/lb (dry), carbon (dry),
hydrogen (dry), nitrogen (dry)  and oxygen (dry))
and HGI. As shown in Figure 4 and Table II,
moisture, volatile matter (dry), fixed carbon (dry),
total sulfur (dry), Btu/Ib (dry), carbon (dry), hydrogen
(dry) and oxygen (dry) had a positive coefficient
with HGI, also ash (dry) and nitrogen (dry) had a
negative coefficient with HGI.

Table 1: The ranges of variables in coal samples (as determined)

Coal chemical properties Max Min Mean St.Dev.

Moisture (%) 15,94 6,03 10,32 2,21224
Volatile matter (dry) (%) 45,10 25,49 36,87 2,458445
Fixed carbon (dry) (%) 60,39 30,70 50,58 4,152964
Ash (dry) (%) 43,81 4,41 12,56 4,861197
Total sulfur (organic & pyretic) (dry) (%) 9,07 0,62 3,00 2,018264
Btu/Ib (dry) 14076,00 8025,00 12631,08 841,5436
Carbon (dry) (%) 79,32 44,03 70,43 5,026348
Hydrogen (dry) (%) 5,36 3,39 4,78 0,310245
Nitrogen (dry) (%) 3,03 0,35 1,40 0,290988
Oxygen (dry) (%) 12,57 2,16 7,53 1,660288
HGI 72,00 30,00 58,80 5,710457
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Table 2: Coefficients of input variable with HGI

Input variable Coefficient with HGI

Moisture +1.13
Volatile matter (dry) +3
Fixed carbon (dry) +3
Ash (dry) -1
Total sulfur (dry) -1.53
Btu/Ib (dry) -0.00585
Carbon (dry) -2.37
Hydrogen (dry) -0.23
Nitrogen (dry) -3.02
Oxygen (dry) -3.16

Network Design and Development
Various algorithms are available for training

neural networks. Feed forward back-propagation
algorithm is the most versatile and robust technique,
which provides the most efficient learning procedure
for the multilayer perception (MLP) neural networks.
Also, the fact that the back-propagation algorithm
is especially capable of solving the predictive
problems makes it so popular. The network1 model
presented in this article is a supervised back-
propagation neural network, making use of the
Levenberg-Marquardt approximation.

This algorithm is more powerful than the
commonly used gradient descent methods, because
the Levenberg-Marquardt approximation makes
training more accurate and faster near minima on
the error surface17.
The method is as follows:

...(2)

In Eq. (2) the adjusted weight matrix ∆W is
calculated using a Jacobian matrix J, a transposed
Jacobian matrix JT, a constant multiplier µ , a unity
matrix I and an error vector e. The Jacobian matrix
contains the weights derivatives of the errors:

...(3)

If the scalar µ is very large, the Levenberg-
Marquardt algorithm will approximate the normal
gradient descent method; whereas if it is small, the
expression will transform into the Gauss-Newton
method (Haykin S. 1994). For more detailed
information, the readers refer to Lines and Treitel18.

After each successful step (lower errors)
the constant m is decreased, forcing the adjusted
weight matrix to transform as quickly as possible to
the Gauss-Newton solution. After a step, if the errors
increase, the constant m  increases subsequently.
The weights of the adjusted weight matrix (Eq. (2))

are used in the forward pass. The mathematics of
both the forward and backward pass are briefly
explained follows. The net input (netpj) of neuron j in
a layer L and the output (opj) of the same neuron of
the pth training pair (i.e. the inputs and the
corresponding HGI value of sample) are calculated
through:

...(4)

where, the number of neurons in the
previous layer (L -1) are defined by n =1 to the last
neuron and the weights between the neurons of
layer L and L -1 by wjn. The output (opj) is calculated
using the logarithmic sigmoid transfer function:

      ...(5)

where, θj is the bias of neuron j.

In general, the output vector, containing
all opj of the neurons of the output layer, is not the
same as the true output vector (i.e. the measured
HGI value). This true output vector is composed of
the summation of tpj. The error between these
vectors is the error made while processing the input-
output vector pair and is calculated as follows:

...(6)
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Fig. 1: MLP architecture with two hidden layers [14]

Fig. 2: Relation between measured HGI and predicted HGI from linear  multivariable regression

When a network is trained with a database
containing a substantial amount of input and output
vector pairs, the total error E, (sum of the training
errors Ep) can be calculated17.

...(7)

To reduce the training error, the connection
weights are changed during a completion of a
forward and backward pass by adjustments (∆W) of
all the connections’ weights w. Eqs. (2) and (3)
calculate those adjustments. This process will
continue until the training error reaches a
predefined target threshold error.

Designing a network architecture requires
more than selecting a certain number of neurons,
followed by training only. Especially phenomena
such as overfitting and underfitting should be
recognized and avoided in order to create a reliable
network. Those two aspects - overfitting and
underfitting - determine to a large extent the final
configuration and training constraints of the
network17.

The number of input and output neurons is
the same as the number of input and output variables.
For this research, multilayer network architecture with
two hidden layers between the input and output units
is applied. During the design and development of
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Fig. 3: Relationship between hydrogen (dry), volatile matter (dry), ash (dry), oxygen (dry), total
sulfur (dry), nitrogen (dry), moisture,  Btu/Ib (dry), carbon (dry) and fixed carbon (dry) with HGI

the neural network for this study, it was determined
that a Four-layer network with 10 neurons in the
hidden layers (two layers) would be the most
appropriate. Ar tificial neural network (ANN)
architecture for predicting the HGI is shown in Fig. 5

The learning rate of the network was
adjusted so that training time was minimized. During
the training, several parameters had to be closely

watched.  It was important to train the network long
enough so it would learn all the examples that were
provided. It was also equally important to avoid
overtraining, which would cause the memorization
of the input data by the network. During the course
of training, the network is continuously trying to
correct itself and achieve the lowest possible error
(global minimum) for every example to which it is
exposed. The network performance during the
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Fig. 4: Coefficients of input parameters (coal chemical properties) with HGI

Fig. 5: ANN architecture for predict the HGI

Fig. 6: Network performance during the training process

training process is shown in Figure 6., As shown,
the optimum epochs of train achieved at about 200
epochs.

For the evaluation of a model, a

comparison between the predicted and measured
values of HGI can be fulfilled. For this purpose, MAE
(Ea) and mean relative error (Er) can be used. Ea
and Er are computed as follows [17]:
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Fig. 7: Correlation between measured and predicted HGI for training data

Fig. 8: Correlation between measured and predicted HGI for testing data

Fig. 9: Strengths of relation (rij) between HGI and each input parameter

...(8)

...(9)

where Ti, Oi and represent the measured and
predicted output.

For the optimum model, Ea and Er were
equal to 0.503 and 0.0125 respectively. Also, a
correlation between the measured and predicted
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HGI for training an testing data is shown in Figures
7 and 8, respectively. From these figures, it is seen
that the coefficient of correlation in both two
processes is very good.

Sensitivity Analysis
To analyze the strength of the relationship

between the backbreak and the input parameters,
the Cosine Amplitude Method (CAM) was utilized.
The CAM was used to obtain the express similarity
relations between the related parameters. To apply
this method, all of the data pairs were expressed in
common X-space. The data pairs used to construct
a data array X were defined as [19]:

        ...(10)

Each of the elements, Xi, in the data array,
X, is a vector of lengths of m, that is:

         ...(11)

Thus, each of the data pairs can be thought of as a
point in m-dimensional space, where each point
requires m-coordinates for a full description.
Each element of a relation, r ij, results in a
pairwise comparison of two data pairs. The
strength of the relation between the data pairs, xi
and xj, is given by the membership value expressing
the strength:

  ..(12)

The strengths of  the re lat ions (r i j
values) between HGI and input parameters (coal
chemical properties) are shown in Figure 9. As
can be seen, the effective parameters on HGI
include the volatile matter (dry), Btu/lb (dry),
carbon (dry), hydrogen (dry), fixed carbon (dry),
nitrogen (dry), oxygen (dry), moisture, ash (dry),
and total sulfur (dry), respectively. It is possible
to consider  and examine the ef fect ive
parameters in the coal HGI and modification was
also applied by changing the further effective
parameter.

CONCLUSION

Neural networks are particularly useful in
cases where the mathematical or statistical
methods, such as linear, non-linear regression,
curve fitting, etc. cannot provide a satisfactory
solution, i.e. the solution can be too general, or too
specific that the model cannot react well to new
data points. A network that has memorized all of
its training data will perform poorly when exposed
to a new set of data for testing. Another important
factor is local minima.

In this study, linear multivariable
regression and artificial neural network approaches
were employed to predict HGI. Input parameters
are moisture, volatile matter (dry), fixed carbon
(dry), ash (dry), total sulfur (organic & pyretic) (dry),
Btu/lb (dry), carbon (dry), hydrogen (dry), nitrogen
(dry) and oxygen (dry). In linear multivariable
regression analysis method the best equation used
the variable HGI and R2 of 0.76. In ANNs method,
the results of ANN shows that training and test
data’s square correlation coefficients (R2) achieved
at 0.962 and 0.82, respectively.

The results of linear mltivariable
regression shows that moisture, volitale matter (dry)
and fixed carbon (dry) - positively contribute to the
HGI of the coals, and the  ash (dry), total sulfur
(dry), Btu (dry), carbon (dry), hydrogen (dry),
nitrogen (dry) and oxygen (dry) has a negative
coefficient with HGI of coals. Comparing of the
square coeficient correlations ANNs with the linner
multivariable regression shows that ANNs have the
best results for predicting HGI. As for network
training performance, when the number of epochs
is 200, the error of training network minimized and
after this point best performance achived for the
network. Ea and Er from ANNs achived at 0.503
and 0.0125, repsectively.

Sensitivity analysis of network shows that
the most effective parameters on HGI were volatile
matter (dry), Btu/lb (dry), carbon (dry), hydrogen
(dry), fixed carbon (dry), nitrogen (dry) and oxygen
(dry), respectively, and the low effect parameters
on the HGI were moisture, ash (dry), and total sulfur
(dry), respectively  (Figure 9).
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