Antimicrobial activity of 1;1 Bis {2-hydroxy-3[1' H-5' Aryl pyrazolin-3'-yl methyl phenyl} methane

RAJESH P. GANORKAR1* and V.S. JAMODE2

¹Department of Chemistry, Mahatma Fule arts, Commerce and Sitaramji Chaudhari Science Mahavidyalaya, Warud, Dist. Amravati - 444 906 (India). ²Ex. Pro V.C. SGB Amravati University, Amravati - 444 902 (India).

(Received: April 28, 2010; Accepted: May 30, 2010)

ABSTRACT

By condensation of hydrazine hydrate with Bis-chalcones in pyridine medium titled Bis-Pyrazolines have been synthesized. Structure of these compounds have been charecterised by spectral analysis. all compounds have been evaluated for their in vitro growth inhibitory activity against different microbes like *Staphylococcus aureus, Escherichia coli, Proteus mirabilis* and *Salmonella typhi*. The solutions were prepared in DMF solvents. The culture medium used was nutrient agar medium.

Key words: 1;1 Bis {2-hydroxy-3[1' H-5' Aryl pyrazolin-3'-yl methyl phenyl} methane; Antimicrobial activity

INTRODUCTION

Pyrazolines derivatives have shown considerable promise as a chemotherapeutic agents¹, due to this importance it is of current interest to synthesize some new pyrazolines. The reactive intermediate chalcones involve in their synthesis also exhibit various biological activity. Pyrazolines have been found to be effective insectisides²⁻⁴, fungicidal activity⁵⁻⁶, anti inflamatory⁷ and herbicidal activity.

Survey of literature reveals that pyrazolines found to show antimicrobial activity⁹⁻¹².

Some Bis-pyrazoline derivatives show antimicrobial activity¹³⁻¹⁵. In view of this it is appeared of interest to synthesize some new bis-pyrazolines and study their antimicrobial activity.

The structure of synthesized compounds were assigned on the basis of elemental analysis and spectral study¹⁶ (IR, NMR & UV). The compounds were evaluated for their microbial activity against gram+ve and gram-ve bacteria.

Compounds (I a-h).

Scheme 1.

EXPERIMENTAL

The titled compounds were screened in vitro for their antimicrobial activity against *Staphylococcus aureus, Escherichia coli, Proteus mirabilis* and *Salmonella typhi*. Using paper disc method¹⁷ at concentration of 50µg/ml using DMF as solvent. The culture medium used was nutrient agar medium. After 24±2 hours of incubation at $37\pm2^{\circ}c$, zones of inhibition were measured in mm and recorded in Table 2.

RESULTS AND DISCUSSION

From above table it was observed that compound I(a) was moderately active towards *S. aureus* and *Pr. mirabilis* and weakly active towards *E. coli*. Same compound was inactive towards *S. typhi*. The compound I(b) was strongly active towards *S. aureus* and weakly active towards *Pr. mirabilis* and same compound was inactive towards *E. coli* and *S. typhi*.

The compound I(c) showed moderately active against *E. coli* and was inactive words *S. aureus* and *Pr. mirabiils* and weakly active *S. typhi.*

The compound I(d) was inactive against all micro-organisms.

The compound I(e) showed moderate activity against *Pr. mirabiils* but inactive against remaining *S. aureus, E. coli* and *S. typhi.*

The compound I(f) was strongly active against *E. coli* and weakly active against *Pr. mirabiils* and inactive towards *S. aureus* and *S. typhi*.

Compds	R	R ¹	m.p.	Yield	M.F.	N	(%)
			(°C)	(%)		Found	Calcd
la	Н	Н	250-253	78	$C_{33}H_{32}N_4O_2$	9.67	10.85
lb	OCH ₃	Н	246-249	76		9.61	9.72
lc	ОΗ ຶ	OCH ₃	221-224	82	C ₃₅ H ₃₆ N ₄ O ₆	9.07	9.21
ld	ОН	Н	255-258	75	C ₃₃ H ₃₂ N ₄ O ₄	11.33	10.21
le	NO ₂	Н	273	80		14.22	13.86
lf	N(CH ₃)	Н	173-176	82	C ₃₇ H ₄₂ N ₆ O ₂	13.22	13.95
lg	H	OCH ₃	186-189	68	$C_{35}H_{36}N_{4}O_{4}$	9.32	9.72
lh	OCH_3	OCH ₃	213-215	70	$C_{37}H_{40}N_4O_6$	8.07	8.80

Table 1: Physical and analytical data of 1;1 Bis {2-hydroxy-3[1' H-5' Aryl pyrazolin-3'-yl methyl phenyl} methane. I(a-h)

Table 2: Antimicrobial activity of 1;1 Bis {2-hydroxy-3[1' H-5' Aryl pyrazolin-3'-yl methyl phenyl} methane. I(a-h)

Compound	S. aureus	E. coli	Pr. mirabilis	S. typhi
la	++	+	++	-
lb	+++	-	+	-
lc	-	++	-	+
ld	-	-	-	-
le	-	-	++	-
lf	-	+++	+	-
lg	++	+++	+++	-
lh	-	-	+	-

-Inactive, + Weakly active, ++ Moderatly active, +++Strongly active

1200

The compound I(g) was strongly active towards *E. coli* and *Pr. mirabiils* but moderately active towards *S. aureus* and inactive against *S. typhi.*

The compound I(h) was weakly active towards *Pr. mirabiils* and *S. typhi* and same compound was inactive towards *S. aureus* and *E. coli*.

From above result it was observed that Bis pyrazolines (titled) were found more or less effective against, *Staphylococcus aureus, Escherichia coli,*

Proteus mirabilis and *Salmonella typhi*. Hence those compounds can be easily used for treatment of diseases only when they do not have toxic and other side effects.

ACKNOLWEDGEMENTS

The authors are thankful to Dr. D.H. Tambekar, Head, Department of Microbilogy, SGB Amravati University, Amravati, Miss Vishaka Pathak and Non teaching staff for providing necessary facility.

REFERENCES

 a) Caradona, C. & Stein M.L., Framaco (Pavia) Ed. Sta 647 (1960), *Chem. Abst.* 54: 19646C (1960).

b) Burger A., Medical Chemistry, John Wiley& Sans. New York 959 (1970).

- Kramer Karl. J., Gregor Mc, & Harrison E., J. Econ. Entomol., **71**: 825 (1979) (Eng) Chem. Abst. **90**: 82064u (1979).
- Ozawa K., Nakajuna Y., Tsugeno M., Ishii S., & Kudo M., Eur. Par. Appl. Eq 58: 424, Chem. Abst. 16679n (1983).
- Van Hes R. & C. Crossurt A., Eur. Pat. Appl. Eq. 65: 334 (C1 C0, D231/06) (1982), *Chem. Abst.* 98(7): 107287z (1983).
- Das N.B., & Mitra A.S., Indian J. Chem. 16B: 142 (1985).
- Schar S.P. and Singh, A.K., J. Indian Chem. Soc., 62: 142 (1985).
- D'suza J. P., Joseph J.P., and Bernstein S.U.S., US₄, 360, 680 (C1 548-362 C0₇ D231/ 06) (1982).
- Bernd Noll, Groth, Christa and Seigfried Ger. (East) DD 271, 115 (C1 C0 7D 231) (1989),

Chem. Abst. 102 (1989).

- Fahmy A.M., Hasan M. Kh. Khalif A.A., and Ahmad R.A. *Indian J. Chem.* **26B**: 884 (1987).
- Ankhiwala M.D., and Naik, H.B., J. Inst. Chem. (India) 67: 176 (1989), *Chem. Abst.* 114: 81684y (1991).
- Tayade V.B., & Jamode V.S., Asian J. Chem. 10(4): 1023-1025 (1998).
- 12. Kadu M.V., Jamode V.S., and D.H. Tambekar, *Asian J. Chem.* **11**(3): 1064-1066 (1999).
- 13. Reddy D.B., Seshamma T., and Reddy S., *J. Indian Chem. Soc.*, **68**: 281 (1991).
- 14. Sangwan, N.K., Varma, B.S., and Dhindsa K.S., *Indian J. Chem.* **25B**: 672 (1986).
- Bhatta Akhil H., Parikh H.H., Parikh Khyati A., & Parikh A.R., *Indian J. Chem.* 40B: 57-61 (2001).
- Ganorkar R.P., & Jamode V.S., Asian J. Chem. 15(1): 475 (2003).
- 17. Collins C.H., Microbiological Methods Butterworth, London (1967).