Synthesis of 2-(4-N, N-dimethyl aminophenyl) 3-(substituted phenyl)-4-oxo-thiazolidine and its antimicrobial activity

TUSHAR W. THAKARE*, A.G. DOSHI and A.W. RAUT

P.G.Department of Chemistry, Shri Shivaji Science College, Morshi Road, Amravati - 444 603 (India).

(Received: February 01, 2010; Accepted: April 29, 2010)

ABSTRACT

In the present study, we report 2-thiophenyl-3-substituted phenyl-4-oxthiazolidine and its antimicrobial activity. 4-oxothiazolidine has antibacterial activity and acts as an antimicrobial and antitubercular agent.

Key words: Antimicrobial activity, compounds, thiazolidinones.

INTRODUCTION

It was observed from the literature that most of the compounds having thiazolidnie nucleus posses pharmacological action. For instance they are sedative antitubercular, antiflammatory of anaesthetics etc. 4-thiazolidinone are endowed a very of biological activities¹⁻⁵.

Thiazolidinones are also used as sedatives⁶⁻⁷ local anaesthetics^{8,9}, hypnotics^{10,12}, analgesic¹¹ or antitubercular and antispasmodic¹⁴ or anticonvulsants¹³. Thiazolidinones are employed in the synthesis or mercyamine dyes which are used in photographic film industry.

In the present study, we report 2thiophenyl-3-substituted phenyl-4-oxthiazolidine and its antimicrobial activity¹⁵. 4-oxothiazolidine has antibacterial activity¹⁶⁻¹⁷ and acts as an antimicrobial and antitubercular agent¹⁸.

EXPERIMENTAL

Preparation of 2-(4'-N, N-dimethylaminophenyl)-3-(chlorophenyl)-4-oxo-thiozolidine (M₁)

A mixture of N-(4-chlorophenyl)-4-N,Ndimethyl amino) phenyl amozmethine (0.01M, 2.58 gm) and thioglycolic acid (0.01M, 1ml) was dissolved in 20 m benzene. The mixture was refluxed for 2 hours, on water bath and allowed to stand at room temperature over night. The whole mass was treated with saturated sodium bicarbonate solution. Resulting and was crystallised from ethanol to give compound (M_1), m.pt. 122°C, yield 72%.

Properties of compounds M,

- It is mid buff cyrstalline solid compound, m.pt. 122°C.
- From analytical data, molecular formula was found $C_{17}H_{17}N_2OSCI$. The molecular weight being 332.5.
- UV-VIS uv-vis spectrum was recorded in methanol lmax value is 237 nm. It is due to $n-\pi^*$ transaction
- I-R: The I.R. spectrum was recorded in Nujol 11 C-H stretching in CH.) 2983 cm⁻¹

- 2] Thizolidine moiety
 - 1) C=O str 1675 cm⁻¹
 - 2) C-N str 1163 cm⁻¹
 - 3) C-S-C str 732 cm⁻¹
 - 4) C-Cl str 742 cm⁻¹
- P.M.R. The P.M.R. spectrum was recorded in CDCI3
- 3.03 δ(S 6 H, N-(CH₃)₂) 3.6 δ(S 2, S - CH₂-C=O)

Compound	Name of Compounds	M.pt	% yield	Colour
M ₁	2-(4'-N,N-dimethyl amino phenyl)	122°C	72	Mid Buff
	-3-(4"-chloro phenyl)-4-oxo-thiazolidine	44500	=0	
M ₂	2-(4'-N,N-dimethyl amino phenyl)	115°C	78	Valcano
NA	-3-(4"-methoxy phenyl)-4-oxo-thiazolidine 2-(4'-N,N-dimethyl amino phenyl)	142°C	73	Copper leaf
M ₃	-3-(4"-nitro phenyl)-4-oxo-thiazolidine	142 0	73	Copper lear
M ₄	2-(4'-N,N-dimethyl amino phenyl)	92°C	79	Sunrise
4	-3-(4"-methyl phenyl)-4-oxo-thiazolidine			
M ₅	2-(4'-N,N-dimethyl amino phenyl)	126°C	72	Nut Brown
5	-3-(4"-methyl phenyl)-4-oxo-thiazolidine			
M ₆	2-(4'-N,N-dimethyl amino phenyl)	106°C	70	Brown
	-3-(4"-methyl phenyl)-4-oxo-thiazolidine			
M ₇	2-(4'-N,N-dimethyl amino phenyl)	97°C	68	Golden
	-3-naphthyl-4-oxo-thiazolidine			yellow
M ₈	2-(4'-N,N-dimethyl amino phenyl)	104°C	65	Biscuit
	-3-(4"-nitro phenyl)-4-oxo-thiazolidine	_		
M ₉	2-(4'-N,N-dimethyl amino phenyl)	84°C	80	Sandstone
	-3-phenyl-4-oxo-thiazolidine			
M ₁₀	2-(4'-N,N-dimethyl amino phenyl)	118°C	69	Dusty pink
	-3-(2"-Carboxyphenyl)-4-oxo-thiazolidine			

Table 1: Synthesis, m.pt. Yield and colour of 2-(4'-N,N-dimethy laminophenyl)-3-(substituted phenyl)-4-oxo-thiozolidine

Table 2 : Antimicrobial activity of synthesized compounds (M1-M10) by Cup-plate Method

Compound	Bacillus magatherium	Bacillus subtilis	Proteus vulgaris	Escherichia coli
M,	++	-	-	+++
M	+++	++	-	++
M ₃	++	-	++	+
M ₄	+	+++	-	+++
M ₅	++	-	+++	-
M ₆	-	+++	++	++
M ₇	++	-	-	-
M ₈	-	++	++	+++
M ₉	-	++	++	-
M ₁₀	+++	+++	+++	+++

Control-DMF

(+++) Higly active (21-30 mm)

(++): Moderately active (17-20mm)

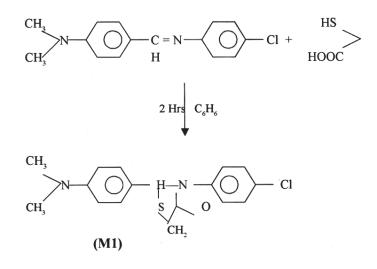
(+): Weakly active (12-16 mm)

(-): Inactive (Less than 12 mm)

6.1 δ (S 1J. C-H or thiozolidine) 6.69-7.75 (m 8H, Ar - H)

From these spectral and chemical data the compound is 2-(4'N,N-dimethyl amino-phenyl)-3-(4"-Chlorophenyl)-4-oxothiazolidine

Antimicrobial actitivies


All the syntheized compounds were studied for their antibacterial activity using cup-plate diffusion method¹⁹. The bacterial organism used included both gram+ve and gram -ve strain such as *E. coli*, *B. subtills*, *P. vulgaris* and *B. megatherium*.

Sensitivity plates were studied with their bacterial inoculum of 1×10⁶ CIU/ml and each other were diameter (100 mm) was loaded with 0.1 of

that compound solution (1000 μ g/ml) in DMF so that concentration was 100 μ g/ml. The zones of inhibition were studied after incubation for 24 hours using vernier calliper.

Inhibition zone record of the compounds, clearly indicated that compound No. M_4 , M_g , M_{10} were found to be highly active against *E. coli*. Compound M_5 and M^{10} were found highly against. P. vulgaris, M_4 , M_6 , M_8 and M_{10} are found to be highly active against *B. subtilis*.

And majority of the compound were found to moderately active and rest of the compounds are found to be resistant against the organism given in the table 2.

REFERENCES

- 1. Ladva K, Dave V. and Parekh. H. Indian J. Chem. Soc., **68**: 379 (1991).
- Vashi B.S., Mehta, D.S. and Shah, V.H., Indian J. Chem. Soc. 34B: 807 (1995).
- Hogale, M.B., Uthale, A.C., and Nikam, B.P. Indian J. Chem. Soc. 30B: 717 (1991).
- Viltaria D.M., Orazio M., Eugenio, P., Anonia C., Federico, G. and Adde B., *J. Med. Chem.* 35: 2910 (1992), *Chem. Abstr.* 117: 6228 (1992).
- Pandya D. and Naik K.B., Phere Mazie. 48: 414 (1993), *Chem Abstr.* 120: 10683P

(1994).

- Doran W., and Schonle H.A., *J. Org. Chem.* 3: 193 (1938).
- 7. Forleworks, Chem. Abstr. 52: 4694 (1958).
- Surry, A.R., J. Am. Chem. Soc. 71: 3105 (1949).
- Luduena F.P. and Hopper, J.O., *J. Am. Pharm.* Assuc. 40: 132 (1952). Chem. Abstr, 45: 4837 (1951).
- Doran W.J. and Schonle H.A., *J. Org. Chem.* 5: 194 (1938).
- 11. Jones E.R.H., Robinson E.A. and Srachen

M.N., *J. Chem. Soc.* **91**: (1945). Loetal, *J. Am. Chem. Soc.*, **75**: 4845 (1953).

- 12. Erlenmeyer E. and Metonbary V. Helv. *Chem. Acta.* **20**: 1389 (1937). **21**: 1013 (1938).
- 13. Towab, S.A., *Nature*, **182**: 607 (1959).
- 14. Sengupta, A.K. and Pandey Ashok J, *I. Indian Chem. Soc.*, **65**: 142 (1988).
- Mohd. Idris, Mohd Siddique, Asian J. Chem. 14A(1): 517-520 (2002).
- 16. Surayawanshi J.P., Pai Nandini R., *Asian J. Chem.* **45**B: 1227-1230 (2006).
- Vyas D.A., Chavan N.A. and Parikh A.R., Indian J. Chem. 46B: 1699-1702 (2007).
- 18. Patel R.B., *et al., Indian J. Chem.* **45**B: 773-778 (2006).
- 19. Kavangh F., Analytical Microbiology, Acdemic Press, New York (1963).

1182