Contamination of fluoride in ground water in and around Sehore city (M.P.) with special reference to human health

SURENDRA KUMAR KHATARKAR¹ and D.R. TIWARI²

¹Department of Geology, Government Motilal Vigyan Mahavidyalaya, Bhopal (India).

(Received: January 29, 2008; Accepted: April 04, 2008)

ABSTRACT

Hydrogeochemical investigation have been carried out in and around Sehore city to see the extent of fluoride contamination in ground water of the study area. Fifty six ground water samples were collected on a grid pattern (Survey of India Toposheet), which covering shallow deep aquifers, It is observed that fluoride concentration level ranges from as low at Patni and Khokri villages (0.20 mg/l) to as high as Ramkheri, Mahoriya, Kauriya, Phutibawari, Pipliyamiran, Barkheri, Hasnabad, Jahangirapura, Ugarkhera, (6.89, 6.99, 1.92, 2.08, 3.95, 2.00, 5.96, 4.53, 2.05 mg) respectively. In this light, study has been conducted to evaluate the impact of excess content of fluoride on the human health of the area people.

Key words: Ground water, fluoride concentration, Hydrogeochemical investigation.

INTRODUCTION

Fluorosis is a global problem and is caused by consumption of excess amount of fluoride in drinking water. Out of 32 state of India seventeen state are affected with dental, skelton and nonskelton fluorosis. The amount of fluoride concentration in water varies from 1.0 to 4.80 mg/l. Deleterious effect and dreadful disease in human beings are caused by fluoride. On the other face fluorides are known to be beneficial when it is present within a range of 0.5-1.5 mg/l. But, when it is exceeds the limit of 1.5 mg/l (Kotoiah and Kaumara swamy, 1994) it may cause fluorosisdental, skelton and non skelton fluorosis may be caused due to high concentration of fluoride in drinking water (Sushila 1991 and 1999).

The area of present investigation is a part of Malwa Plateau region. The area of study is bounded by latitude 23°5'-23°15' as per Survey of India Toposheet no. 55A/16 and 55E/4 which covering an area of 576 sq. km. The receiving average rain fall of 1211 mm, the temperature varies from 5.8° C and relative humidity between 62% to 71%.

Methodology

Fifty six groundwater samples were collected on a grid network pattern (Survey of India Toposheet 2.5' × 2.5' Fig. 1) from different locations, which covers about 56 villages so as to represent the full view of the study area. The water monsoon seasons, from different sources, viz tubewell, handpump and open wells. Samples were transported to the laboratory as for as possible and analysed for conventional parameters indicative of physico-chemical quality viz P^H Electrical Potassium (K), Calcium (Ca), Magnesium (Mg), Carbonate (CO_3), Bi-Carbonate (HCO_3), Chloride (CI), Nitrate (NO_3), Sulphate (SO_4), Flouride (F). The Flouride levels were detected by using ion selective electrode.

All samples were analysed by standard methods (IS-1992, Neeri 1988 and APHA 2000), for drinking purpose WHO (1985) BIS (2003) IS (1992) standard are followed.

RESULTS AND DISCUSSION

The result of the present study summarized in table 1. The desirable and permissible values of water Quality parameters as per BIS standards are given table 2.

The P^H values of water samples were found in the range of 6.9 to 9.5, except one sample Hasnabad village, rest are within the rang as per IS-10500 standard. This shows all the sources was alkaline in nature.

Electrical Conductivity (EC) values very from 210 to 1843. The alkalinity is the important parameter in the distribution of flouride. The alkalinity values varies from 32 to 186 the maximum alkalinity is observed at Jatkheri village. The total hardness of the area varies from 42 to 1320. The Calcium content of groundwater of the area ranges from 42 mg/l to 1140 mg/l. Out of 56 samples 13 samples are beyond the permissible limit. The concentration of sodium in the study area ranges from 36 to 236 mg/l. The major source of sodium is due to weathering of plagioclase feldspar. The concentration varies from 22 to 675 mg/l in the study area. Sulphate concentration in the study area varies from 10 to 48.8 mg/l.

Nitrate is effective for plant nutrient and moderately toxic and is considered important for its adverse effect on health. Nitrate concentration is very from 1.77 to 6.30 mg/l. Flouride is more common in ground water then surface water beyond the permissible limit may caused decease Known as Fluorosis. The fluoride level in the are of study ranges from 0.20 to 6.99 mg/l.

Out of 56 samples 9 villages Ramkheri, Mahoriya, Kauriya, Phutibawari, Pipliyamiran, Barkheri, Hasnabad, Jahangirapura, Ugarkhera,

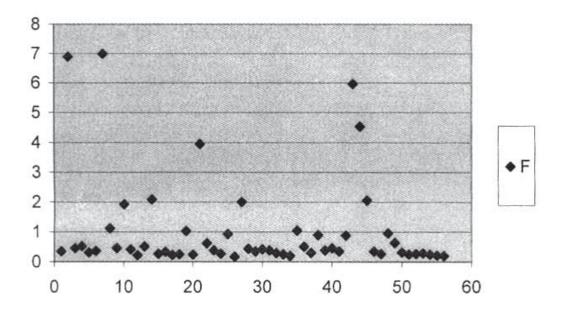


Fig. 1: Fluoride Concentration Level in ground water

							•								
S. No.	Village name	Hq	EC	TDS	Na	¥	Са	Mg	표	co	ЧСО [°]	ਹ	ш	NO₃	SO4
÷.	Lasuliya Khas	7.0	537	338	144	2.42	188	140	328	ΪŻ	78	60	0.35	50	12.8
2.	Ram Kheri	8.3	1441	906	98	1.16	96	48	144	Nil	162	675	6.89	10	22.6
ю.	Bisamkhara	7.2	530	332	62	0.44	260	52	312	Nil	06	06	0.45	25	16.2
4.	Muskara	7.6	946	594	86	0.68	320	160	480	Nil	60	125	0.52	50	44.4
5.	Kachanaria	7.6	675	486	76	0.56	290	170	460	Nil	80	100	0.31	75	38.6
.9	Sangrampur	7.1	764	484	44	1.24	484	60	544	Nil	132	95	0.36	75	14.8
7.	Mahoriya	8.0	668	414	64	1.84	60	44	104	Nil	44	235	6.99	50	18.2
8.	Bhatoni	7.8	1213	764	120	0.44	340	112	452	Nil	120	275	1.11	75	26.8
9.	Baktal	7.6	1435	932	104	0.52	780	44	824	Nil	24	400	0.45	10	32.2
10.	Kauriya	7.9	663	472	38	0.76	120	72	192	Nil	38	100	1.92	10	48.2
11.	Phunmogra	7.5	884	574	46	1.38	488	52	540	Nil	142	135	0.41	135	10.06
12.	Rapheiqgang	7.6	1023	664	126	1.72	456	56	512	Nil	80	160	0.22	234	18.4
13.	Bijori	7.9	430	266	68	0.54	122	46	168	Nil	124	60	0.51	29.2	16.8
14.	Phutibawari	7.8	501	310	76	0.66	86	10	96	Nil	34	65	2.08	17.2	22.8
15.	Mugispur	7.9	542	340	88	0.78	210	110	320	Nil	158	50	0.27	65.0	18.2
16.	Sarangakheri	7.0	459	288	116	4.42	288	44	332	Nil	36	20	0.33	34.8	22.8
17.	Sehore	7.6	1199	778	06	1.02	560	148	708	Nil	78	250	0.23	73.0	12.06
18.	Bariyakheri	7.8	652	410	68	0.86	292	76	368	Nil	44	100	0.25	34.8	36.2
19.	Chanderi	7.9	431	266	262	0.78	80	40	120	Nil	32	115	1.03	8.42	10.6
20.	Thunakalam	7.2	210	128	172	2.26	114	54	168	Nil	138	25	0.24	2.24	34.2
21.	Pipliyamiran	8.0	300	194	44	3.08	40	32	72	Nil	66	70	3.95	2.39	28.6
22.	Nayakhera	8.1	254	164	68	2.48	28	12	40	Nil	58	70	0.62	1.77	12.8
23.	Phanda	7.0	597	388	88	1.56	198	50	248	Nil	42	60	0.38	30.04	24.2
24.	Pipliyadhakar	6.9	555	360	124	0.56	260	76	336	Nil	162	40	0.27	31.02	42.06
25.	Dubri	7.0	540	348	212	0.84	180	40	220	Nil	12	100	0.93	25.5	10.08
26.	Khajuri	7.0	550	356	58	2.66	296	64	360	Nil	88	25	0.17	48.5	20.4
27.	Barkheri	7.9	281	182	96	1.48	98	42	140	Nil	58	50	2.00	2.12	28.2
28.	Jatkheri	7.6	1040	676	68	1.86	288	92	380	Nil	186	325	0.43	39.9	18.6
29.	Barwakheri	7.1	250	338	32	1.24	298	74	372	Nil	44	55	0.35	26.7	24.2

Table 1: Post Monsoon Sub surface water quality analysis data 2006

Khatarkar & Tiwari, Orient. J. Chem., Vol. 25(1), 181-186 (2009)

183

4 [.] 8 [.]	4.	¢.	9.	4.	œ.	Ņ	œ	œ	Ņ	Ņ	4.	9.	4.	4.	9.	Ņ	9.	9.	Ņ	9.	Ņ	4.	9.	Ņ	8.
12.4 18.8																									
28.2 78.4	18.1	38.6	630	14.4	11.3	115	3.12	5104	170	52.8	69.9	7.89	50.6	2.10	25.7	81.8	2.60	16.9	118	28.7	27.5	29.9	46.2	58.8	260
0.42 0.38	0.29	0.25	0.20	1.04	0.50	0:30	0.89	0.38	0.45	0.35	0.88	5.96	4.53	2.05	0.35	0.26	0.95	0.63	0.31	0.25	0.26	0.28	0.24	0.21	0.20
80 135	40	45	525	165	590	385	125	50	285	570	385	225	275	190	150	165	110	50	215	55	45	35	30	150	425
68 32	42	112	78	64	48	22	74	138	172	124	168	152	66	88	142	76	180	32	46	92	116	120	130	64	58
II II	Nil	liZ	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	CO3	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
580 552	320	220	1320	220	792	720	72	372	600	620	560	80	112	60	204	488	60	340	520	400	360	340	376	600	660
164 64	60	34	180	44	188	122	14	112	102	136	64	20	34	20	84	108	14	80	110	120	80	140	178	142	156
416 488	260	186	1140	176	604	598	58	260	498	484	496	60	78	40	120	380	46	260	410	250	280	200	198	458	504
0.76 5.44	2.22	6.42	1.12	0.98	0.90	4.24	3.18	2.16	0.88	0.925	0.42	2.48	3.12	4.48	1.26	2.48	0.84	0.66	0.56	1.08	2.24	0.98	0.66	0.54	1.18
176 162	88	62	38	148	112	98	56	68	44	54	172	140	32	168	42	96	112	146	32	64	236	162	78	36	44
572 564	296	294	1248	340	856	792	222	382	774	768	1142	292	502	292	374	568	262	358	648	406	390	368	362	574	1004
881 869	458	453	2114	550	1383	1295	361	617	1249	1240	1843	474	810	450	576	876	404	552	998	656	600	570	558	886	1622
7.8 6.9	7.5	7.4	6.8	7.2	7.0	6.9	8.0	7.0	7.6	7.2	7.0	9.5	8.3	8.2	7.6	7.2	7.0	7.5	7.0	7.2	7.4	7.0	7.2	7.0	7.0
Sonda Udpura	Narisngkhera	Durgapura	Khokri	Jatakhera	Satpipliya	Bhaunukheri	Gurbhela	Mograram	Lasuriyaram	Kankarkhera	Jahangirpura	Hasnabad	Jahangirpura	Ujarkhera	Dhaboti	Barkheri	Titoriya	Bamuliya	Heerapur	Dhabla	Bhojnagar	Uljhawan	Kolanaskhurd	Bilkisganj	Patni
30. 31.	32.	33.	34.	35.	36.	37.	38.	39.	40.	41.	42.	43.	44.	45.	46.	47.	48.	49.	50.	51.	52.	53.	54.	55.	56.

Note: All values are in mg/l except p^H and EC.

Table 1 Cont.....

Khatarkar & Tiwari, Orient. J. Chem., Vol. 25(1), 181-186 (2009)

Parameter	рН	TDS	тн	Ca ²⁺	Mg ²⁺	Cl-	Alkalinity	NO ₃ -	F [.]	SO ₄ ²⁻
Desirable value	6.5-8.5	500	300	75	30	250	200	45	1	200
Permissible value	6.5-8.5	2000	600	300	100	1000	600	45	1.5	400

Table 2: Desirable and permissible values of important water quality parameters

* IS - 10500 : 1991, Edition 2.2, Indian Standard Drinking water- Specifications (first revision), 2003, BIS, New Delhi

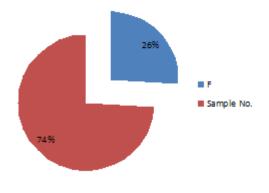


Fig. 2: Distribution of fluoride concentration in groundwater (%)

(6.89, 6.99, 1.92, 2.08, 3.95, 2.00, 5.96, 4.53, 2.05 mg/l) having high concentration of flouride level as compared to standard laid down by IS, BIS, WHO, this people are suffering form skelton and dental fluorosis from the table 1 and Fig. 1. It is clear that the flouride concentration in the study area is not uniform due to variations in the presence and accessibility of flouride bearing minerals to water and the weathering and leaching process (Sahu and Karim 1989).

CONCLUSIONS

It can be observed that the groundwater quality of the study area on few places acceptable as per IS 10500 standard table 2.

As special attention of flouride level in groundwater about 9 villages were not meeting the water standard. It comes about 26% of the study area Fig. 2.

The Excess flouride concentration in the

study area may be attributed to the geological formation and rapid groundwater depletion. It is high time that an affordable solution to minimize the flouride contamination for maintaining the good health of the affected area people.

In this light it is further suggested that an immediate Need to defluoride the water system either by community or by domestic defluoridation techniques.

ACKNOWLEDGMENTS

The one Author Surendra Kumar Khatarkar is grateful to the University grand commission New Delhi for providing financial Assistance is given under Rajeev Gandhi National Fellowship to carried our research work.

Authors is also thankful to Dr. Parashar HOD Geology and Principal Dr. O.P. Jain Govt. Motial Vighyan Mahavidyalaya Bhopal for his valuable cooperation.

REFERENCES

- APHA. Satandard methods for examination of water and waste water. American Public Health Association 20th Edition Washington (2000).
- BIS, IS 10500; 1991, Edition 2.2, Indian Standard drinking water specifications (First Revision) BIS New Delhi.
- WHO, Health criteria and other supporting Information, Guidelines for drinking water quality, 2 CBS publication.
- 4. Kotaih and Kuamra Swami in, Environmental engineering manual first edition. Anand

(Gujrat) India 27 (1994).

- National Environmental Engineering Research Institute (NEERI) Nagpur, Course Manual Text book 4th edition (1988).
- Susheela, A.K., Technical information for training cum awareness camp for doctors. Public Health and Engineering other officers, All India Institute of medical sciences, New Delhi (1991).
- 7. Indian Standard 100500 (1992).
- Sahu N.K. and Karim, M.A., J. Geological Society India 33: 450-456 (1989).