Computational study of 2-bromo-4-chloroacetophenone

C.YOHANNAN PANICKER^{1*}, HEMA TRESA VARGHESE², MANIKANTAN NAIR³, K.RAJU³ and G. MADHAVAM WARRIER⁴

¹Department of Physics, TKM College of Arts and Science, Kollam - 691 005 (India). ²Department of Physics, Fatima Mata National College, Kollam - 691 001 (India). ³Department of Physics, University College, Trivandrum (India). ⁴Department of Physics, Government Victoria College, Palakkad (India).

(Received: May 25, 2009; Accepted: July 03, 2009)

ABSTRACT

The vibrational frequencies of 2-Bromo-4-chloroacetophenone were calculated using Gaussian 03 software package and the fundamental modes are assigned. The predicted infrared intensities and Raman activities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive object for future studies of non linear optics.

Key words: HF calculations, hyperpolarizability, nonlinear optical activity.

INTRODUCTION

2-Bromo-4-chloroacetophenone is one of the new organic nonlinear crystal having good second harmonic generation efficiency¹. The organic non linear optical materials play an important role in second harmonic generation, frequency mixing, electro optic modulation, optical parametric oscillation and optical bi-stability². Organic crystals have parameters superior to widely used crystals like KDP^{3,4}. Chenthamarai et al.⁵ reported the growth of good quality of 4-hydroxy acetophenone and nitro doped 4-hydroxy acetophenone crystals from the saturated methanol solution by slow cooling method. Ab initio guantum mechanical method is at present widely used for simulating the IR spectrum. Such simulations are indispensable tools to perform normal coordinate analysis so that modern vibrational spectroscopy is unimaginable without involving them. In the present study, the theoretical calculations of the wavenumbers and first hyperpolarizability of the title compound are reported.

Computational details

Calculations of the title compound were carried out with Gaussian 03 program⁶ using the HF/6-31G* basis set to predict the molecular structure and wavenumbers. Molecular geometry was fully optimized by Berny's optimization algorithm using redundant internal coordinates. Harmonic vibrational wavenumbers were calculated using the analytic second derivatives to confirm the convergence to minimum on the potential surface. The wavenumber values computed at the Hartree-Fock level contain known systematic errors due to the negligence of electron correlation⁷. We therefore, have used the scaling factor value of 0.8929 for HF/6-31G* basis set.7 The geometrical parameters corresponding to the optimized structure (Fig. 1) are given in table 1. The absence of imaginary wavenumber on the calculated vibrational spectrum confirms that the structure deduced corresponds to minimum energy.

RESULTS AND DISCUSSION

The calculated wavenumbers, infrared intensities and Raman activities and the corresponding assignments are given in table 2. The vibrations of the CH₂ group, the asymmetric stretch v_{as} CH₂, symmetric stretch v_{s} CH₂, scissoring vibration δ CH₂, appear in the region 2945± 45, 2885± 45 and 1445±35 cm⁻¹, respectively^{8,9}. The HF calculations give these modes at 3038, 2963 and1446 cm⁻¹. The upshift of the stretching mode is due to the presence of halogen atom in the structure. Bands of hydrocarbons due to CH₂ twisting and wagging vibrations, are observed in

the range^{9,10} 1180-1390 cm⁻¹.These bands are generally appreciably weaker than those resulting from CH₂ scissoring vibrations. The CH₂ wagging and twisting modes are assigned at 1325 and 1242 cm⁻¹.The band calculated at 877 cm⁻¹ is assigned as the rocking mode of CH₂ which is expected in the region⁸ 805 \pm 30 cm⁻¹. The C=O stretching vibration provides a strong absorption in the region⁸ 1740 \pm 90 cm⁻¹ and in the present case the band at 1686 cm⁻¹ is assigned as this mode. The in-plane and out-of-plane C=O deformations⁸ are expected in the regions 585 \pm 115 cm⁻¹ and 520 \pm 90 cm⁻¹ and these bands are also identified (Table 2). Arslan *et al.*¹¹ reported vCCI at 683 (experimental) and at

|--|

Bond lengths (A)									
	1.3856	C1-C6	1.3797	C1-H7	1.0701	C2-C3	1.3915		
	1.0695	C3-C4	1.3932	C3-C12	1.4836	C4-C5	1.3837		
	1.0710	C5-C6	1.3816	C5-H10	1.0702	C6-Cl11	1.8042		
	1.5052	C12-C14	1.2195	C13-H15	1.0731	C13-H16	1.0746		
	1.9956								
Bond angles(°)									
	118.9	A(2,1,7)	120.7	A(6,1,7)	120.4	A(1,2,3)	120.5		
	119.0	A(3,2,8)	120.4	A(2,3,4)	119.3	A(2,3,12)	122.4		
	118.3	A(3,4,5)	120.6	A(3,4,9)	119.1	A(5,4,9)	120.3		
	118.8	A(4,5,10)	120.8	A(6,5,10)	120.4	A(1,6,5)	121.9		
	119.1	A(5,6,11)	119.1	A(3,12,13)	120.4	A(3,12,14)	121.2		
	118.4	A(12,13,15)	109.3	A(12,13,16)	113.4	A(12,13,17)	110.6		
	111.8	A(15,13,17)	105.5	A(16,13,17)	105.6				

711, 736, 687, 697 cm⁻¹ theoretically. In the present study the band at 619 cm⁻¹ is assigned as stretching mode of CCI. As expected the CBr stretching mode¹² is assigned at 515 cm⁻¹. The benzene ring possesses six ring stretching vibrations, of which the four with the highest wavenumbers (occurring respectively near 1600, 1580, 1490 and 1440 cm⁻¹) are good group vibrations. The fifth ring stretching vibration is active near 1335± 35 cm⁻¹, a region which overlaps strongly with that of the CH in-plane deformation and the intensity is in general low, or medium high⁸. For the para substituted phenyl ring the δPh modes are expected in the region⁸1280-1620 cm⁻¹. The õPh modes are given in table 2. The ring breathing mode for the paradisubstituted benzenes with entirely different substitutions¹³ have been reported to be strongly IR active with typical bands in the interval 780-840 cm⁻¹. For the title compound, the HF calculation give the band at 747 cm⁻¹ with a strong IR activity. For paradisubstituted benzenes, the in-plane CH deformations are seen in the range 995-1315 cm⁻¹ and the out-of-plane CH deformations are below 1000 cm⁻¹. Generally, the CH out-of-plane deformations with the highest wavenumbers have a weaker intensity than those absorbing at lower wavenumbers. The substituent in-plane and out-of-plane ring modes are also identified and assigned (Table 2).

The CCI bond length in the present case is 1.8042 A and that of CBr is 1.9956 A which is in agreement with the previous reported values^{14,15}. Chlorine is highly electronegative and tries to obtain additional electron density. It attempts to draw it from

υ _(HF) cm ⁻¹	IR Intensity (KM/Mole)	Raman activity (A**4/AMU)	Assignments
3058	1.18	122.60	υCH
3052	1.34	76.21	υCH
3045	0.41	75.11	υCH
3041	0.52	48.88	υCH
3038	0.27	27.74	$v_{as}CH_2$
2963	5.40	89.22	$v_{s}CH_{2}$
1686	216.71	80.50	υC=O
1609	96.78	127.06	υPh
1580	19.43	9.39	υPh
1503	27.31	8.41	υPh
1446	36.58	15.04	δCH ₂
1398	22.20	2.89	υPh
1325	2.31	1.86	ωCH_2
1279	164.74	39.02	υPh
1242	31.55	14.89	τCH ₂
1210	16.35	1.48	δCH
1192	8.66	6.23	δCH
1134	7.40	21.42	υCX(X)
1108	0.17	2.57	δCH
1075	81.54	12.92	υCX(X)
1057	0.35	3.70	υC(=O)C
1050	0.22	5.94	δCH
1018	27.13	7.62	υCC
1015	51.07	1.13	γCH
910	46.27	0.76	γCH
887	0.25	2.90	γCH
877	16.13	5.80	ρCH ₂
784	10.35	4.55	γCH
747	32.14	21.40	Ring breathing
712	6.00	5.92	γPh
638	0.14	7.29	δC=O
619	28.60	16.65	υCCI
529	45.21	6.87	γPh(X)
515	32.78	8.79	υCBr
459	11.72	11.73	γC=O
427	3.63	3.39	γPh(X)
423	4.24	1.86	δPh(X)
301	0.79	4.06	δPh(X)
295	3.30	4.58	δPh(X)
255	2.30	2.17	δCBr
165	7.30	1.02	γPh(X)
133	3.48	2.15	tCH ₂
90	4.34	0.52	tCCI
69	1.07	4.25	tCBr
41	0.25	5.95	tPh

Table 2: Calculated vibrational wavenumbers and band assignments

v-stretching; δ-in-plane deformation; γ -out-of-plane deformation; τ -twisting; rocking; ω-wagging; t- torsion; X-substituent sensitive; Ph-Phenyl; subscripts: as – asymmetric, s- symmetric.

the neighbouring atoms, which moves closer together in order to share the remaining electrons more easily as a result. Due to this, the bond angle A(1,6,5) is found to be 121.9° and the exocyclic angles A(5,6,11), A(1,6,11) become 119.1° .

Analysis of organic molecules having conjugated π -electron systems and large hyperpolarizability using infrared and Raman spectroscopy has evolved as a subject of research¹⁶. The potential application of the title compound in the field of non linear optics demands the investigation of its structural and bonding features contributing to the hyperpolarizability enhancement, by analyzing the vibrational modes using the IR and Raman spectrum. The calculated first hyperpolarizability of the title compound is 3.50×10^{-30} esu, which is comparable with the reported values of similar derivates¹⁵.We conclude that the title compound is an attractive object for future studies of non linear optical properties.

REFERENCES

- 1. Anbusrinivasan, P., and Kavitha, S., *Asian J. Chem.* **2**: 979 (2008).
- Badan, J., Hierle, R., Perigaud, A., and Zyss, J., ed: Williams, NLO properties of Organic Molecules and Polymeric Materials, American Chemical Society Symposium Series, Vol. 233, American Chemical Society, Washington DC, (1993).
- Chemla, D., and Zyss, J., in: Nonlinear optical properties of Organic materials and crystals, Academic Press, New York (1987).
- 4. Zhendeng, L.I., Biachang, W.U., and Genbo, S.U., *J. Cryst. Growth* **178**: 539 (1997).
- Chenthamarai, S., Jayaraman, D., Meera, K., Santhanaraghavan, P., Subramanian, C., Bocelli, G., and Ramasamy, P., *Crystal Eng.* 4: 37 (2001).
- Frisch, M.J., et al. *Gaussian03*, Revision C. 02, Gaussain Inc., Wallingford, CT(2004).
- Foresman, J.B., and E.Frisch, E., in:Frisch, E., (Ed.), *Exploring Chemistry with Electronic Structure Methods, A Guide to Using Gaussian*, Gaussian, Pittsburg PA, (1996).
- 8. Roeges, N.P.G., A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, John Wiley and Sons Inc., New

York (1994).

- Colthup, N.B., Daly, L.H., and Wiberly, S.E., Introduction to Infrared and Raman Spectroscopy, ed. 2, Academic Press, New York (1975).
- Silverstein, R.M., Bassler, G.C., and Morril, T.C., Spectrometric Identification of Organic Compounds, ed. 5, John Wiley and Sons Inc. Singapore (1991).
- Arslan, H., Florke, U., Kulcu, N., and Binzet, G., *Spectrochim. Acta* 68A: 1347 (2007).
- 12. Socrates, G., *Infrared and Raman Characteristic Group Frequencies*, John Wiley and Sons Ltd., New York (1980).
- Varsanyi, G., Assignments of Vibrational Spectra of Seven Hundred Benzene derivatives, Wiley, New York (1974).
- 14. Endredi, H., Billes, F., and Holly, S., *J. Mol. Struct. Theochem.* **633**: 73 (2003).
- Varghese, H.T., Panicker, C.Y., Madhavan, V.S., Mathew, S., Vinsova, J., and Van Alsenoy, C., *J. Raman Spectrosc.* DOI:10.1002/jrs.2265.
- Tommasini, M., Castiglioni, C., Del Zoppo, M., and Zerbi, G., *J. Mol. Struct.* 480: 179 (1999).