Synthesis of 1,5-disubstituted 2,4 dithiobiurets and studies on their complexation behviour

MOHSIN HASAN KHAN, N.K. AGARWAL and SHAMIM AHMAD

Department of Chemistry, Bareilly College, Bareilly - 243 005 (India).

(Received: March 16, 2009; Accepted: April 30, 2009)

ABSTRACT

1,5-Disubstituted 2,4-dithiobiuret selected for the present studies were, 1,5 di-o-tolyl 2,4dithiobiuret (DOTDTB),1,5-di-p-phenetyl 2,4-dithiobiuret(DPhDTB),1,5-dimethyl 2,4 dithiobiuret(DMDTB). The ligands were synthesized by the standard method and characterized by TLC, elemental analyses I.R.spectra and melting-points. The complexes of these ligands with the metals Co, Ni & Cu were prepared and characterized by elemental analyses, melting-points, magnetic moments, molar conductance I.R. spectra & Potentiometric studies. Tetrahedral structure have been proposed for these complexes.

Key words: Tetrahedral 2,4 dithiobiurets.

INTRODUCTION

Dithiobiurets are interesting ligands for formation of Complexes with metal ions. It has an abundance of delocalized loan pair of electrons, that make it suitable for the stabilization of unusual oxidation states. Moreover, it could possibly chelate through the two sulphur atoms or through two nitrogen atoms or through a sulphur atom and a nitrogen atom, in each case it forms a six membered ring. This ligand can chelate either as a neutral donor or an uninegative or as dinenative ion, depending upon conditions.

G.A.Melson¹ prepared complexes of dithiobiuret with Cu(II) and Ni(II) and studies their propertes using visible, reflectance and I.R. spectra and magnetic measurements. Cuprous complex of dithiobiuret has been proposed as fungicide². silver dithiobiuret complex was isolated and charactrized by Stephen and Townshend³ on the basis of I.R. studies and suggested that dithiobiuret coordinate through thiocarbonyl sulphur atoms,Peyronel and pignadoli⁴, prepared red coloured complexes of dithiobiuret with general formula.[Ni(DBT)₂]X₂ (whereX=CH₃COO,CI,CIO₄ OR DMF),and characterized on the basis of magnetic moment and I.R. studies. Girling⁵ and Luth(6) isolated bis-chelate complexes of dithiobiuret with Co(II), Ni(II)Cu(II), Pd(II), and Zn(II),complete X-ray structural. Determination show that Ni(II) and Pd(II) complexes are planner.

EXPERIMENTAL

The ligands were prepared by refluxing the respective constituents in equimolar mixture for about two hours in ethanol. After the completion of the reaction, mixture was evaparated and the concentrate was extracted with a suitable solvent and crystalized.

S.	Compound	Structure	M.pt	Mol. wt	Analys	is
No	abbrevitation				Calculated %	observed%
1.	1,5-Di-o-tolyl		115	315.46	N=13.33	13.10
				S=20.31	20.35	
	2,4-dithiobiuret (DOTDTB)					
2.	1,5-Di-p-phenetyl		134	375.55	N=11.25	11.20
					S=17.06	17.15
	2,4-dithiobiuret (DPhDTB)					
3.	1,5-Di-methyl	CH ₃ -NH-C-NH-C-NH-CH ₃ ss	148	163.26	N = 25.76	26.01
	2,4-dithiobiuret (DMDTB)				S=39.26	39.32

Table 1:

Table 2: Potentiometric titration of 1,5-disubstituted2,4-dithiobiuret with iodine in THF

Volume of lodine (in ml)	EMF OF (DOTDTB) (in ml)	EMF OF (DPhDTB) (in ml)	EMF OF (DMDTB) (in ml)
0.50	245	230	210
1.00	255	238	215
0.50	257	245	218
1.20	262	247	222
1.40	263	250	225
1.60	270	260	232
1.80	305	275	245
1.90	325	293	270
2.00	370	315	295
2.10	395	345	335
2.20	405	370	350
2.30	419	380	308
2.40	414	388	365
2.60	418	392	368
2.80	420	396	370
3.00	424	400	373
3.40	426	405	375
3.60	430	409	376
3.80	435	410	377
4.00	436	411	377

s.	Mol.formula of the complex	Colour	M.P.		Element	al Analyses		Magnetic	Molar
NO.			ပ	°2%	%Н	%N	S%	woment in B.M.	conductance Ohm ⁻¹ Cm ⁻² Mole ⁻¹
-	1,5-Di-o-tolyl 2,4-dithiobiuret Cobalt(II) Chloride Complex	Brownish Green	128	50.51 (50.10)*	4.46 (4.38)	11.04 (10.92)	16.85 (15.95)	4.41	142
2	וכס(שטרו ט ו ש), וכין 1,5-Di-p-phenetyl 2,4-dithiobiuret Cobalt(II) Chloride Complex רכה להסה אדשי זכיו	Greenish Brown	132	49.07 (49.00)	4.76 (4.70)	9.54 (8.72)	14.55 (13.69)	4.45	145
υ	1,5-Di-methyl 2,4-dithiobiuret Cobalt (II) Chloride Complex	Brownish Green	152	21.05 (20.50)	3.94 (3.82)	18.42 (17.89	28.10 (27.20)	4.48	140
4	1,5-Di-o-tolyl 2,4-dithiobiuret Nickel (II) Chloride Complex	Brown	134	50.53 (50.20)	4.47 (4.42)	11.05 (10.60)	16.86 (15.99)	3.72	140
Ŋ	וואו(שט וש שייבי) 1,5-Di-p-phenetyl 2,4-dithiobiuret Cobalt(II) Chloride Complex	Dark brown	154	49.09 (49.00)	4.76 (4.71)	9.5 (8.67)	14.56 (13.76)	3.74	144
9	[Ni(DPhD1B) ₂]Cl ₂ 1,5-Di-methyl 2,4-dithiobiuret Cobalt (II) Chloride Complex	Blackish Brown	140	21.06 (21.00)	3.94 (3.89)	18.42 (17.89)	28.11 (27.34)	3.77	151
2	[Ni(DMD TB) ₂]Cl ₂ 1,5-Di-o-tolyl 2,4-dithiobiuret Copper (II) Chloride Complex	Golden Yellow	151	50.21 (50.00)	4.44 (4.01)	10.98 (9.34)	16.75 (15.99)	1.35	150
œ	1,5-Di-p-phenetyl 2,4-dithiobiuret Cobalt(II) Chloride Complex	Golden yellow	140	48.82 (48.40)	4.74 (4.69)	9.49 (8.88)	14.48 (13.72)	1.32	154
6	וכעוטרתט וש), וכעו 1,5-Di-methyl 2,4-dithiobiuret Cobalt (II) Chloride Complex [Cu(DMDTB),]Cl2	Yellow	144	20.84 (20.70)	3.90 (3.86)	18.23 (17.79)	27.82 (26.80)	1.21	152

Khan et al., Orient. J. Chem., Vol. 25(3), 701-706 (2009)

Table 3: The analytical data

703

where Metal M=Co,Ni,Cu

The authors are thankful to Dr. R.P.singh, D.Lit. Principal Bareilly College Bareilly for extending all possible facilities to carry out this Rescarch work.

The Purity of these ligands was checked by TLC & melting points, characterized by elemental analyses and I.R. spectra. The analytical data is given in data(I).

Synthesis of complexes

A Known amount of etheral or ethanolic solution(0.01M) of anhydrous metal chloride was taken in a three necked round bottom flask fitted with a mechanical stirrer, a separating funnel and a calcium chloride tube. Flask containing metal chloride solution was cooled in ice bath at 10°c and then etheral solution (0.02M) of the ligand was added drop by drop to the metal chloride solution with constant string. After the addition was completed, the mixture was allowed to stand for an hour and then filtered, washed free of ligand first with ethanol and finally with ether. Complex compound was dried in vaccum.

The melting points of the complexes were determined in order to establish the formation of the adducts. These were subjected to elemental analyses at C.D.R.I. Lucknow, the magnetic susceptibility was measured by Gouy method at Bareilly College Bareilly. I.R. spectra were recorded in the range of 4000-200-cm⁻¹ the molar conductance was measured by conductivity meter type LBR of Wissenschaffich Technische, Werkstatten ,Germany, at 10⁻³M in DMF. Potentiometric studies were Carried out with iodine solution in THF using calomal and platinium electrode . The data is given in table2.

RESULTS AND DISCUSSION

The analytical data suggested 1:2 M:L stitiometry for all the complexes reported herein. The measurement of molar conductance at room tempreture and 10⁻³ M dilution suggested 1:2

electrolytic nature for all the complexes.

The spin only value of magnetic moment for cobalt complexes was observed in the range of 3.8-4.48 B.M. which is in the range reported for tetrahedral complexes⁷. These values of magnetic moments suggested the presence of three unpaired electron in the high energy t_2g state arising from the tetrahedral ligand field. In case of Ni(II) complexes the spin only value of magnetic moment was found in the range of 3.72-3.77 B.M. which is suggestive of two unpaired electron in the High energy t_2g state arrising from tetrahedral ligand field .In case of Cu(II) complexes the value ranges from 1.7-2 B.M. The values suggested the presence of one unpaired electron and square planner gemoetry for the complex¹⁰.

The I.R spectra of the ligands 1,5 di-o-tolyl, 2,4 dithiobiuret (DOTDTB).1,5-di-p-phenetyl 2,4dithiobiuret(DPhDTB),1,5-dimethyl 2,4dithiobiuret(DOTDTB). 1,5-di-p-phenetyl 2,4dithiobiuret(DPhDTB),1,5-dimethyl 2,4 dithiobiuret (DMDTB) and their corresponding cobalt, Nickel and Copper Complexes were recorded in KBr phase & compared. The comparision revealed the coordination sites. The decrease in density and lowering in \mathbf{V} C=S frequency and lowering of

C=N frequecey in case of all the complexes suggested the coordination through thionyl sulphur⁸ atom and Nitrogen atom of azomethyne group(9). Coordination through thionyl group is also supported by potentiometric studies of the complexes. All other frequencies appeared unchanged in the I.R. spectra of the complexes.

On the basis of above mentioned facts tetrahedral structure has been proposed for all the complexes.

REFERENCES

- G.A Melson, Proceedings of IXth International Conference on Co-ordination Chemistry 243 (1966).
- 2. M.M.Baldwin, U.S.Patent, **2**: 959,515 (1960).
- W.I.stephen and A Townshend, *J. Chem. Soc.* A: 166 (1966).
- G.Peyronel and A.Pignadoli, Proceeding of Xth International conference on co-ordination chemistry 290 (1967).
- 5. R.L.Giriling and E.L.AMMA, Chem. Commun, 1487(1968).
- 6. H.Luth, E.A. Hall., W.A. Spofford. and

E.L.Amma, Chem. Commun, 520 (1969).

- D.P Graddon An Introduction to Coordination Chemistry "Pergaman Press, Second edition P.32.
- 8. G.Peyronel and A.Pignedoli, Proceeding of

Xth International conference on co-ordination chemistry, 290 (1967).

- 9. W.I.stephen and A.Townshend, *J.Chem.Soc* A: 166 1966).
- 10. R.D.Wilet, J. Chem. Phys. 41: 2243 (1964).

706