Synthesis and antimicrobial properties of Flavone imines

N.A. GHANWATE*, A.W. RAUT¹ and A.G. DOSHI²

*Department of Microbiology, Dr. P.D.M. Medical College, Amravati (India) ¹Ex. Reader Department of Chemistry, Shri Shivaji Science College, Amravati (India) ²Ex. Prof. and Head Department of Chemistry Vidyabharti Science College, Amravati (India)

(Received: January 05, 2008; Accepted: April 13, 2008)

ABSTRACT

Chalcone condenses with substituted aniline to give chalcone imine. This chalcone imine when refluxed in DMSO- I_2 - H_2SO_4 system affords flavone imine. Substituted flavone imines were synthesized and tested for its antimicrobial activity against pathogenic bacteria and fungi. Sensitivity carried out by disc diffusion method displayed good level of antibacterial activity.

Key words : Flavone imines, Antimicrobial activity.

INTRODUCTION

Schiff bases have attracted much attention due to their biochemical and biological activities such as antiviral¹, anticancer^{2,3}, antimicrobial⁴ and antibacterial⁵. Anticancer Schiff bases have been synthesised by condensation of aniline with substituted benzaldehyde.⁶ Schiff bases like flavone imines have been reported to exhibit antimicrobial properties⁷.

DMSO-I₂ with or without H_2SO_4 reagent has been used for oxidative cyclisation of 2-hydroxy chalcone to flavones and dehydrogenation to flavonoids.⁸ Phenol Schiff bases with DMSO-I₂- H_2SO_4 system give -N-phenyl benzisoxazolines.^{9,10,11} Synthesis of 8-Nitro-5-chloro-4-substituted-N-(substituted phenyl) flavone imine have been recently reported.¹² Substituted acetophenon and substituted chalcone are prepared by known methods¹³. Chalcone condenses with substituted aniline in ethanol in presence of 2,3 drops of conc. H_2SO_4 to give chalcone imine.

Chalcone imines react with DMSO-I₂-H₂SO₄ system to give flavone imine.

The synthesized flavone imines were screened for their antimicrobial activity against bacteria like *Escherichia coli*, *Klebisella pneumoniae*, *Salmonella typhi*, *Salmonella typhimurium*, *Shigella flexneri*, *Proteus spp*, *Protues merabilis*, *Proteus vulgaris*, *Pseudomonas aeruginosa*, *Aerobacter aerogenes*, *Staphylococcus aureus and Bacillus spp*^{14,15} and fungal isolates like *Cryptococcus neoformans*, *Candida albicans*, *Trichophyton mentagrophytes*, *Microsporum gypseum*, *Mucor*, *Rhizopus*, *Aspergillus niger*, *Aspergillus flavus and Aspergillus fumigatus*¹⁶ by disc diffusion method¹⁷ by dissolving the compounds in methanol¹⁸.

EXPERIMENTAL

Preparation of flavone imine

Substituted chalcone are prepared by know method. Substituted chalcone condenses with substituted aniline in presence of 2,3 drops of conc. H_2SO_4 gives chalcone imine.

Substituted chalcone imines was dissolved in DMSO (40ml) and conc. H_2SO_4 , 2, 3 drops was added. The mixture was refluxed for 10 min. It was then cooled and little catalytic amount of iodine was added. The reaction mixture was again heated for 1 hour in water bath then cooled and diluted with cold water. The resulting solid mass was treated

Compound No.	R ₁	R ₂	R ₃	R ₄	m.p. (°C)	Yield (%)
lla	Br	Н	Н	Н	147	80
llb	Br	Н	Н	-CH ₃	285	82
llc	Br	-OCH ₃	Н	-CH ₃	312	80
lld	Br	-OCH ₃	NO ₂	Н	127	80
lle	Н	-OCH ₃	Н	-CH	330	81
llf	Н	-OCH ₃	NO ₂	Н	130	82

Table 1: Physical data of Synthesized flavone imines

Scheme 1

	hyl- Bacillus us spp. Is	7	10	6	10	10	6	
	er <i>Stapl</i> s <i>o</i> coci aureu	2	10	13	13	15	13	
	<i>Aerobact</i> aerogene:	7	8	7	10	10	6	
ed in mm)	<i>Pseudo- monas</i> aeruginosa			8	6	ı	ı	
/ity measur	<i>Proteus</i> vulgaris	7	10	8	8	8		
ne (Sensitiv	<i>Proteus</i> merabilis		8	8	ŧ	7		
avone imi	<i>Proteus</i> spp.		8		6	6		
sitivity to fla	<i>Shigella</i> flexneri		15	1	8		8	
a showing sen	Salmonella typhimurium		8	8	7	8	7	
ile 2: Bacteri	<i>Salmonella</i> typhi		8	8	8	12	6	
Tab	<i>Klebisellan</i> pneumoniae		13	10	0			
	<i>Escherichia</i> coli		10		0	10	10	
	Compd.	lla	qII	llc	IId	lle	IIf	

		Table 3 :Fun	ngi showing sensitiv	vity to flavone ir	nine (Sensi	tivity measu	red in mm)		
Compd.	<i>Cryptococcus</i> neoformans	<i>Candida</i> albicans	<i>Trichophyton</i> mentagrophytes	<i>Microsporum</i> gypseum	Mucor	RhiZopus	<i>Aspergillus</i> niger	<i>Aspergillus</i> flavus	<i>Aspergillus</i> fumigatus
lla									.
qII	10	8	12	12	11	13	8	12	12
llc	15	13	10	11	11	12	8		
IId	20	13	22	20	15	18	11	25	20
lle	12	6	15	13	10	10		15	25
IIf	23	15	20	18	19	15	20	25	25

723

with water 10% Sodium thiosulphate solution to remove iodine and again by water and crystallized from alcohol acetic acid mixture to get flavone imine. All the flavone imines stated in table 1 were tested in vitro for their antimicrobial activity by disc diffusion method by dissolving the compounds in methanol at a concentration of 3000 μ g/ml. The concentration of compounds per disc was 30 μ g.

RESULTS AND DISCUSSION

Most of the flavone imines showed significant antibacterial and antifungal activities as stated in table 2 and 3 respectively.

The antibacterial activity is highest against *S. aureus, Bacillus spp., A. aerogenes, S. typhi* and *Shigella flexneri* and least against pseudomonas. Compound IIa and IIb showed highest antibacterial activity. Compounds IIf and IId showed highest antifungal activity.

In the present study it has been interesting to note that the flavone imines were more active against fungi as compared to bacteria.

REFERENCES

- 1. Das A. Trousdale M.D., Ren S. and Lien E.J., *Antiviral Res*, **44**: 201 (1999).
- Sengupta, J., Indian J. App. Chem., 2: 29 (1964).
- Modi J.D., Sabnis S.S. and Deliwala E.V., *J. Mol. Chem.*, **13**: 935 (1970).
- 4. Piscopo E., Diurno M.V., Gogliordi R., *Bull. Soc. Ital Biol. Sper.*, **63**: 827 (1987).
- 5. Dhunwad S.O., Gudasik B. and Goudar T.R., *Indian J. Chem.*, **34**A: 38 (1995).
- 6. Popp F.D., J. Org. Chem., 26: 1566 (1966).
- Raut A.W., Doshi A.G. and Raghuwanshi P.D., Oriented J. Chem., 14(2): 337-338 (1998).
- Doshi A.G., Soni P.A. and Ghiya B.J., *Indian J. Chem.*, **25**B: 759 (1986).
- 9. Lokhande P.D. and Ghiya B.J., *J. Indian Chem. Soc.*, **68**: 412 (1990).
- Kadu V.B. and Doshi A.G., *Orient. J. Chem.*, 13(3): 277-280 (1997).
- 11. Raut A.W., Doshi A.G. and Raghuwanshi

P.B., Orient. J. Chem., **14**(2): 363-364 (1998).

- 12. Sau. Sangeeta R. Rathi, Ph.D. Thesis, S. G. B. V. Amravati (2005).
- Doshi A.G. and Ghiya B.J., *Current Science*, 55(10): 502-503, (1986).
- 14. Man Mohan Banerjee, *Essentials of Medical Microbiology*, 1-2 (1999)
- Ananthanarayan R. and Hayram Panikar C.E. (text Book of Microbiology), Orient Longman Vth Edi. (2002).
- Konemann Elmer W., Glenn D. Roberts, Practical Laboratory Mycology, IIId Ed. (2001).
- Crukshank Robert, Duguid J.P., Marimicon B.P., Swain R.H.A., Medical Microbiology, 12th Ed., Vol. 11, Churchill living Store, Edinburgh, London, New York (1995)
- Donald C.G., William A.R., In assay methods of Antibiotic in lab manual medical encyclopedia Inc. (1955).