# Synthesis and biological activities of some 3,5-disubstituted- $\Delta^2$ -pyrazoline derivatives

# SADAF J.GILANI, SUROOR A. KHAN\*, OZAIR ALAM and HARISH KUMAR

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, New Delhi - 110 062 (India)

(Received: June 04, 2008; Accepted: August 12, 2008)

#### ABSTRACT

Synthesis and biological activities (antimicrobial, anti-inflammatory & analgesic) of 1*H*-3,5disubstituted- $\Delta^2$ -pyrazolines (IIa-e) and 1-acetyl-3,5-disubstituted- $\Delta^2$ -pyrazolines (IIIa-c) are described. The structure of synthesized compounds have been established on the basis of IR, <sup>1</sup>H NMR, Mass and elemental analysis. All the tested compounds showed significant antibacterial and antifungal activity. Some of the synthesized compounds also showed moderate to good antiinflammatory and analgesic activity.

Key words: Chalcones, pyrazoline, antimicrobial, anti-inflammatory, analgesic and spectral studies.

#### INTRODUCTION

Pyrazole containing heterocyclic compound plays an important role in medicinal chemistry. Since a very long time the usefulness and great therapeutic value of pyrazole nucleus has been recognized and the wide range of biological activities<sup>1,2</sup> of this nucleus evaluated. Cox-2 inhibitory activity of pyrazole are well proved and many compounds containing pyrazole nucleus like celecoxib, sulphenazole, sulphinepyrazole & analgin are the well established in the market.

In the present study we have synthesized some 1*H*-3,5-disubstituted- $\Delta^2$ -pyrazolines (IIa-e) by the cyclisation of different chalcones (Ia-e) in the presence of hydrazine hydrate. The required chalcones (Ia-e) were prepared by the condensation of appropriate aromatic aldehyde ጲ acetophenones.1H-3,5-disubstituted-"2-pyrazolines (IIa-c) were further acetylated to 1-acetyl-3,5disubstituted-"2-pyrazolines (IIIa-c) with the help of acetic acid (Scheme I). These compounds were also evaluated for their antimicrobial, anti-inflammatory and analgesic activities.

#### MATERIAL AND METHODS

The melting points were determined by open capillary method and are uncorrected.IR (KBr) spectra were recorded on a Shimadzu 8201PC infrared spectrophotometer. The <sup>1</sup>H NMR spectra were recorded on a Bruker DRX-300 spectrophotometer in DMSO using TMS as internal standard (Chemical shift are expressed in ppm). Mass spectra were recorded on Jeol-SX-102 (FAB) spectrometer. The purity of the compounds was checked by thin layer chromatography (TLC) on silica gel G coated plates and the spots were visualized by exposure to iodine vapors.

# 4-Substituted phenyl-4'-substituted chalcones (la-e)

To appropriate acetophenone (0.01mol) in ethanol (50ml) was added 4-substituted benzaldehyde (0.01 mol). The mixture was heated to boiling and hot solution of aqueous NaOH (40%) was added with continuous stirring during heating. After some time, a coloured solid was obtained, which was allowed to stand overnight. Then, it was poured into ice-cold water and neutralized with hydrochloric acid (10%). The crystallized product was filtered, washed with cold water, dried and recrystallised from ethanol.

# 1H-3,5-Disubstituted- $\Delta^2$ -pyrazoline (IIa-e) General method

To 4-substituted phenyl-substituted chalcones (Ia-e) (0.01 mol) in ethanol (25 ml) hydrazine hydrate (0.01 mol) was added. The reaction mixture was refluxed for 2 hr, concentrated and allowed to cool. The crystallized product was filtered, dried and recrystallised from ethanol.

### 1*H*-3-(*p*-Chlorophenyl)-5-anisyl- $\Delta^2$ -pyrazoline (IIa)

I.R. (KBr): 3319 (N-H), 1514 (C=N), 1260 (C-O-C), 830 (C-Cl); <sup>1</sup>H NMR (DMSO)  $\delta$ : 6.97-7.89 (d,8H+1H,ArH+NH), 5.10-5.40 (dd,1H,H<sub>A</sub>), 3.76 (m, 3H+1H, OCH<sub>3</sub> + H<sub>M</sub>), 3.49-3.60 (dd,1H,H<sub>x</sub>).

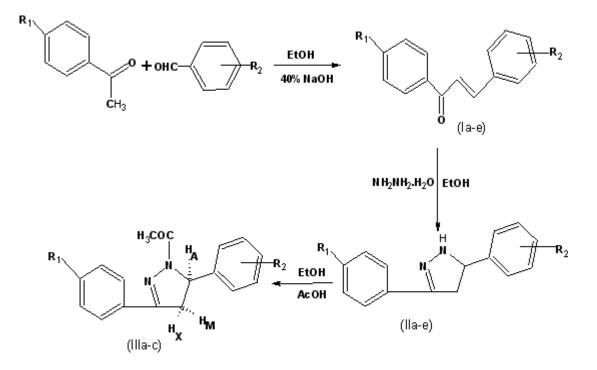
#### 1*H*-3-Phenyl-5-phenyl- $\Delta^2$ -pyrazoline (IIb)

I.R. (KBr): 3455 (N-H), 1569 (C=N); <sup>1</sup>H NMR (DMSO)  $\delta$ : 7.33-7.83 (m,10H+1H, ArH & NH), 5.24-5.28 (dd,1H,H<sub>A</sub>), 3.87-3.94 (dd,1H,H<sub>M</sub>), 3.57-3.63 (dd,1H,H<sub>x</sub>); MS: m/z 223 (M<sup>+</sup>+1), 222(M<sup>+</sup>).

# 1*H*-3-(*p*-Chlorophenyl)-5-phenyl- $\Delta^2$ -pyrazoline (llc)

I.R. (KBr): 3364 (N-H), 1580 (C=N), 830 (C-Cl); <sup>1</sup>H NMR (DMSO)  $\delta$ : 7.10-7.77 (m,10H +1H, ArH & NH), 5.82-5.87 (dd,1H,H\_{\_A}), 3.83-3.91 (dd,1H,H\_{\_M}), 3.21-3.27 (dd,1H,H\_{\_X}).

# 1*H*-3-(*p*-Chlorophenyl)-5-(*p*-chlorophenyl)- $\Delta^2$ pyrazoline (IId)


I.R. (KBr) : 1559 (C=N), 3428 (N-H), 825 (C-CI); <sup>1</sup>H NMR (DMSO)  $\delta$ : 7.28-7.87 (m,8H, ArH&1NH), 5.15-5.21 (dd,1H,H<sub>A</sub>), 3.79-3.88 (dd,1H,H<sub>M</sub>), 3.38-3.57 (dd,1H,H<sub>x</sub>).

# 1*H*-3-(*p*-Chlorophenyl)-5-(*o*-hydroxyphenyl) - $\Delta^2$ pyrazoline (lle)

I.R.(KBr): 3390 (OH), 3370(N-H), 2917(C-H,Ali), 851(C-CI).

### 1-Acetyl-3,5-disubstituted– $\Delta^2$ -pyrazoline(IIIa-c) General method

1H-3,5-disubstituted- $\Delta^2$ -pyrazoline (IIa-c) was dissolved in glacial acetic acid (10 ml).The



solution was refluxed for 2hr, concentrated and allowed to cool. The crystallized product was filtered, dried and recrystallised from ethanol.

# 1-Acetyl-3-(*p*-chlorophenyl)-5-anisyl- $\Delta^2$ -pyrazoline (IIIa)

I.R. (KBr): 1657 (C=O), 1512 (C=N), 1248 (C-OC), 821 (C-Cl); <sup>1</sup>H NMR (DMSO)  $\delta$ : 6.86-7.80 (d,8H,ArH), 5.48-5.52 (dd,1H,H<sub>A</sub> pyrazoline), 3.72 (m,3H+1H,OCH<sub>3</sub>+H<sub>M</sub> pyrazoline), 3.13-3.15 (dd, 1H,H<sub>x</sub> pyrazoline), 2.28 (s,3H,COCH<sub>3</sub>).

#### 1-Acetyl-3-phenyl-5-phenyl-∆<sup>2</sup>-pyrazoline (IIIb)

I.R. (KBr): 3054 (CH, Ar), 2980 (CH, Ali), 1570 (C=N); <sup>1</sup>H NMR (DMSO)  $\delta$ : 7.34-7.92 (m,10H,ArH), 5.20-5.26 (dd,1H,H<sub>A</sub>), 3.89-3.98 (dd,1H,H<sub>M</sub>), 3.63-3.72 (dd,1H,H<sub>X</sub>), 2.50 (s, 3H, COCH<sub>2</sub>).

### 1-Acetyl-3-(*p*-chlorophenyl)-5-phenyl- $\Delta^2$ pyrazoline (IIIc)

I.R.(KBr): 3052 (C-H,Ar), 2962 (C-H,Ali), 1666 (C=O), 1588 (C=N), 821 (C-CI); <sup>1</sup>H NMR (DMSO) δ: 7.16-7.68 (m,9H,ArH), 5.58-5.62  $(dd,1H,H_{A}), \ 3.69-3.76 \ (dd,1H,H_{M}), \ 3.10-3.16 \\ (dd,1H,H_{\chi}), 2.41 \ (s,3H,COCH_{3}); MS: m/z \ 300 \ (M^{+}+2), \\ 299 \ (M^{+}+1), \ 298 \ (M^{+}).$ 

### Biological evaluation Antimicrobial activity

All the synthesized compounds(IIa-e,IIIa-c) were screened for their in vitro antibacterial activity against *E.coli* (gram-negative) and *S.aureus* (gram-positive) and antifungal activity against *A. niger, A. flavus* and *P. citrinum* using cup plate method<sup>3</sup> at 200,100 and 50  $\mu$ g/ml concentration in DMSO. Ciprofloxacin and ketoconazole were used as standard drugs for antibacterial and antifungal activity respectively at 50  $\mu$ g/ml concentration in DMSO (Table 2).

#### Anti-inflammatory activity

Selected synthesized compound (IIa, IIb, IIe, IIIa, IIIc) were subjected for their antiinflammatory activity by carrageenan induced paw edema method of winter *et al*<sup>4</sup> at an oral dose of 10 mg/kg. Indomethacin was used as standard drug at same oral dose of 10 mg/kg (Table 3).

| Compd | R <sub>1</sub> | R <sub>2</sub>     | m.p.°C | Yield% | Mol. formula                                                     |
|-------|----------------|--------------------|--------|--------|------------------------------------------------------------------|
| la    | CI             | p-OCH <sub>3</sub> | 150    | 90     | C <sub>16</sub> H <sub>13</sub> ClO <sub>2</sub>                 |
| lb    | Н              | Н                  | 160    | 90     | C <sub>15</sub> H <sub>12</sub> O                                |
| lc    | CI             | Н                  | 200    | 85     | C <sub>15</sub> H <sub>11</sub> CIO                              |
| ld    | CI             | <i>p</i> -Cl       | 210    | 85     | C <sub>15</sub> H <sub>10</sub> Cl <sub>2</sub> O                |
| le    | CI             | <i>o</i> -OH       | 180    | 90     | $C_{15}H_{11}CIO_2$                                              |
| lla   | CI             | p-OCH₃             | 186    | 80     | C <sub>16</sub> H <sub>15</sub> N <sub>2</sub> OCI               |
| Ilb   | Н              | Н                  | 185    | 85     | $C_{15}H_{14}N_{2}$                                              |
| llc   | CI             | Н                  | 176    | 75     | C <sub>15</sub> H <sub>13</sub> N <sub>2</sub> CI                |
| lld   | CI             | <i>p</i> -Cl       | 190    | 80     | $C_{15}H_{12}N_{2}CI_{2}$                                        |
| lle   | CI             | <i>o</i> -OH       | 140    | 80     | C <sub>15</sub> H <sub>13</sub> N <sub>2</sub> CIO               |
| Illa  | CI             | p-OCH₃             | 136    | 75     | C <sub>18</sub> H <sub>17</sub> N <sub>2</sub> O <sub>2</sub> CI |
| IIIb  | Н              | н                  | 180    | 70     | C <sub>17</sub> H <sub>16</sub> N <sub>2</sub> O                 |
| IIIc  | CI             | Н                  | 122    | 70     | C <sub>17</sub> H <sub>15</sub> N <sub>2</sub> OCI               |

 Table 1: Physical characterization data of synthesized compounds

All compounds showed satisfactory elemental analysis

% inhibition of edema is measured according to the following method:-

| = | (Finalfoot volume of control - Finalfoot volume of standard/test) ×100 |  |  |  |  |
|---|------------------------------------------------------------------------|--|--|--|--|
| - | Final foot volume of control                                           |  |  |  |  |

### **Analgesic activity**

The compound which were tested for their

anti-inflammatory activity were further tested for their analgesic activity at an oral dose of 10 mg/kg. The Eddy & Leimbach et al hot plate method<sup>5</sup> was used to evaluate the analgesic activity. Indomethacin was used as standard drug at same oral dose (Table 3).

| Compd       | Concentration | Zone of inhibition ( in mm) |          |         |            |            |  |
|-------------|---------------|-----------------------------|----------|---------|------------|------------|--|
|             | (µg/ml)       | Antibacterial               |          |         | Antifungal |            |  |
|             |               | E.coli                      | S.aureus | A.niger | A.flavus   | P.citrinum |  |
| lla         | 200           | -                           | 14       | 15      | 19         | -          |  |
|             | 100           | -                           | 13       | 15      | 19         | -          |  |
|             | 50            | -                           | 11       | 9       | 14         | -          |  |
| llb         | 200           | 10                          | 14       | 19      | 17         | 23         |  |
|             | 100           | -                           | 12       | 15      | 15         | 18         |  |
|             | 50            | -                           | 10       | 15      | 15         | 18         |  |
| llc         | 200           | 10                          | 12       | 17      | 21         | 21         |  |
|             | 100           | -                           | 10       | 16      | 21         | 20         |  |
|             | 50            | -                           | 8        | 16      | 17         | 18         |  |
| lld         | 200           | 14                          | -        | 18      | 19         | -          |  |
|             | 100           | 13                          | -        | 16      | 17         | -          |  |
|             | 50            | 11                          | -        | 12      | 17         | -          |  |
| lle         | 200           | 8                           | 12       | 20      | 16         | -          |  |
|             | 100           | -                           | 10       | 18      | 15         | -          |  |
|             | 50            | -                           | 10       | 17      | 14         | -          |  |
| Illa        | 200           | 10                          | 8        | 12      | 17         | 15         |  |
|             | 100           | 8                           | 7        | 11      | 15         | 14         |  |
|             | 50            | 8                           | 7        | 11      | 15         | 14         |  |
| IIIb        | 200           | 8                           | 12       | 17      | 17         | 16         |  |
|             | 100           | 8                           | 10       | 15      | 16         | 15         |  |
|             | 50            | -                           | -        | 12      | 15         | 14         |  |
| IIIc        | 200           | 16                          | -        | 20      | 20         | 19         |  |
|             | 100           | 12                          | -        | 17      | 18         | 18         |  |
|             | 50            | 10                          | -        | 15      | 14         | 18         |  |
| Ciprofloxad | cin 50        | 19                          | 22       | xx      | ××         | xx         |  |
| Ketoconaz   | ole 50        | ××                          | ××       | 20      | 20         | 22         |  |

#### Table 2: Antimicrobial activity of synthesized compounds

(-) no zone of inhibition; (xx) not tested

610

| Compd.       | Anti-inflammatory<br>activity #                  | Analgesic activity ##              |                                          |                |  |
|--------------|--------------------------------------------------|------------------------------------|------------------------------------------|----------------|--|
|              | % inhibition of<br>edema after 4hr<br>Mean ± SEM | Pre-treatment<br>(sec)<br>(0 min.) | Post treatment<br>(sec)<br>(After 4 hrs) | %<br>Analgesia |  |
| Indomethacin | 80.85 ± 1.875 <sup>*</sup>                       | 8.05 ± 0.31                        | 8.68 ± 0.31+                             | 81.63          |  |
| lla          | 51.10 ± 1.125 <sup>*</sup>                       | $4.56 \pm 0.36$                    | 6.18 ± 0.38**                            | 53.00          |  |
| Ilb          | 46.22 ± 2.874*                                   | 5.13 ± 0.24                        | 6.41 ± 0.33***                           | 53.38          |  |
| lle          | 39.99 ± 2.036*                                   | 7.75 ± 0.36                        | 8.52 ± 0.33 <sup>+</sup>                 | 77.36          |  |
| Illa         | 61.66 ± 2.632*                                   | 5.48 ± 0.34                        | 6.59 ± 0.27**                            | 67.74          |  |
| lllc         | 51.99 ± 3.443 <sup>*</sup>                       | $5.06 \pm 0.37$                    | $6.08 \pm 0.36^{+}$                      | 70.23          |  |

Table 3: Anti-inflammatory and analgesic activity of compounds

# Data of test compounds was compared w.r.t. std 'P< 0.0001; Data were analyzed by unpaired student 't' test for n=6 ## Data was relative to pre-treatment and analyzed by paired student 't' test for n=6 P< 0.0001; P< 0.001; P< 0.001; P< 0.001

#### **RESULTS AND DISCUSSION**

The target cpmpounds (Ia-e,IIa-e,IIIa-c)were synthesized through the route depicted in the scheme 1.The structure of the synthesized compounds was confirmed on the basis of IR,<sup>1</sup>H-NMR, Mass spectral data and elemental analysis. The investigation of antibacterial screening data revealed that all the tested compounds (IIa-e, IIIa-c) showed noticeable degree of bacterial inhibition. Among the synthesized compounds IIIc & IId showed highest activity against *E.coli* at 200 µg/ml, whereas compound IIb & IIa showed highest zone of inhibition against *S.aureus* at 200 µg/ml.

The investigation of antifungal activity data revealed that all the synthesized compounds(IIae,IIIa-c) exhibited considerabe inhibitory action .All the tested compounds except IIa, IId & IIe showed antifungal activity against all the fungal strain's used at all the concentration. Compound IIa, IId, IIe showed antifungal activity against *A.niger* & *A.flavus* at 200 µg/ml.Compound IIIc showed comparable antifungal activity to that standard drug ketoconazole (50 µg/ml) against all the strains used at 200 µg/ml. Compound IIb showed more zone of inhibition at 200 µg/ml than standard drug against *P.citrinum*, whereas compound IIc showed more zone of inhibition against *A.flavus* & comparable activity against *P.citrinum* at 200 & 100  $\mu$ g/ml than that of standard.

Some of the synthesized pyrazoline (IIa,IIb,IIe,IIIa,IIIc) have been evaluated for antiinflammatory activity. The synthesized compounds showed anti-inflammatory activity in the range of 39.99-61.66% whereas standard drug showed 80.85% inhibition in paw edema.

Some of the synthesized pyrazoline (IIa,IIb,IIe,IIIa,IIIc) have also been evaluated for analgesic activity. Compound IIe showed the highest activity (77.36%) comparable to standard drug (81.63%). Rest of the compounds showed moderate to good analgesic activity (53.00-70.23%).

### ACKNOWLEDGEMENTS

The authors are thankful to the Head, Department of Pharmaceutical Chemistry, for providing laboratory facilities and to the Head, RSIC-CDRI, Lucknow, for spectral analysis. One of the authors (SJG) is grateful to UGC, New Delhi for the award of Junior Research Fellowship.

### REFERENCES

- 1. M.S.Karthikeyan, B.S.Holla and N.S.Kumari, *Eur J Med Chem*, **42**: 30 (2007).
- 2. P.J.Parmar, S.I.Rajput and A.G.Doshi, *Asian J Chem*, **17**(4): 2539 (2005).
- 3. Barry A L, *The antimicrobial susceptibility test*. *Principle and practices*, ed Illuslea and

Febiger, (Philadelphia,USA) 180(1976) ; *Biol Abstr*, **64**: 25183 (1977).

- 4. Winter C A, Risley E A & Nuss G W, *Proc Soc Exp Biol Med*, **111**: 544 (1962).
- G.S.B.Viana, M.A.M. Bandeira, and F.J.A Matos, *Phytomedicine*, **10**: 190 (2003).