Synthesis of bioactive molecule fluoro benzothiazole comprising quinazolinyl oxadiazoles derivative for biological and pharmacological screening

GAJRAJ SHARMA, G.M. SREENIVASA and E. JAYACHANDRAN*

P.G. Department of Pharmaceutical Chemistry. SCS College of Pharmacy, Harapanahalli-583 131 (India)

(Received: February 08, 2008; Accepted: April 24, 2008)

ABSTRACT

Various substituted 3-{6-fluoro-7-(substituted)-1,3-benzothiazol-2-yl-1-[(4-acetyl-5-methyl-5-phenyl-4,5-dihydro-1,3,4-oxadiazol-2-yl)methyl]-2-thioxo-2,3-dihydroquinazoline-4 (1H) -one and 3-{(6-fluoro -7- (substituted) - 1,3 -benzothiazol-2-yl-1-({4-acetyl-5-[4-(dimethylamino)phenyl]-4,5-dihydro-1,3,4-oxadiazol-2-yl}methyl) -2- thioxo -2,3- dihydroquinazolin -4 (1H)-one. containing different functional groups have been synthesized by condensing anthranilic acids with substituted 2-aminobenzothiazoles in dry pyridine and then by condensing with ethylchloroacetate in presence dry acetone and K_2CO_3 . The identity of compounds were confirmed on the basis of their spectral (UV, IR, 'H NMR and MASS) data. Further, they have been screened for their antimicrobial activities.

Key words: Fluorine, benzothiazole, quinazoline (Cyclo addition reaction) Oxadizole (Schiff base).

INTRODUCTION

The chemistry and pharmacology of quinazoline have been of great interest because quinazoline derivatives possess various biological activities. This include antimicrobial¹⁻⁵, anticonvulsant⁶⁻⁷, antineoplastic, analgesic and antiinflammatory⁸ etc.

Therefore in present work we have prepared quinazoline incorporate with fluoro substituted benzothiazole.

The oxadiazole drugs were the first effective chemotherapeutic agents to be employed systematically for the prevention and cure of bacterial infection in human beings. Benzothiazole with oxadiazole groups were reported to possess various pharmacological activity of clinical importance. Oxadiazole derivatives are well known to have number of biological and antimicrobial⁹⁻¹² activities, this also having antiinflammatory¹³, anthelmentic and anticonvulsant activities.

MATERIAL AND METHODS

Melting point was determined by open capillary tube method and are uncorrected. T.L.C was run on silica gel G plates using butanol, ethyl acetate and chloroform (1:2:1) as developing solvent for the purity of the compounds. I.R. Spectra were recorded on Shimadzu FTIR Spectrophotometer by using NUJOL MULL technique.

All the compounds synthesized were screened for antibacterial and antifungal activities at two different concentrations (50µg/ml, 100µg/ml) against *Staphylococcus aureus*, *Streptococci*, *Escherchia coli*, *Ps. aureus* and *Candida albicans*, Aspergillus niger by cup plate method using Procaine Penicillin, Streptomycin and Griseoflavin respectively as standards. The compounds showed considerable activity against all species tested at 50μ g/ml, 100μ g/ml. Fluoro substituted benzothiazoles series was tested for antibacterial activity. Were calculated which are shown in the table. The compounds showing activity index more than 0.7 were considered to be significantly active.

General synthesis of 2-amino-*N*-(7-chloro-6-fluoro-1,3-benzothiazol-2-yl)benzamide

Anthranilic acid (4.0 g, 0.029 mol) and 2amino-benzothiazole (5.22 g, 0.026 mol), were dissolved in dry pyridine (20 ml, 0.25 mol). The solution was refluxed for 8 hr. The solution was cooled and poured in water. The separated mass was filtered, washed with water and dried. The product was recrystallized using ethanol.

General synthesis of 3-(7-chloro-6-fluoro-1,3b e n z o t h i a z o l - 2 - y l) - 2 - t h i o x o - 2,3 -

dihydroquinazolin- 4(1H)-one

To an ice cold solution of potassium hydroxide (0.1 g, 0.02 mol) in dry ethanol (50 ml), 2-amino-N-(2'-benzothiazolyl 6'-fluoro-7'-chloro) benzamide (2.6 g, 0.008 mol) and carbon disulphide (6.0 ml, 0.078 mol) was added with stirring. The solution was refluxed for 10 hr and cooled. The quantity of solvents was reduced by distillation. The separated solid was filtered, washed with dry ether and dried. The product was recrystallized from ethanol.

General synthesis of ethyl [3-(7-chloro-6-fluoro-1,3-benzothiazol-2-yl)-4-oxo-2-thioxo-3,4dihydroquinazolin-1(2*H*)-yl]acetate

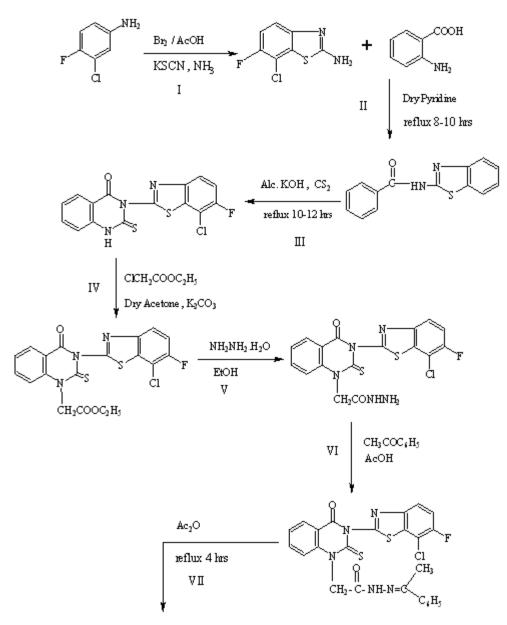
A mixture of step III (0.01 mole), ethyl chloro acetate (0.1 mole) and potassium carbonate (0.15 mole) in absolute alcohol (120 ml) was refluxed for 7-8 hours on water bath. The reaction mixture was filtered hot and the excess solvent was distilled off from the filtrate. The crude ester IV thus obtained was purified by recrystallisation from ethanol, yield 84%.

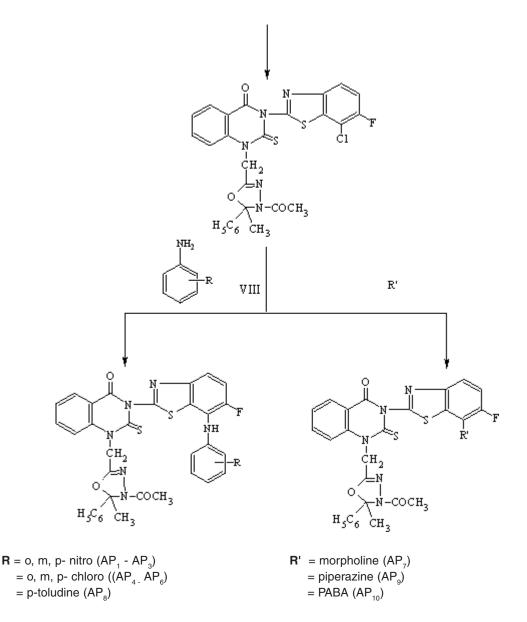
S No.	Comp. code	M.P./ B.PºC	% yield	Mol. Form	M.Wt.	C%	Η%	N%
1	AP ₁	242-244	81%	C ₃₃ H ₂₄ O ₅ S ₂ N ₇ F	681	58.1	3.5	14.4
2	AP,	225-227	79%	C ₃₃ H ₂₄ O ₅ S ₂ N ₇ F	681	58.1	3.5	14.4
3	AP	235-237	68%	C ₃₃ H ₂₄ O ₅ S ₂ N ₇ F	681	58.1	3.5	14.4
4	AP ₄	230-232	70%	C ₃₃ H ₂₄ O ₃ S ₂ N ₆ FCI	670.5	59.1	4.1	12.5
5	AP ₅	239-241	80%	C ₃₃ H ₂₄ O ₃ S ₂ N ₆ FCI	670.5	59.1	4.1	12.5
6		228-230	77%	C ₃₃ H ₂₄ O ₃ S ₂ N ₆ FCI	670.5	59.1	4.1	12.5
7	AP ₇	233-235	78%	C ₃₁ H ₂₇ O ₄ S ₂ N ₆ F	630	59.1	4.3	13.3
8	AP	224-226	75%	C ₃₄ H ₂₇ O ₃ S ₂ N ₆ F	651	62.7	4.1	12.9
9	AP ₉	232-234	77%	C ₃₁ H ₂₈ O ₃ S ₂ N ₇ F	629	59.1	4.4	15.6
10		222-224	83%	C ₃₄ H ₂₅ O ₅ S ₂ N ₆ F	680	60.0	3.7	12.3
11	BZ ₁	225-227	77%	C ₃₄ H ₂₃ O ₅ S ₂ N ₈ F	706	57.8	3.2	15.8
12	BZ ₂	219-221	75%	C ₃₄ H ₂₃ O ₅ S ₂ N ₈ F	706	57.8	3.2	15.8
13	BZ_3	225-227	84%	C ₃₄ H ₂₃ O ₅ S ₂ N ₈ F	706	57.8	3.2	15.8
14	BZ_4	222-224	79%	C ₃₄ H ₂₃ O ₃ S ₂ N ₇ FCI	695.5	58.7	3.3	14.1
15	BZ₅	221-223	81%	C ₃₄ H ₂₃ O ₃ S ₂ N ₇ FCI	695.5	58.7	3.3	14.1
16	BZ	215-217	82%	C ₃₄ H ₂₃ O ₃ S ₂ N ₇ FCI	695.5	58.7	3.3	14.1
17	BZ ₇	217-219	77%	C ₃₄ H ₂₂ O ₃ S ₂ N ₇ FCl ₂	731	55.9	3.0	13.4
18	ΒZ ₈	225-227	76%	C ₃₄ H ₂₂ O ₃ S ₂ N ₇ FCl ₂	731	55.9	3.0	13.4
19	BZ ₉	222-224	83%	C ₃₅ H ₂₆ O ₄ S ₂ N ₇ F	691	60.7	3.7	14.1
20	BZ ₁₀	224-226	81%	$C_{35}H_{24}O_5S_2N_7F$	705	59.6	3.4	13.9

Table 1: Analytical data

430

s No.	Spec No.	Compound code	Ar-NH stertcm ⁻¹	ArC=C cm ⁻¹	C=N cm⁻¹	C-F cm ^{.1}	C=O cm₁	C=S cm₁	C-C cm ^{.1}	NO ² cm ⁻¹	CH دس ^ا	C-O-C cm ^{.1}
. -	03	CFA	3433	1494	,	1259	,	,	762	.	.	.
ci	04	2AB	3479	1460	1646	1193			685			ı
ю.	05	AP	3238	1485	1610	1180	1670	1540	755		1075	1035
4.	06	BZ	3220	1450	1580	1115	1590	1570	725		1078	1045
<u></u> .	07	AP1	3240	1480	1612	1170	1680	1535		745	1075	1035
9.	08	AP2	3245	1475	1605	1155	1675	1546		760	1078	1030
7.	60	AP3	3248	1475	1610	1165	1670	1540		755	1072	1030
œ.	10	AP4	3245	1480	1605	1167	1675	1544	760		1075	1035
9.	1	AP5	3240	1482	1614	1164	1672	1530	753		1070	1040
10.	12	AP6	3240	1480	1605	1175	1670	1540	770		1073	1025
11.	13	AP7	3235	1485	1605	1170	1675	1545		,	1075	1032
12.	14	AP8	3240	1475	1610	1165	1660	1540			1092	1035
13.	15	AP9	3233	1480	1605	1168	1675	1540		,	1083	1042
14.	16	AP10	3245	1480	1607	1170	1670	1545			1080	1046
15.	17	BZ1	3240	1475	1603	1180	1670	1575		725	1075	1040
16.	18	BZ2	3235	1475	1601	1165	1675	1565		715	1060	1035
17.	19	BZ3	3242	1470	1600	1168	1675	1570		723	1070	1038
18.	20	BZ4	3240	1465	1602	1175	1670	1575	720	,	1065	1030
19.	21	BZ5	3235	1480	1604	1170	1660	1575	715	,	1075	1025
20.	22	BZ6	3240	1490	1605	1170	1670	1560	710	,	1085	1020
21.	23	BZ7	3233	1490	1605	1175	1675	1570	740	,	1090	1030
22.	24	BZ8	3235	1484	1603	1165	1660	1565	745	,	1085	1035
23.	25	BZ9	3238	1480	1602	1165	1672	1575		,	1080	1033
24.	26	BZ10	3235	1485	1603	1175	1665	1568			1082	1030


431


General synthesis of 2-[3-(7-chloro-6-fluoro-1,3benzothiazol-2-yl)-4-oxo-2-thioxo-3,4dihydroquinazolin-1(2*H*)-yl]acetohydrazide

A mixture of step IV (0.01 mole) and hydrazine hydrate (4 ml) in absolute alcohol (30 ml) was refluxed for 5 hours on water bath. Cool the solution at room temperature and filter it then recrystallised from ethanol, yield 54%.

General synthesis of 3- (7- chloro – 6 – fluoro -1,3- benzothiazole-2-yl)-N-(1-phenylethylidene) - 4-oxo- 2-thioxo-3,4-dihydroquinazolin-1(2*H*)carbohydrazide

A mixture of step V (0.01 mole), and acetophenone (0.01 mole) in glacial acetic acid (20 ml), was refluxed for 1 hour on an oil bath. Distilled off excess solvent and the cooled reaction mixture was poured into ice cold water and the solid was filtered. The dried solid was recrystallised from ethanol-DMF.

General synthesis of 3-(7-chloro-6-fluoro-1,3benzothiazol-2-yl)-1-[(4-acetyl-5-methyl -5phenyl -4,5- dihydro -1,3,4- oxadiazol -2- yl) methyl]-2- thioxo -2,3-dihydroquinazoline-4(1H)one

A mixture of step VI (0.005 mole) and acetic anhydride (10ml) was refluxed for 4 hours. The excess acetic anhydride was distilled off and the residue was poured into ice cold water. The solid was filtered and recrystallised from ethanol-DMF.

General synthesis of 3-{6-fluoro-7-(substituted)-1,3-benzothiazol-2-yl}-1-[(4-acetyl-5-methyl-5phenyl-4,5-dihydro-1,3,4-oxadiazol-2-yl)methyl]-2-thioxo-2,3-dihydroquinazoline-4(1H)-one

The Product of step VII (0.002 mole) was treated with equimolar quantity (0.002 mole) of various substituted aromatic anilines like nitro

aniline, chloro aniline, PABA, morpholine, piperazine etc. in presence of DMF (dimethyl formamide, 30 ml) and refluxed for 2 hours on an oil bath. The reaction mixture was cooled and then poured into crushed ice. The solid separated was filter off, dried and recrystallised from benzene and absolute alcohol (1:1).

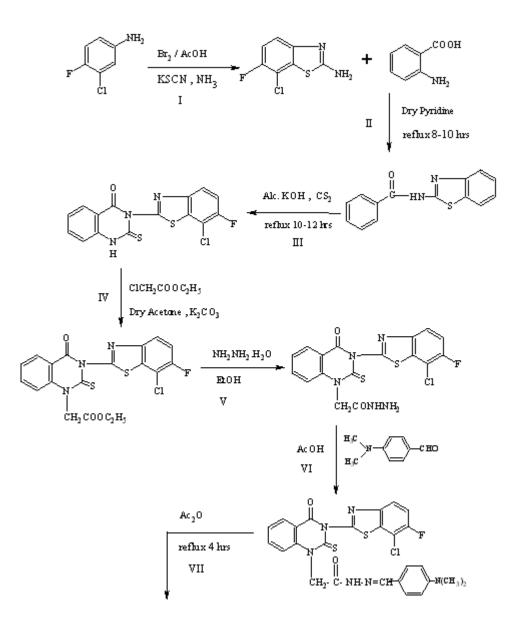
General synthesis of 3- (7- chloro -6 - fluoro -

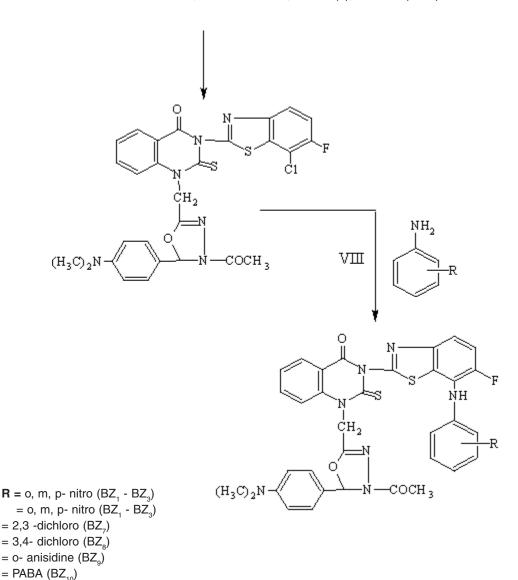
1,3- benzothiazole-2-yl) -N - [(1-dimethylamino) benzylidene] -4- oxo -2- thioxo -3,4 dihydroquinazolin -1 (2*H*)-carbohydrazide

A mixture of step V (0.01 mole), and 4dimethylaminobenzaldehyde (0.01 mole) in glacial acetic acid (20 ml), was refluxed for 1 hour on an oil bath. Distilled off excess solvent and then cooled the reaction mixture was poured into ice cold water and the solid was filtered. The dried solid was recrystallised from ethanol-DMF.

S No.	Spectra no.	Compound code	Hydrogen	δ (ppm)	Multiplity	Solvent
1	27	AP ₃	-10H-Ar-H	6.6-8.0	Multiplet	DMSO
			-3H-CH ₃	2.1	Singlet	
			-3H-COCH₃	2.9	Singlet	
			-H-NH	5.5	Singlet	
2	28	AP ₆	-10H-Ar-H	7.2-7.7	Multiplet	DMSO
			-H-CH ₃	2.2	Singlet	
			$-H-COCH_3$	2.9	Singlet	
3	29	AP ₇	-6H-Ar-H	7.2-7.7	Multiplet	DMSO
			$-H-CH_3$	2.2	Singlet	
			-H-COCH ₃	2.8	Singlet	
4	30	AP ₉	-6H-Ar-H	7.2-7.7	Multiplet	DMSO
			$-H-CH_3$	2.1	Singlet	
			-H-COCH ₃	2.9	Singlet	
5	31	BZ ₂	-10H-Ar-H	6.6-8.3	Multiplet	$CDCI_3$
			$-H-CH_3$	2.2	Singlet	
			-H-COCH ₃	2.8	Singlet	
6	32	BZ ₇	-6H-Ar-H	6.6-7.7	Multiplet	CDCI ₃
			-H-CH₃	2.2	Singlet	
			-H-COCH ₃	3.0	Singlet	
7	33	ΒZ ₉	-10H-Ar-H	7.2-7.7	Multiplet	CDCI ₃
			-H-CH ₃	2.2	Singlet	
			-H-COCH ₃	3.2	Singlet	
8	34	BZ ₁₀	-10H-Ar-H	6.6-7.7	Multiplet	CDCl ₃
			-H-CH ₃	2.2	Singlet	
			-H-COCH ₃	3.0	Singlet	
			-H-COOH	9.7	Singlet	

Table 3: NMR Spectral Data of Compounds AP₃, AP₆, AP₇, AP₉, BZ₂, BZ₇, BZ₉, BZ₁₀,


434


Scheme II

General synthesis of 3-(7-chloro-6-fluoro-1,3benzothiazol-2-yl)-1-({4-acetyl-5-[4-(dimethylamino)phenyl]-4,5-dihydro-1,3,4oxadiazol-2-yl}methyl)-2-thioxo-2,3dihydroquinazoline-4(1H)-one

A mixture of step VI (0.005 mole) and acetic anhydride (10ml) was refluxed for 4 hours. The excess acetic anhydride was distilled off and the residue was poured into ice cold water. The solid was filtered and recrystallised from ethanol-DMF. General synthesis of 3- { (6- fluoro -7-(substituted) -1,3- benzothiazole -2-yl}-1-({4acetyl-5-[4-(dimethylamino)phenyl]-4,5-dihydro-1,3,4-oxadiazol-2-yl}methyl)-2-thioxo-2,3dihydroquinazolin-4(1H)-one

The Product of step VII (0.003 mole) was treated with equimolar quantity (0.003 mole) of various substituted aromatic anilines like nitro aniline, chloro aniline, PABA, anisidine etc. in presence of DMF (dimethyl formamide, 30 ml) and refluxed for 2 hours on an oil bath. The reaction

Scheme 2

mixture was cooled and then poured into crushed ice. The solid separated was filter off, dried and recrystallised from benzene and absolute alcohol (1:1).

RESULTS AND DISCUSSION

Anti-bacterial activity

Synthesis and Pharmacological screening of 3-{6-fluoro-7-(substituted)-1,3-benzothiazol -2yl}-1-[(4-acetyl-5-methyl-5-phenyl-4,5-dihydro $\label{eq:2.1} 1,3,4-oxadiazol-2-yl)methyl]-2-thioxo-2,3-dihydroquinazolin-4(1H)-one and 3-{(6- fluoro-7-(substituted) -1,3-benzothiazol-2-yl}-1-({4-acetyl-5-[4-(dimethylamino)phenyl]-4,5-dihydro-1,3,4-oxadiazol-2-yl}methyl)-2-thioxo-2,3-dihydroquinazolin-4(1H)-one were tested for the antibacterial activity against following bacterias;$

a) (i) *S.aureus*,

(ii) Streptococci (gram +ve) and

b) (iii) *E.coli*,

(iv) Pseudomonas aureus (gram -ve).

The test compounds AP₃, AP₄, AP₇, AP₁₀ and BZ_1 , BZ_4 , BZ_7 , BZ_9 showed moderate antibacterial activity against S.aureus (gram +ve) compare to standard drug Procaine Penicillin.

Compounds AP₁, AP₂, AP-₅, and BZ₄, BZ₈, BZ_a showed promising antibacterial activity against, E. coli (gram -ve) compared to standard drugs and streptomycin.

Compounds AP₁, AP₃, AP₆, AP₉, and BZ₃, BZ₅, BZ₇, BZ₈ showed promising antibacterial activity against, gram +ve (Streptococci) at both lower and higher concentration (50 µg/ml and 100 µg/ml).

Compound AP_4 , $AP_6 AP_7$, AP_{10} and BZ_2 , BZ_4 BZ₅ showed moderate activity against gm -ve (Pseudomonas aureus) at both lower and higher concentration compare to standard drug Streptomycin.

S.	Name of the			hibition (in mm)	
No.	compounds	Staphylococcus 50µg	100µg	Escheric 50µg	100µg
1.	Procaine penicillin	20	24	-	-
2.	Streptomycin	-	-	20	25
3.	AP ₁	13 (0.65)	16 (0.66)	14 (0.70)	18 (0.72)
4.	AP ₂	14 (0.70)	15 (0.62)	14 (0.70)	17 (0.68)
5.	AP ₃	14 (0.70)	19 (0.79)	13 (0.65)	16 (0.64)
6.	AP ₄	17 (0.85)	18 (0.75)	12 (0.60)	15 (0.60)
7.	AP ₅	12 (0.60)	17 (0.70)	15 (0.75)	18 (0.72)
8.	AP ₆	14 (0.70)	17 (0.70)	13 (0.65)	15 (0.60)
9.	AP ₇	15 (0.75)	19 (0.79)	12 (0.60)	16 (0.64)
10.	AP ₈	13 (0.65)	16 (0.66)	12 (0.60)	15 (0.60)
11.	AP ₉	15 (0.75)	18 (0.75)	14 (0.70)	15 (0.60)
12.	AP ₁₀	16 (0.80)	18 (0.75)	13 (0.65)	16 (0.64)
13.	BZ ₁	14 (0.70)	18 (0.75)	13 (0.65)	16 (0.64)
14.	BZ ₂	12 (0.60)	16 (0.66)	12 (0.60)	17 (0.68)
15.	BZ ₃	14 (0.70)	17 (0.70)	13 (0.65)	15 (0.60)
16.	BZ ₄	16 (0.80)	16 (0.66)	14 (0.70)	16 (0.64)
17.	BZ ₅	14 (0.70)	18 (0.75)	11 (0.55)	15 (0.60)
18.	BZ ₆	15 (0.75)	17 (0.70)	13 (0.65)	16 (0.64)
19.	BZ ₇	14 (0.70)	19 (0.79)	11 (0.55)	15 (0.60)
20.	BZ ₈	15 (0.75)	17 (0.70)	13 (0.65)	18 (0.72)
21.	ΒΖ ₉	17 (0.85)	17 (0.70)	14 (0.70)	17 (0.68)
22.	BZ ₁₀	13 (0.65)	18 (0.75)	12 (0.60)	15 (0.60)

Table 4: Antibacterial activity

Test Compound "ActivityIndex =

Standard Compound

Anti-fungal activity

The above screened compounds were tested for antifungal activity against *Candida albicans* and *Aspergillus niger*.

Among the compounds tested; AP_{2} , AP_{5} , AP_{9} and BZ_{2} , BZ_{3} showed good activity against

Candida albicans at both concentrations compare to standard Griseofulvin.

 AP_4 , AP_5 , AP_7 , AP_{10} , and BZ_5 , BZ_7 , BZ_9 showed significant activity against *Aspergillus niger* compared to standard Griseofulvin.

S. No.	Name of the compounds	Mean z <i>Strepto</i> 50µg	one of inhibition <i>cocci</i> 100µg	(in mm)* <i>Pseudomonas</i> 50µg	aureus 100μg
1.	Procaine penicillin	20	24	-	-
2.	Streptomycin	-	-	20	23
3.	AP ₁	13 (0.65)	18 (0.75)	14 (0.70)	16 (0.69)
4.	AP ₂	14 (0.70)	15 (0.62)	13 (0.65)	16 (0.69)
5.	AP ₃	16 (0.80)	17 (0.70)	14 (0.70)	17 (0.73)
6.	AP ₄	13 (0.65)	16 (0.66)	15 (0.75)	19 (0.79)
7.	AP ₅	14 (0.70)	16 (0.66)	13 (0.65)	15 (0.65)
8.	AP ₆	13 (0.65)	19 (0.79)	16 (0.80)	17 (0.73)
9.	AP ₇	12 (0.60)	15 (0.62)	13 (0.65)	18 (0.78)
10.	AP ₈	14 (0.70)	17 (0.70)	13 (0.65)	16 (0.69)
11.	AP ₉	15 (0.75)	18 (0.75)	14 (0.70)	16 (0.69)
12.	AP ₁₀	13 (0.65)	15 (0.62)	15 (0.75)	18 (0.78)
13.	BZ ₁	14 (0.70)	17 (0.70)	12 (0.60)	16 (0.69)
14.	BZ ₂	14 (0.70)	17 (0.70)	15 (0.75)	18 (0.78)
15.	BZ ₃	16 (0.80)	19 (0.79)	14 (0.70)	17 (0.73)
16.	BZ ₄	13 (0.65)	16 (0.66)	16 (0.80)	15 (0.65)
17.	BΖ ₅	13 (0.65)	18 (0.75)	15 (0.75)	19 (0.79)
18.	BZ ₆	14 (0.70)	18 (0.75)	13 (0.65)	17 (0.73)
19.	BZ ₇	16 (0.80)	16 (0.66)	13 (0.65)	16 (0.69)
20.	BZ ₈	15 (0.75)	16 (0.64)	14 (0.70)	15 (0.65)
21.	BZ ₉	13 (0.65)	17 (0.70)	13 (0.65)	15 (0.65)
22.	BZ ₁₀	11 (0.55)	15 (0.62)	13 (0.65)	16 (0.69)

 $Test \, C \, \text{ompound}$

*Activity Index = Standard Compound

S	Name of the		Mean zone of i	nhibition (in mm) [;]	k
No.	coompounds	Candie	da albicans	Aspergillu	
		50µg	100µg	50µg	100µg
1.	Griseofulvin	20	25	20	25
2.	AP ₁	12 (0.60)	15 (0.60)	11 (0.55)	15 (0.60)
3.	AP ₂	14 (0.70)	18 (0.72)	13 (0.65)	16 (0.64)
4.	AP ₃	13 (0.65)	17 (0.68)	12 (0.60)	15 (0.60)
5.	AP ₄	13 (0.65)	17 (0.68)	14 (0.70)	19 (0.76)
6.		15 (0.75)	16 (0.64)	15 (0.75)	18 (0.72)
7.	AP ₆	12 (0.60)	15 (0.60)	12 (0.60)	17 (0.68)
8.	AP ₇	10 (0.50)	14 (0.56)	16 (0.80)	16 (0.64)
9.	AP	11 (0.55)	13 (0.52)	13 (0.65)	19 (0.76)
10.	AP	11 (0.55)	14 (0.56)	12 (0.60)	16 (0.64)
11.	AP ₁₀	13 (0.65)	15 (0.60)	15 (0.75)	14 (0.56)
12.	BZ,	12 (0.60)	16 (0.64)	11 (0.55)	16 (0.64)
13.	BZ ₂	14 (0.70)	17 (0.68)	12 (0.60)	13 (0.52)
14.	BZ	14 (0.70)	18 (0.72)	12 (0.60)	16 (0.64)
15.	BZ	10 (0.50)	15 (0.60)	14 (0.70)	15 (0.60)
16.	BZ ₅	12 (0.60)	13 (0.52)	13 (0.65)	19 (0.76)
17.	BZ ₆	11 (0.55)	14 (0.56)	14 (0.70)	15 (0.60)
18.	BZ ₇	13 (0.65)	16 (0.64)	10 (0.50)	18 (0.72)
19.	BZ	13 (0.65)	15 (0.60)	11 (0.55)	15 (0.60)
20.	ΒΖ _g	10 (0.50)	13 (0.52)	15 (0.75)	18 (0.72)
21.	BZ ₁₀	12 (0.60)	14 (0.56)	13 (0.65)	17 (0.68)

Table 6: Antifungal activity

Test Compound

*Activity Index =

Standard Compound

ACKNOWLEDGEMENTS

The authors are thankful to Shri. Sha. Bra. Chandramouleshwara Shivacharya Swamiji, President, Sri. T. M. Chandrashekaraiah M.A. Secretary, T.M.A.E. Society Harapanahalli. for providing necessary facilities through the Principal, S.C.S. college of Pharmacy, Harapanahalli to carryout this work.

REFERENCES

- Patel NB, Lilakar JD. Synthesis of newsubstituted-4(3H)-quinazolinones and their antibacterial activity. *Indian J Heterocyclic Chem* 11: 85-86 (2001).
- Shivarama Holla B, Padmaja P, Shivananda MK, Akbarali PM. Synthesis and antibacterial activity of nitro-furylvinylquinazolinones. *Indian J Chem* 37B: 715-16 (1998).
- Afsah SA, Jawaid Ahmad, Purbey R, Kumar A. Synthesis of some new heterocyclic systems bearing 2-methylquinazolin-4(3H)ones and their antimicrobial effects. *Oriental J Chem* 18(3): 593-94 (2002).

 Varsha Jatav, Jain SK, Kashaw SK, Mishra P. Synthesis and antimicrobial activity of Nover 2- methyl - 3- (12 32 42 - thiadiazoyl) -4-(3H) quinazolinones. Indian J Pharmaceutical Sci 360-63 (2006).

- Gangwal NA, Kothwade UR, Galande AD, Pharande DS, Dhake AS. Synthesis of 1substituted-2-chloromethyl-4-(1H)quinazolinones as antimicrobial agents. *Indian J Heterocyclic Chem* 10: 291-94 (2001).
- Archana, Srivastava VK, Ramesh Chandra, Ashok Kumar. Synthesis of potential quinazolinonyl pyrazolines and quinazolinyl isoxazolines as anticonvulsant agents. *Indian J Chem* **41**B: 2371-75 (2002).
- Amar R Desai, Kishor R Desai. Niementowski reaction microwave induced and conventional synthesis of quinazolinones and 3-methyl-1H-5-pyrazolones and their antimicrobial activity. ARKIVOC 2005 (xiii), (AKRAT USA, Inc) 98-08.
- Rama Sarma GVS, John Thomas, Murugan V, Elango K. Nicotinyl incorporated quinazolinonyl thiadiazoles as possible NSAIDS. Indian J Heterocyclic Chem 9: 151-52 (1999)
- 9. Mashooq.A.Bhat, Khan S.A, Siddiqui N.

Synthesis and antibacterial activity of coumarin incorporated 1,3,4-oxadiazoles. *Indian J Heterocyclic Chem* **14**: 271-72 (2005).

- Khan MSY, Khan RM, Sushmadrabhu. Anticonvulsant and antibacterial activity of some new 1,3,4-oxadiazole derivatives. *Indian J Heterocyclic Chem* 11: 119-22 (2001).
- 11. Dharmveer Singh, Atma Ram Mishra, Rakesh Mai Mishra. Synthesis and antifungal activity of new1,3,4-oxadiazolo[3,2-b]-striazine-5-ones and their thiones analogues. *Indian J Heterocyclic Chem* **14**: 289-92 (2005).
- Viral Shah, Milan Vadodaria Parikh AR. Synthesis of 1,3,4-oxadiazoles having nicotinamide moiety as potential antimicrobial agents. Indian J Chem 36B: 101-03 (1997).
- Sawhney SN, Asha Gupta. synthesis of some 2-(5-substituted 1,3,4- oxadiazol-2-yl)-,2-(5substituted 1,3,4-thiadiazol-2-yl)- and 2-(3mercapto-4-substituted-4H-1,2,4-trizol-5-yl)benzimidazoles as potent anti-inflammatory agents. *Indian J Chem* **30**B: 407-12 (1991).