Synthesis and antibacterial activity of some new 5-arylidene derivatives of 2,3-diaryl-4-thiazolidinones

YOGESH PRAJAPAT, SEJAL SOLANKEE, GHANSHYAM PATEL and ANJANI SOLANKEE*

Department of Chemsitry, B.K.M. Science College, Valsad - 396 001 (India)

(Received: March 18, 2008; Accepted: April 20, 2008)

ABSTRACT

A series of 2-(phenyl/substituted phenyl/2"-furanyl/2"-thienyl)-3-(2',3'-dimethyl-1'-phenyl-3'pyrazolin-5'-one-4'-yl)-5-[(4-methoxy) benzylidene]-4-thiazolidinones (3a-t) have been synthesized by the reaction between 2,3-diaryl-4-thiazolidinones (2a-t) and 4-methoxy benzaldehyde (1) in alcohol in presence of sodium ethoxide. All the synthesized compounds have been screened for their antibacterial activity. The structures of the synthesized compounds have been established on the basis of their elemental analysis and spectral data.

Key words: Antibacterial activity, 5-arylidene derivatives of 2,3-diaryl-4-thiazolidinones.

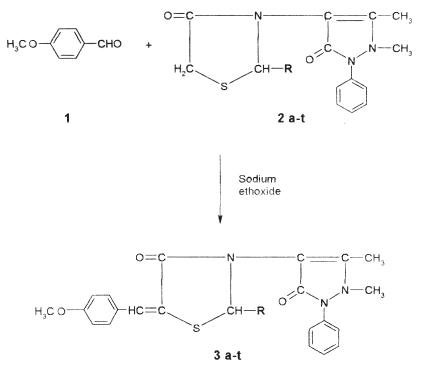
INTRODUCTION

Earlier, we reported the synthesis and biological activity of 2-(phenyl/substituted phenyl/ 2"-furanyl/2"-thienyl)-3-(2',3'-dimethyl-1'-phenyl-3'-pyrazolin-5'-one-4'-yl)-4-thiazolidinones¹⁻². In continuation of our work on various 5-arylidene derivatives³⁻⁶ of 4-thiazolidinones, herein we report the reaction of active methylene group in 2-(phenyl/ substituted phenyl/2"-furanyl/2"-thienyl)-3-(2',3'-dimethyl-1'-phenyl-3'-pyrazolin-5'-one-4'-yl)-5-4-thiazolidinones(2) with 4-methoxy benzaldehyde (1) uder the usual conditions of the knovenagal reaction (Scheme 1). The structure of the newly synthesized compounds have been identified on the basis of their elemental analysis, IR spectra, ¹H NMR spectra and MASS spectra.

EXPERIMENTAL

All the melting points were taken in an open capillary and are uncorrected. The IR spectra were recorded on Perkin-Elmer 237 spectrophotometer. ¹H NMR spectra on a Bruker Avance DPX 400 MHz spectrometer with CDCI_3 as a solvent and TMS as internal reference. TLC was performed on precoated Merck Silica Gel 60 $\text{F}_{_{254}}$ Aluminiuum foil.

Preparation of 2-phenyl-3-(2',3'-dimethyl-1'phenyl-3'-pyrazolin-5'-one-4'-yl)-5-[(4-methoxy) benzylidene]-4-thiazolidinone (3a)


2-phenyl-3-(2',3'-dimethyl-1'-phenyl-3'pyrazolin-5'-one-4'-yl)-4-thiazolidinone (0.01 mole, 3.65gm) was dissolved in 40ml alcohol in R.B.F. Then freshly prepared sodium ethoxide (0.01molem 0.68gm) and 4-methoxybenzaldehyde (0.01 mole, 1.36gm) were added in it. The reaction mixture was then refluxed for 6hrs. Finally the reaction mixture was cooled and the product separated out was filtered, washed with water, dried and recrystallised from ethanol, m.p.203°C, yield (90%). IR (KBr): cm⁻¹ 1682 (C=O), 637(C-S-C), 2937 (C-H), 1253(C-O-C asym.) and 1253 (C-O-C sym).

¹J NMR (CDCl₃): δ ppm, 2.01 (S, 3H, N-CH₃), 3.02 (S,3H, C-CH₃), 3.83 (S, 3H, p-OCH₃), 6.63 (S, 1H, CH-Ar), 6.93-7.53(M, 15H, Ar-H + Ar-CH=) MASS spectra M⁺¹: m/z 484

Comp.	R	m.p. (°C)	Yiled (%)	
3a	Phenyl	203	90	
3b	2-Chlorophenyl	103	85	
Зc	3-Chlorophenyl	190	83	
3d	4-Chlorophenyl	98	80	
3e	2-Nitrophenyl	89	77	
Зf	3-Nitrophenyl	103	71	
Зg	4-Nitrophenyl	62	75	
3h	2-Methoxyphenyl	103	87	
Зi	3-Methoxyphenyl	100	82	
Зј	4-Methoxyphenyl	181	86	
Зk	3-Bromophenyl	204	84	
31	4-Flurophenyl	131	88	
3m	4-Methylphenyl	190	80	
3n	3-Phenoxyphenyl	141	79	
30	3-Phenoxyphenyl	76	86	
Зр	3-,4-Dimethoxylphenyl	205	82	
Зq	4-N, N-Dimethyla minophenyl	205	72	
Зr	4-N, N-Dimethyla minophenyl	192	76	
3s	2-Fluranyl	201	79	
3t	2-Thienyl	181	75	

Table 1: Physical	data of	compound 3a-t
-------------------	---------	---------------

All compounds gave satisfactory % C and % N analysis

Scheme 1:

Similarly, remaining compounds (3b-t) were prepared by the above procedure and their physical and analytical data are given in Table 1.

RESULTS AND DISCUSSION

Antibacterial acitivity

All the synthesised compounds were screened for their antibacterial activity against *S. aureus* (MTCC 96), *B. subtilis* (MTCC 441) (Gram-positive) and *E. coli* (MTCC 443) *S. paratyphi* B. (MTCC 733) (Gram-negative) bacteria. The activity was carried out by using Agar-diffusion method⁷. The compounds were tested at 100 μ g/ml concentration. DMF was used as solvent. The zone of inhibition was measured in m.m. Under similar conditions controlled experiment was carried out by using Ciprofloxacin as a standard drug for comparison (Table 2).

S.No.	R	Diameter of zone of inhibition (in mm)			
		<i>S. aureus</i> MTCC 96	<i>B. subtilis</i> MTCC 441	<i>E.coli.</i> MTCC 443	S.parathyphi-B MTCC 773
3a	Phenyl	-	16	15	16
3b	2-Chlorophenyl	-	12	14	18
3c	3-Chlorophenyl	-	10	14	20
3d	4-Chlorophenyl	11	15	16	14
3e	2-Nitrophenyl	12	13	18	21
Зf	3-Nitrophenyl	10	10	16	20
3g	4-Nitrophenyl	-	10	14	17
3h	2-Methoxyphenyl	12	11	14	16
Зі	3-Methoxyphenyl	11	11	15	16
Зј	4-Methoxyphenyl	11	-	14	22
Зk	3-Bromophenyl	-	-	14	12
31	4-Flurophenyl	12	11	19	18
3m	3-Phenoxyphenyl	-	11	14	-
3n	4-Methyl	-	17	15	22
30	3-,4-Dimethoxylphenyl	13	12	15	19
Зр	3-,4,5-Trimethoxylphenyl	10	-	12	14
Зq	4-N, N-Dimethylaminophenyl	14	-	14	15
Зr	4-N, N-Dimethylaminophenyl	15	10	18	17
3s	2-Fluranyl	-	11	14	-
3t	2-Thienyl	-	11	17	20
Standard Drug	Ciprofloxacin	22	20	24	25

Table 2: Antibacterial activity data of compound (3a-t)

From the experiment data is has been observed that the compound (3n) found to be active against *B. subtilis* (MTCC 441). Compound (3l) found to be moderately active against *E. coli*. (MTCC 443). Compounds (3e) and (3j) were found to be active against *S. paratyphi* B (MTCC 733).

ACKNOWLEDGMENTS

We are thankful to the B.K.M. Science College, Valsad for providing research facilities and to Microbiology Department for carrying out antibacterial activity.

REFERENCES

- Solankee Anjani, Kapadia Kishor, Upadhyay Kekti, Patel Jayesh and Thakor Indrajit., Orient J. Chem., 18(2): 343 (2002). Chem. Abstr., 138: 255153n (2003).
- Solankee Anjani, Acta Ciencia Indica, 28(2): 85 (2002), Chem. Abstr., 142: 1979544 (2005).
- Solankee Anjani, Mistry Pankaj and Patel, V.M., Orient J. Chem., 13(3): 289 (1997), Chem Abstr., 128: 192584z (1998).
- Solankee Anjani, Kapadia Kishor, Mistry Pankaj and Patel Jayesh., *Asian. J. Chem.*, 4: 840 (1998).
- Solankee Anjani, Kapadia Kishor, Mistry Pankaj and Patel Jayesh., Orient J. Chem., 15(2): 319 (1998), Chem. Abstr., 132: 78497f (2000).
- Solankee Anjani, Kapadia Kishor, Thakor Indrajit, Prajapati Yogesh and Patel, Hiral, "Chemistry" An Indian J., 1(11): 718 (2005), Chem. Abstr., 144: 432722u (2006).
- Barry Arthur L, *The Antimicrobic suspectibility* test, Principles and practies, Illus Lea and Febiger, Philadelphia, Pa., USA 180 (1976), Bio Abstr., 64(5):25183 (1977), Chem, Abstr., 142: 197954u (2005).