

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

ISSN: 0970-020 X CODEN: OJCHEG 2012, Vol. 28, No. (1): Pg. 513-518

www.orientjchem.org

Synthesis of Some Thiazino-pyrazoles as Potential Fungicides

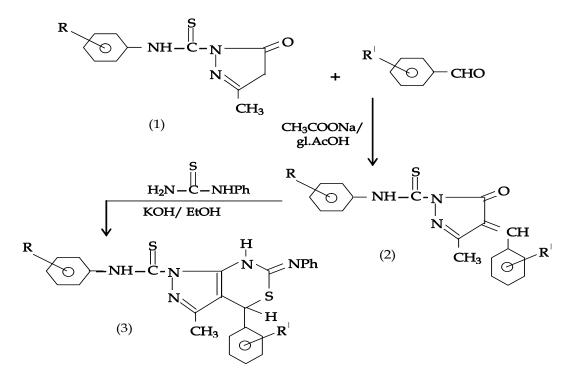
PRIYANKA KEDIA, VANDANA SINGH and DAROGA SINGH*

*Synthetical Organic Research Lab., Department of Chemistry, T.D.P.G. College, Jaunpur - 222 002 (India). Correspondign author: E-mail: drdsinghtdc@gmail.com; Priyankakedia50@yahoo.in

(Received: November 10, 2011; Accepted: January 25, 2012)

ABSTRACT

4-Arylmethylene-2,4-dihydro-2-arylthioanilido-5-methyl-<u>3H</u>-pyrazol-3-ones(2) were prepared by the condensation of 2,4-dihydro-2-arylthioanilido-5-methyl-<u>3H</u>-pyrazol - 3- ones (1) with aromatic aldehydes in the presence of glacial acetic acid. The synthesized compounds (2) reacted with phenyl thiourea in presence of alcoholic KOH at reflux temperature to give 1-arylthioanilido-3-methyl-4-aryl-6-phenylimino -4,7- dihydro-1, 3- thiazino [5,4-d] pyrazoles (3). The synthesised compounds (3) have been screened for their fungicidal activities against fungi *A. fumigatus* and *C. albicans* at different concentrations.


Keywords: Pyrazolone, thiazono-pyrazoles, Antifungal activity, Thiazono-pyrazoles.

INTRODUCTION

Pyrazole derivatives possess diverse chemical reactivity and broad spectrum of biological activities. A number of substituted pyrazoles are used as fungicides, insecticide, pesticides, herbicides in the field of agriculture ^{1,2}. They are used as colouration of paints, varnishes, lacquers in the field of industry ^{3,4}. These derivatives are used as anti-oxidant⁵ for rubber , linseed oil and as disperse dyes ⁶. They possess wide range of pharmacological activities as hypoglycemic⁷, antimicrobial^{8,9}, anticonvulsive¹⁰, antiinflammatory¹¹, antihistaminic¹², anti coagulant¹³, and anti-rheumatic¹⁴ agents etc. Some thiazinopyrazole derivatives have been synthesized and screened their antimicrobial activity¹⁵⁻¹⁷. In continuation of our study an attempt is to synthesize

some new derivatives of thiazino-pyrazole and screened their fungicidal activity against both the test fungi *A. fumigatus* and *C. albicans* at different concentration viz, 1000,100 & 10 ppm.

2,4-dihydro-2-arylthioanilido-5-methyl-<u>3H</u>-pyrazol - 3 - ones (1) were synthesised by the reaction of ethylacetoacetate and aryl thiosemicarbazide. The compound (1) was condensed with aromatic aldehyde in presence of glacial acetic acid to give 4-arylmethylene - 2, 4dihydro- 2- arylthioanilido -5-methyl-<u>3H</u>-pyrazol-3ones(2).The compound(2) was refluxed with phenyl thiourea in presence of alcoholic KOH for 3-4 hrs to give 1-arylthioanilido-3-methyl-4-aryl-6phenylimino-4,7-dihydro-1,3-thiazino[5,4d]pyrazoles(3)(Scheme-1).

 $\begin{array}{ll} \mathsf{R}= & \mathsf{H}, \ \mathsf{p}\text{-}\mathsf{CH}_3, \ \mathsf{p}\text{-}\mathsf{OCH}_3 \\ \mathsf{R}'= & \mathsf{H}, \ \mathsf{p}\text{-}\mathsf{NO}_2, \ \mathsf{p}\text{-}\mathsf{N}(\mathsf{Me})_2, \ \mathsf{p}\text{-}\mathsf{CI}, \ \mathsf{p}\text{-}\mathsf{OH} \end{array}$

(Scheme – 1)

EXPERIMENTAL

Melting points were taken in an open capillary tube and are uncorrected. The IR spectra were recorded in KBr disc on Perkin-Elmer-720 spectrophotometer. The ¹H NMR spectra were recorded in $CDCl_3$ /DMSO-d₆ on Varian A-60D spectrophotometer. The chemical shifts are recorded in d ppm down field from TMS, which are used as an internal standard.

2,4-Dihydro-2-arylthioanilido-5-methyl-<u>3H</u>pyrazol-3-ones(1):

These pyrazolones were prepared by known method^{18,19}.

4-Arylmethylene - 2,4-dihydro- 2-arylthioanilido-5-methyl-<u>3H</u>-pyrazol - 3-ones(2):

A mixture of compound (1)(0.01mol), aromatic aldehyde (0.01 mol) and sodium acetate (0.011 mol) was refluxed in glacial acetic acid for 2h. The reaction mixture was cooled and poured in cold water to give solid materials. The resulting solid was recrystallised from ethanol.

These were prepared by know method²⁰

A mixture of compound (2) (0.01 mol), potassium hydroxide (0.02 mol) and phenyl thiourea (0.01 mol) was refluxed for 3-4 h in ethanol. After evaporating the solvent, it was then acidified with dilute hydrochloric acid to give solid materials. The resulting solid was recrystallised from ethanol. The physical and spectral data of all synthesised compounds (3a-o) are given in the table-1.

Antifungal Activity

All the thiazino-pyrazoles (3a-o) were screened for their antifungal activity against Aspergillus fumigatus and Candida albicans by using food poisoning of solidified agar techniques at various concentration viz. 1000, 100 and 10 ppm by the standard method²¹.

÷
e
de
Ĕ

Comp. No.	Я	Ā	M.P. (°c)	Yield (%)	I.R. (KBr disc)cm ⁻¹ , v _{max}	PMR (CDCl ₃) δ (ppm)
За	т	т	158	65	3510(NH), 3390(=NPh), 1530(C=N) 1230(C=S)	2.0(3H,s,CH ₃), 4.2(1H,s,S-CH), 6.9-7.6(15H m ArH), 8.6(2H s.NH)
3b	т	p-NO ₂	178	61	3515(NH), 3395(=NPh), 1535(C=N) 1235(C=S)	2.1(3H,s,CH ₃), 4.0(1H,s,S-CH), 6.8-7.8(14H m ArH) 8.8(2H s NH)
30	т	p-N(Me) ₂	182	72	3518(NH), 3398(=NPh), 1538(C=N),1234(C=S)	2.3(3H,s,CH ₃),3.0(6H,s,NMe ₂), 4.1 (1H,s,S-CH), 6.9-7.8(14H,m,ArH) , 8.9(2H s NH)
3d	т	p-Cl	195	68	3505(NH), 3390(=NPh), 1532(C=N) 1230(C=S)	2:0(3H,s,CH ₃), 4:3(1H,s,S-CH), 6.8-7.5(14H m ArH), 8.8(2H s.NH)
3e	Зе	HO-d	214	20	3580(OH), 3520(NH), 3390(=NPh), 1535(C=N), 1238(C=S),	2.0(3H,s,CH ₃), 4.1(1H,s,S-CH), 6.5(1H,s,OH), 7.0-7.5(14H,m,ArH), 8.9(2H.s.NH)
3f	p-CH ₃	т	157	62	3525(NH), 3395(=NPh), 1540(C=N),1236(C=S)	2.1(3H,s,CH ₃), 3.4(3H,s,ArCH ₃), 4.4(1H,s,S-CH), 7.1-7.9(14H,m,ArH), 8.7(2H s.NH)
D C C	p-CH ₃	p-NO ₂	179	64	3514(NH), 3398(=NPh), 1545(C=N),1238(C=S)	с. (ב. 1.9(3H,s,CH ₃), 3.2(3H,s,ArCH ₃), 1.9(3H,s,S-CH), 7.2-8.0(13H,m,ArH), 8 9(2H s NH)
Зh	p-CH ₃	p-N(Me) ₂	193	69	3515(NH), 3395(=NPh), 1535(C=N),1235(C=S)	
Эі	p-CH ₃	p-CI	202	20	3520(NH), 3390(=NPh), 1542(C=N),1236(C=S)	2.1(3H,s,CH ₃), 3.3(3H,s,ArCH ₃), 2.1(1H,s,S-CH), 6.9-7.9(13H,m,ArH), 8.7(2H s.NH)
3j	p-CH ₃	HO-d	218	72	3585(OH), 3508(NH), 3398(=NPh),1538(C=N), 1240(C=S)	2.2(3H,s,CH ₃), 3.4(3H,s,ArCH ₃), 2.2(3H,s,CH ₃), 6.4(1H,s,OH), 7.2-7.7(13H,m,ArH), 8.8(2H,s,NH)

Зқ	p-OCH ₃	т	154	68	3505(NH), 3390(=NPh), 1545(C=N),1245(C=S)	1.9(3H,s,CH ₃), 3.7(3H,s,OCH ₃), 4.3(1H,s,S-CH), 7.1-7.9(14H,m,ArH), 8.6(2H s.NH)
31	p-OCH ₃	p-NO ₂	165	65	3512(NH), 3380(=NPh), 1548(C=N),1250(C=S)	осост., э, ми) 1.8(3H,s,CH ₃), 3.8(3H,s,OCH ₃), 4.4(1H,s,S-CH), 6.9-7.8(13H,m,ArH), 8 7(2H s NH)
Зm	p-OCH ₃	p-N(Me) ₂	186	68	3528(NH), 3384(=NPh), 1530(C=N),1255(C=S)	2.2(3H,s,CH ₃), 3.1(6H,s,NMe ₂), 3.7(3H,s,OCH ₃), 4.1(1H,s,S-CH), 7.2-8.0(13H m ArH) 8.8(2H s.NH)
Зn	p-OCH ₃	p-CI	219	73	3505(NH), 3380(=NPh), 1540(C=N),1258(C=S)	2.1(3H,s,CH ₃), 3.6(3H,s,OCH ₃), 4.5(1H,s,S-CH), 6.9-8.0(13H,m,ArH), 8.6(2H s NH)
30	p-OCH ₃	HO-d	207	71	3590(OH), 3500(NH), 3382(=NPh),1545(C=N), 1260(C=S)	2.0(3H,s,CH ₃), 3.5(3H,s,OCH ₃), 2.0(3H,s,CH ₃), 3.5(3H,s,OCH ₃), 4.6(1H,s,S-CH), 6.4(1H,s,OH), 7.2-8.0(13H,m,ArH), 8.8(2H,s,NH)
* The a	The analysis of C, H	C, H and N gave satisfactory results.	factory re	esults.		

Table 1 continued....

The inhibition of the fungus growth was determined as the difference in growth between test and control plates. The percentage inhibition in the colony of the test fungus was expressed as – Percentage inhibition (%) = $(C-T) \times 100/C$ where

C - diameter of fungus colony (mm) in control plates. T - diameter of fungus colony (mm) in treated plates.

The antifungal activity in terms of percentage inhibition shown by thiazino-pyrazoles (3a-o) has been listed in the Table-2.

			Avera	age % inhib	oition after	96 hours		
Comp No.		ituents R ⁱ	C	Organism A. fumigatu oncentratic (ppm) usec	on	C	Organism <i>C. albicans</i> oncentratic (ppm) usec	; on
		-	1000	100	10	1000	100	10
3a	Н	Н	56.4	47.2	36.2	55.2	46.0	35.2
3b	Н	p-NO ₂	59.2	49.4	39.4	58.0	48.2	38.2
3c	Н	p-N(Me)	60.4	50.2	40.8	59.2	49.2	39.6
3d	Н	p-Cl	62.6	52.2	42.8	61.4	50.0	40.8
3e	Н	p-OH	55.2	44.4	35.2	54.0	43.2	34.4
3f	p–CH ₃	Н	55.0	46.0	35.0	54.8	45.8	34.2
3g	p–CH ₃	p-NO ₂	58.0	48.2	38.2	57.6	47.2	37.2
3h	p–CH ₃	p-N(Me) ₂	59.2	49.4	39.4	58.0	48.2	38.2
3i	p–CH ₃	p-Cl	61.6	51.8	41.2	60.4	49.4	39.0
Зј	p–CH ₃	p-OH	54.2	42.6	34.0	53.0	41.2	33.2
3k	p-OCH ₃	Н	54.0	45.8	34.2	53.8	44.4	33.4
31	p-OCH ₃	p-NO ₂	56.8	47.0	37.4	55.6	46.2	36.0
3m	p-OCH ₃	p-N(Me) ₂	57.4	48.8	38.2	56.2	47.4	37.8
3n	p–OCH ₃	p-Cl	60.4	50.2	39.8	59.2	48.0	38.2
30	p–OCH ₃	p-OH	53.2	40.2	33.2	52.0	40.2	31.8
	Bavistin		99.4	95.0	90.0	99.2	95.0	90.0

RESULTS AND DISCUSSION

It was observed from the antifungal screening data that all the compounds (3a-o) show antifungal activity against both the test fungi *A. fumigatus* and *C. albicans.* It was also observed that the fungicidal activity of all synthesised compounds decreased upon dilution, so that all the compounds show greater fungitoxicity as the concentration increased. Structure activity relationship have demon-strated that the electron withdrawing group (deactivating group).

increase the fungicidal activity and electron donating group (activating group) decrease the fungicidal activity²². The compounds having pCl group (3d) inhance the antifungal activity than the p-N(Me)₂ group (3c). Since p-Cl group is electron withdrawing group and p-N(Me)₂ group is electron donating group. Similarly we compare the compounds having p-NO₂ group (3b) inhance the fungicidal activity than the p-OH group (3e). Over all result in my experiment from antifungal screening data that the p-Cl group inhance the fungicidal activity than p-NO₂ & p-N(Me)₂

ACKNOWLEDGEMENTS

The authors are very grateful to Dr. U. P. Singh, Principal and the Head, Deptt. of chemistry , T. D. P.G. College, Jaunpur (U. P.) for providing necessary facilities.

Tabl	е	2:
------	---	----

REFERENCES

- 1. Kidwai M. and Mohan R. ; *Journal of Korean Chemical Society* , **48**: No. 2 (2004).
- Tripathi P. and Pandey S.; Asian Journal of Chemistry, 20: No.1, 808 (2008).
- Ricoh Co.Ltd., Japan Kokai, Tokkyo, Koho, 8069, 148; cf C.A. ,93, 248206 F (1980).
- Ramanathan V.; U.S., 3, 954, 398(1978); cf;
 C.A., 85: 79675K (1976).
- 5. Howland, U.S. Pat. 2, 458,780,1949.
- Decb A., Yassin F., Ouf N. and Shehta W.; *Chemistry of Heterocyclic compounds*, 46,212 (2010).
- Cottineau Bertrand, Toto Bertrand, Marot Christophe, Pipaud Aline, Chenault Jacques; *Bioorganic & Medicinal Chemistry Letters*, 12,2105 (2002).
- Deshmukh M.B., Deshmukh S.A., Jagtap S.S., Suryavanshi A.W., Jadhav S,D. and Anbhule P.V.; *J. Indian Chem. Soc.*, 86: 613 (2009).
- Bandock Samir, Fadalya Walid and Metwallya M.A.; *European Journal of Medicinal Chemistry*, 45: 3692(2010).
- Ozdermir Z., Kandilei H.B., Gumusel B., Calis
 U. and Bilgin A.A.; *Eur. J. Med. Chem.*, **42**: 373(2007).
- 11. Saky Subas M. et al., Bioorganic & Medicinal

chemistry letters, 18, 1042(2008).

- 12. Sridevi C.H., Balaji K., Naidu A. and Subhakaran R.; *E J Chem.* **7:** 234(2010).
- 13. Viehlyaev, Grandberg and Kost, Formakal; *I. Toksikol.*,**25**: 27(1962).
- 14. Garg H.G. and Kaur N.; *J. Med. Chem.*, **15**: 554 (1972).
- Yadav A.K., Singh Vandana & Singh Daroga, Asian Journal of Chemistry, 19: No.5, 3511 (2007).
- Yadav A.K., Singh Sobha, Singh Vandana and Singh Daroga, *Acta Ciencia Indica*, XXXIIC: No.1, 013, (2007).
- 17. Singh Vandana , Kedia Priyanka and Singh Daroga , *J. Chemtracks*, **11**: 157, (2009).
- Burrus H.O. and Powell G.; J. Am. Chem. Soc., 67: 1468 (1945).
- 19. Singh Daroga and Singh D.; *J. Indian Chem. Soc.*, **68:** 165 (1991).
- Tiwari Nirupama, Dwivedi Bandana, Ali Roab and Nizamuddin; *J. Indian Chem. Soc.*, 67: 521 (1990).
- 21. Horsfall J.G., *Bot. Rev.*, **11:** 357 (1945).
- Neuvonen Kari, Neuvonen Helmi and Fulop Ferenc; *Bioorganic & Medicinal Chemistry Lettres*, 16: 3495 (2006).