

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

ISSN: 0970-020 X CODEN: OJCHEG 2012, Vol. 28, No. (4): Pg. 1809-1813

www.orientjchem.org

Mixed- Ligand Phosphine and Arsine Complexes of Ruthenium (III) Ligated by Heterocyclic Thioamide

R.N. PANDEY*, A.K. NAG and D.K. SHARMA

P.G. Centre of Chemistry (M.U.) College of Commerce, Patna - 800 020, India. *Corresponding author E-mail: rameshwarnath.pandey@yahoo.com

(Received: September 05, 2012; Accepted: October 15, 2012)

ABSTRACT

Mixed ligands bis-chelates of general formula $[RuX(E\Phi_3)(IPT5T)_2]$ (X= CI, Br, NCS or NO₃; E= P/As) have been prepared and investigated. The ligand 1-phenyl tetrazoline -5-thione acts as bidentate (N,S) supported by IR, and ¹HNMRspectral data. The distorted octahedral structure of all Ru(III) compounds are assigned on the basis of elemental, magnetic and other physico-chemical data.

Key words: Ru(III), bis-chelates, Mixed- ligands.

INTRODUCTION

Organometallic complexes of ruthenium are important class of compounds having great catalytic ¹⁻⁴, medicinal⁵⁻⁷ and biological properties⁸⁻¹⁰. The present paper is devoted to the synthesis and characterization of new ruthenium(III) complexes with 1-phenyl tetrazoline-5-thione (I).

EXPERIMENTAL

All the chemicals used were of Analar or Cp grade. Solvents were dried prior to use. 1-phenyl tetrazoline-5-thione was prepared by the method of Liber *et al.*¹¹. The starting complexes $[RuX_3(E\Phi_3)_3]^{12-14}$ (X= Cl, Br; E= P/As) were prepared according to the literature procedures.

Preparation of $[RuX(E\Phi_3)(IPT5T)_2](X=CI, Br, NCS or NO_3; E= P/As)$

All reactions were carried out under anhydrous conditions and complexes were prepared using a general method

Ethanolic solution of ligand and benzene solution of precursor's complexes were mixed in molar ratio 2:1(L:M) and refluxed for 5 hours. The

resulting dark coloured solution was concentrated to ~ 5cm³ and some small quantity of ether was added to it. The precipitated brown coloured solids were filtered, washed with ether and dried in vacuo. nitrate complexes, ethanolic solution of NH₄SCN/ LiNO₃ was added to benzene solution of [RuX(EÖ₃)₃] and refluxed with solution of ligand using desired molar ratio. The complexes were obtained by the concentration of refluxed solution to ~5cm³ and addition of small quantity of ether.

For the preparation of thiocyanate and

[Ru(PA ₃)(1PT5T) ₂ CI]	C 51 00: LL 0 00:N 14 00:Du 10 40:
5.No. 1: calculated (%) for $\text{RuC}_{32}\text{H}_{25}\text{N}_8\text{S}_2\text{PCI:}$ Found (%):	C,51.15; H, 3.38;N,14.90;Ru,13.42;
[Ru(P Φ ₃)(1PT5T) ₂ Br]	
S.No. 2: calculated (%) for $RuC_{32}H_{25}N_8S_2PBr$: Found (%):	C,48.18; H, 3.13;N,14.05;Ru,12.67; C,48.35; H, 3.10;N,14.12;Ru,12.87;
[Ru(As Φ ₃)(1PT5T)₂Cl]	
S.No. 3: calculated (%) for $RuC_{32}H_{25}N_8S_2AsCI:$	C,48.21; H, 3.13;N,14.06;Ru,12.68;
Found (%):	C,48.11; H,3.25;N,14.21;Ru,12.72;
[Ru(Aso,)(1PT5T),Br]	
S.No. 4: calculated (%) for RuC ₃₂ H ₂₅ N ₈ S ₂ AsBr:	C, 45.66; H, 2.97; N, 13.32; Ru, 12.01;
Found (%):	C, 45.69; H, 3.01; N,13.42;Ru,12.32;
[Ru(Po)(1PT5T) NCS]	
S.No. 5: calculated (%) for $RuC_{33}H_{25}N_{3}S_{3}P$:	C,51.09; H, 3.22;N,16.25;Ru,13.03;
Found (%):	C,51.13; H,3.01;N,16.22;Ru,13.13;
[Bu(PA)(1PT5T) (NO)]	
SI.No. 6: calculated (%) for $\operatorname{RuC}_{2}H_{2}N_{3}S_{2}O_{2}P$:	C,49.29; H, 3.29;N,16.17;Ru,12.96;
Found (%):	C,49.39; H,3.30;N,16.27;Ru,13.01;

The analysis of carbon, hydrogen and nitrogen were performed at CDRI Lucknow, India. The IR spectra of ligand and complexes were recorded on a Perkin-Elmer Model-577 spectrophotometer in the range of 4000-200 cm-1as KBr pillets. The magnetic measurements were made on a Gouy balance and the diamagnetic corrections for the ligand molecule were applied. The UV and Visible spectra of the ligand and complexes were recorded on a Beckmann and Carl Zeiss(Jenna) spectrophotometer. The molar conductance of complexes(10-3M) were measured in DMF (10-3M) using Wiss-Werkstatter Weitheim obb type LBR conductivity meter. ¹H NMR spectra of ligand and Ru(III) complexes were recorded with 90 MHZ NMR spectrophotometer using TMS as internal indicator. The complexes were dissolved in

CDCl₃ for recording their ¹HNMR spectra in the range of 0-10 ppm. The number of protons were obtained with the help of internal calibrator. EPR spectra of the powdered samples were recorded on a Bruker E-112 Varian model instrument in X-band frequencies at room temperature.

RESULTS AND DISCUSSION

The analytical data of the complexes correspond to the composition $[RuX(E\Phi_3)(1PT5T)_2]$ (X=Cl, Br, NCS, NO₃; E=P/As; 1PT5T= deprotonated 1-phenyl tetrazoline-5-thione of tautomeric form. The molar conductance values indicate their nonelectrolytic nature and magnetic moment value of the complexes (table-1) fall i9n the range of 1.90-2.01 BM corresponding to a single unpaired electron

1810

Compound	µeH(BM)	λ max.(nm)	Thiomide Bands				
			I	II	III	IV	
Ligand (1PT5TH)	-	305,265	1520	1290	980	740	
1.[Ru(PΦ₃)(1PT5T)₂Cl]	2.01	675, 485, 345	1500	1300	1000	800	
2. [Ru(P4 ₃)(1PT5T) ₂ Br]	1.90	670, 470, 350	1515	1295	970	795	
3. [Ru(As $\tilde{\Phi}_{3}$)(1PT5T) ₂ Cl]	2.00	660, 355	1520	1310	965	760	
4. [Ru(AsΦ ₃)(1PT5T) ₂ Br]	2.01	665, 350	1510	1310	975	745	
5. [Ru(PΦ ₃)(1PTST) ₂ (NCS)]	1.90	675, 470, 355	1515	1315	980	740	
6. [Ru(PΦ))(1PT5T), NO]	1.90	605,535,345	1525	1315	985	745	

Table 1: Physico-chemical data of Ru(III) complexes

in low spin 4d⁵ configuration consistent with reported value reported in previous literature¹⁵.

The room temperature EPR spectra of powered sample were recorded at X-band frequencies. All the complexes showed a single isotropic resonance with a "g" value in the range 2.10-2.30 ranges indicating high symmetry around ruthenium(II) ion¹⁶. Such isotropic lines are probably due to the results of either intermolecular spin exchange which can broaden the lines or due to occupancy of unpaired electron in degenerate orbital¹⁷. The values of "g" is also in agreement with low spin symmetry of the ligand field similar to "g" value reported for octahedral

Ru (III) complexes18-20

Electronic spectra of complexes showed two to three bands in the 250-670 nm region. The band in the 535-485 nm region have been assigned to the $2T_{2g} \rightarrow 2A_{2g}$ transitions is in conformity with assignments made for similar ruthenium (III) complexes²¹⁻²³. Other bands in the 345-355 nm region have been assigned to charge transfer transition and the other two bands at 675 and 470 nm are spin-forbidden transitions²⁴. In general the electronic spectra of all complexes are characteristic of an octahedral environment around Ru (III) ions.

IR Spectra

A close observation of infra red spectrum of ligand and ruthenium (III) complexes indicate simultaneous Ru-S and Ru-N bonding in all complexes. The $\upsilon_{\text{N-H}}$ at 3145cm⁻¹ of ligand 1-phenyltetrazoline-5-thione disappears from the

spectra of complexes indicating deprotonation of N-H proton. Further evidence in support of this comes from systematic shift²⁵⁻²⁸ of thiomide bands of the ligand on complexation. The formation of simultaneous Ru-S and Ru-N bond blue shift thiomide band I (20-35cm⁻¹), band III (25-30 cm⁻¹) and band IV(30-40 cm⁻¹) of ligand due to increase in CN bond order and decrease in CS bond order²⁹⁻³⁰. These observations are further supported by the presence of new non-ligand bond at 420 cm⁻¹ and 350 cm⁻¹ assigned to $v_{\text{Ru-N}}$ and $v_{\text{Ru-S}}$ modes respectively.

The non-ligand bands at Ca. 1505,1350 and 1000 cm⁻¹ correspond to υ_4 , υ_1 and υ_2 vibration of coordinated nitrate group in [Ru(NO₃) (PP₃)(1PT5T)₂] are in agreement with previous literature³¹.Separation between the two bands υ_4 and υ_1 (ca. 155 cm⁻¹) indicate the monodentate

nature of nitrate group Ca. 1800 cm⁻¹ are not observed in the spectrum of the present complex. A very strong band of medium intensity at 2085cm⁻¹, 760 cm⁻¹ and 480 cm⁻¹ confirms the presence of N-bonded isothiocynato group and assigned to v_{NCS} , $v_{\text{C=S}}$ and δ_{CNS} modes³².

¹H NMR Spectra

All complexes display broad multiplet in the region $\delta_{_{7,45-7,75}}$ ppm due to phenyl protons in

complexes. The broad nature of peak may be due to large quadruple resonance broadening effect of tetrazoline nitrogen atom³³. The resonances due to imino proton in the ligand observed at $\delta_{1.25}$ ppm is absent in the spectra of the complexes suggesting formation of Ru-N bond and deprotonation of N-H group on complexation. The aromatic protons of P Φ_3 ligand resonated as a broad multiplet in the region $\delta_{7.32-7.15}$ ppm in complexes.

REFERENCES

- M.A. Bennett, M.I. Burce and T.W.Matheson; Compresensive Organometallic chemistry, vol 4, Edited by I. Wiekinson, F.G.A. stone, E.W. Abel(Pergamon, Oxford) P. 796 (1982).
- P.Mulle and C. Fruit, *Chem.*. *Rev.* **103**: 2905 (2003).
- S.Yamada, Coord. Chem. Rev. 191: 537 (1999).
- 4. E.c. Niederhoffer, J.H. Timmons and A.E. Martell, *Chem. Rev.* **84**: 137 (1984).
- K.Karidi, A.Garoufic, A.Tsipis, N.Hadjiliadis, H. Den Dulk and J. Reedijik, *J. Chem. Soc. Dalton. Trans*, 1176 (2005).
- 6. P.I.Anderberg, M.M. harding, I.J. Luck and P.Turner, *Inorg. Chem.*. **41**: 1365 (2001).
- B.R.Cameron, M.C. darkes, I.R. Bird, R.t. Skerli, Z.L. Santucci and S.P. Fricker, *Ingor.Chem.* 42: 4102 (2003).
- Pattrringg and J.A. Grim, *Cancer Res.* 27: 1278 (1967).
- F.a. farach, E.J. Bianz, S.C. Sadlin and N.Brackman; *J. Med. Chem.*. **17**: 172 (1974).
- K.P.Balasubramanian, S. Manivannan and V. Chinnusamy, J. Ultra. Chem. 4(1): 15 (2008).
- E.Liber and J. Ramchandran, *Can J. Chem.* 37: 101 (1959).
- 12. J.Chatt, G.J. Leigh, D.M.P. Mingos and r.J. Paske; *J. Chem.. Soc.* A 2636(1968).
- 13. R.K. Poddar, I.P.Khullar and U.Agarwala, *Nucl. Chem. Lett.* **10**: 221 (1974).

- 14. K.Natrajan, R.K. Poddar and U.Agarwala, *J. Inorg. Nucl. Chem.* **39**: 431 (1977).
- N.Prasanna, S.Srinivasan, G. Rajagopal and P.R. Athappan, *Indian J. Chem.* 40A: 426 (2001).
- 16. T.D.Thangadurai and K.Natarajan, *Indian J. Chem.* **40A**: 573 (20001).
- 17. P.Viswanathanmurthi and K.Natarajan, Indian J. Chem. **38A**: 797 (1999).
- T.D. Thangadurai and K. Natarajan, *Indian J. Chem.* **41A**: 741(2002).
- R.Ramesh, N.Dharmraj, R.Karvembu and K.Natarajan, *Indian j. Chem.* **39A**: 1079 (2000).
- K.P. Balasubramannian, R. Karvembu, V. Chinnusamy and K.Natrajan, *Indian J. Chem.* 44A: 2450 (2005).
- 21. ABP Lever, "Ingorganic Electronic Spectroscopy", Elsevier, N. Y. Second Edn., (1984).
- 22. C.J. Bullhausen, "Intrduction to Ligand Field Theory", Mc Graw-Hill, N.Y., P. 276 (1962).
- 23. L.R. Ramirez, T.A. Stephenson and E.S. Switkes, *J. Chem. Soc.* **A**: 1770 (1973).
- K.P. Balasubramanian, K. Parameshwari, V. Chinnusamy, R. Prabhakaran and K. Natarajan, *Spectrochim. Acta.* 65A: 678 (2006).
- 25. R.N. Pandey, R. Bala and A.K. Sinha, *Orient. J. Chem.* . **27**(1): 293 (2011).
- Subhi A. Al-Jibori, Ibrahim F. Waheed and Ali T. Samaraie, *Orient J. Chem.*, 28(1): 257-262 (2012).

- 27. B. Singh, r. singh, R V Choudhary and K.P. thakur, *Indian J. Chem.* **11**: 174 (1973).
- 28. R. N. Pandey, A. Anand, R.K. Singh and A.Kumar, *Asian J. Chem.* **22**(7): 5601 (2010).
- 29. U. Agarwala and B.Singh, *Indian J. Chem.* **7**: 726(1969).
- 30. R.N. Pandey and Rajnish Kumar singh,

Orient. J. Chem. 25: 599 (2009).

- 31. G. Mathew and M.L.H.K. Nair, *Asian J. Chem.* **16**(3-4): 1875(2004).
- 32. R.N. Pandey and R.N. Sharma, *J. Ultra Chem.* 7(3): 391 (2011).
- 33. R.N. Pandey and Sheo Shankar Kumar, *J. Ultra Chem.* **7**(2): 271 (2011).