

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

ISSN: 0970-020 X CODEN: OJCHEG 2012, Vol. 28, No. (2): Pg. 781-786

www.orientjchem.org

Synthesis and Characterization of Mercury(II) Complexes Containing Mixed Ligands of Mono or Diphosphines and Saccharinate

SHIHAB A.O. AL-DURY and SUBHI A. AL-JIBORI*

Department of Chemistry, College of Science, University of Tikrit, Tikrit (Iraq). *Corresponding author E-mail: subhi_ aljibori@yahoo.com.

(Received: May 09, 2012; Accepted: June 13, 2012)

ABSTRACT

Tetrahedral mercury(II) complexes of the types $[HgCl(sac)(PPh_3)_2]$, [HgCl(sac)(diphos)], $[Hg(sac)_2(PPh_3)_2]$ or $[Hg(sac)_2(diphos)]$ and octahedral complexes of the type $[Hg(sac)_2(dppe)_2]$ or $[Hg(sac)_2(dppp)_2]$ {diphos = $Ph_2P(CH_2)nPPh_2$; n=1, dppm; n=2, dppe; n=3, dppp; n=4, dppb} were prepared and characterized by molar conductance, elemental analysis, infrared spectra, ¹H and ³¹P-{¹H} nmr data.

Key words : Mercury, Saccharinate, Diphosphine.

INTRODUCTION

Saccharin{o-sulfobenzimide; 1,2benzothiazol-3(2H)-one-1,1-dioxide; Hsac}, most widely used as an artificial sweetening agent Interaction of saccharin. with different biologically relevant cations attracted great interest due to the suspected carcinogenicity of this compound 1-3 which was definitively ruled out in 2001³⁻⁴. Saccharin ligand has three potential donor sites, it is not expected to use all three towards the same metal because of geometrical constraints. It is therefore likely to acts as a monodentate or a bidentate. metal complexes of this ligand with transition and non transition metals have been studied extensively these have been comprehensively revied⁵ and a large number of papers published every year in this field. Saccharinate interacts with some heavy non.-

transition metal cations such as Cd(II) and Hg(II) to yield of $[Cd(sac)_2(H_2O)_2].2H_2O.^6$ and $[Hg(sac)_2]^7$ respectively. Mixed ligands Hg(II) complexes containing saccharinato and nitrogen donor ligands have been reported⁸⁻¹⁴. However mixed ligand complexes of Hg(II) with saccharin and mono or diphosphine seems to be unexplored although such mixed ligand complexes have been reported for some other transition metals¹⁵⁻¹⁷ We expect that mixed ligands complexes of tertiary phosphines and saccharin to be an important class of complexes and exhibit synergic effect attributed to the mixed ligands.

In the present paper we report the synthesis and characterization of some mercury(II) complexes containing mixed ligands, tertiary, mono or diphosphines and saccharin.

EXPERIMENTAL

General

The experimental techniques were the same as those used in our recent paper from this laboratory^{18.}

Starting materials

The compounds $HgCl_2$, $Hg(OAc)_2$, dppm, dppe, dppp, dppb, PPh_3 and Nasac were commercial products and were used as supplied. The compounds [HgCl(sac)] and [Hg(sac)_2] were prepared according to literature methods^{19,20}.

Preparation of complexes (1) – (12). [HgCl(Sac)(dppm)]₂ (1)

A solution of dppm (0.07g, 1.9 mmol.) in warm EtOH (7ml) was added to a suspension of [Hg(sac)Cl] (0.08g, 1.9 mmol.) in hot EtOH (10ml). The mixture was stirred at room temperature for 1h. The pale white solid thus formed was filtered off washed with EtOH, dried under vacuum (yield 67%).The following complexes were prepared and isolated by a similar method; (2),(3) and (4).

[Hg(sac),(dppm)] (5)

A solution of dppm (0.05g, 0.1 mmol.) in warm EtOH (7ml) was added to a suspension of $[Hg(sac)_2]$ (0.08g, 0.1 mmol.) in hot EtOH (7ml). The resulting clear solution was filtered off and evaporated. The pale white solid thus formed was filtered off washed with EtOH, dried under vacuum and recrystalized from DMSO, (yield 95%)

[Hg(sac),(dppe)] (6)

A solution of dppe (0.07g, 0.18 mmol.) in warm EtOH (7ml) was added to a suspension of $[Hg(sac)_2]$ (0.1g, 0.18 mmol.) in hot EtOH (10ml). The mixture was stirred at room temperature for 1h. The pale white solid thus formed was filtered off washed with EtOH, dried under vacuum (yield 66%). The following complexes were prepared and isolated by a similar method; (7) and (8).

$[Hg(sac)_2(dppe)_2]$ (9)

A solution of dppe (0.079g, 0.17 mmol.) in warm EtOH (10ml) was added to a suspension of [Hg(sac)₂] (0.059g, 0.088 mmol.) in hot EtOH (10ml). The resulting clear solution was filtered off and evaporated to near dryness. n-Hexane (10ml) was added, The pale white solid thus formed was filtered off washed with EtOH, dried under vacuum (yield 89%). The following complexes were prepared and isolated by a similar method; (**10**), (**11**) and (**12**).

RESULTS AND DISCUSSION

Synthesis of complexes

It was reported previously ¹⁹ that reaction of HgCl₂ with sodium saccharinate in aqueous medium gives [[HgCl(sac)]. Single crystal X-ray diffraction showed that this complex is linear with N-Hg-Cl bond angle 177.6 (3)°. We have previously reported [18] that two coordinate linear mercury(II) complexes may permit for coordination number to be extended to four or may be six. Treatment of the linear mercury(II) complex [HgCl(sac)] with one mole proportion of the diphosphines Ph₂P(CH)_nPPh₂ (n=1-4) or two mole proportion of PPh₃ gave tetrahedral complexes of the type [HgCl(sac)(µ-Ph₂) PCH₂PPh₂)]₂(1) or the [HgCl(sac) {Ph₂P(CH)_nPPh₂}] (n=2,3 or 4) (2), (3), (4), or the [HgCl(sac) {PPh₃}₂] (11).

Treatment of the linear mercury(II) complex $[Hg(sac)_2]$ [20] with one mole proportion of the diphosphines $Ph_2P(CH)_nPPh_2$ (n=1,2,3 or 4) or two moles proportion of PPh₃ gave tetrahedral complexes of the type $[Hg(sac)_2(diphos)]$ (5), (6), (7), (8), or $[Hg(sac)_2\{PPh_3)_2](12)$. However treatment with two moles of the diphosphine gave octahedral complexes of the type $[Hg(sac)_2(dppe)_2](9)$ or $[Hg(sac)_2(dppp)_2](10)$.

Characterization of complexes

The prepared complexes were characterized by elemental analysis, i.r. spectra, conductivity measurements and some of then by ³¹P-{¹H} and ¹H nmr spectra and their data are listed in tables 1-3. The molar conductivity of the complexes in DMF, CH₃OH, CHCl₃, DMSO or CH₂Cl₂ is low enough to suggest that they one non-electrolytes²¹.

Nuclear magnetic resonance

The ³¹P-{¹H} and ¹H nmr data of some of the prepared complexes are given in Table 3. The ³¹P-{¹H} nmr spectrum of $[HgCl(Sac)(dppm)]_2(1)$ showed a singlet at dP=23.59ppm with ²J(¹⁹⁹Hg-³¹P)=5166Hz. The positive dP value indicates that dppm behaves as a bidentate bridging^{15,22-24}. This

Se	q Complexes	Color	Yield	Fo	ound(cal.	.)%			(Ohr .m	n ⁻¹ .cm² nol ⁻¹) Λ
			%	N	н	С	CHCI ₃	CH ₃ OH		DMSO
1	[HgCl(sac)(dppm)] ₂	White	67	2.4	3.7 (3.9)	43.0	-	-	-	5.9
2	[HgCl(sac)(dppe)]	White	60	(2.1) 1.4 (1.5)	(3.3) 5.6 (5.7)	(1 2.7) 53.8 (53.6)	-	-	2.8	-
3	[HgCl(sac)(dppp)]	White	80	2.8 (2.9)	3.4 (3.4)	48.0 (48.1)	-	-	3.1	-
4	[HgCl(sac)(dppb)]	White	95	3.2 (3.1)	4.5 (4.5)	48.2 (48.5)	-	-	1.9	-
5	[Hg(sac) ₂ (dppm)]	White	95	1.6 (1.6)	4.6 (4.4)	51.1 (50.8)	-	-	-	2.3
6	[Hg(sac) ₂ (dppe)]	White	66	1.7 (1.6)	4.4 (4.3)	51.0 (50.9)	-	-	-	4.3
7	[Hg(sac) ₂ (dppp)]	White	69	2.6 (2.5)	5.3 (5.3)	54.9 (54.6)	-	0.9	-	-
8	[Hg(sac) ₂ (dppb)]	White	76	2.9 (2.6)	4.6 (4.6)	53.4 (53.1)	2.1	-	-	
9	[Hg(sac) ₂ (dppe) ₂]	White	89	2.0 (2.2)	4.8 (4.8)	57.0 (57.1)	-	1.4	-	-
10	[Hg(sac) ₂ (dppp) ₂]	White	89	2.2 (1.9)	5.0 (4.8)	60.2 (60.1)	-	2.4	-	-
11	[Hg(sac)Cl(PPh ₃) ₂]	White	95	3.0 (2.7)	4.6 (4.4)	52.7 (52.6)	3.2	-	-	-
12	$[Hg(sac)_2 (PPh_3)_2]$	White	89	2.3 (2.3)	4.5 (4.7)	58.1 (58.2)	-	2.1	-	-

Table 1: Color, Yield, Elemental analys	es and conductivity of complexes (1) - ((12)
---	-------------------------------------	-------	------

has been supported by the ${}^{1}H - {}^{31}P$ nmr spectrum which showed a singlet at dH=3.3ppm assigned for the methylene protons of the bridging dppm²⁵. The large ${}^{2}J({}^{199}Hg{}^{-31}P)$ which is 5166Hz indicated a tetrahedral geometry around mercury²⁶⁻²⁹. The ${}^{31}P{}^{1}H$ nmr spectra of the other tetrahedral complexes (2), (6) and (7) each showed a singlet at dP=31.12, 45.00 and 38.56ppm respectively. Complex(7) showed ${}^{2}J({}^{199}Hg{}^{-31}P){}=5519Hz$ which suggest four coordinate tetrahedral arrangement around mercury. The ${}^{31}P{}_{1}H$ nmr spectra for [Hg(sac)₂(dppe)₂](9) and [Hg(sac)₂(dppp)₂](10) showed a singlet each at dP=21.96 and 15ppm respectively. The ${}^{2}J({}^{199}Hg{}^{-31}P)$ values for these two complexes were low 2195 and 2031Hz respectively which suggest a six coordinate environment around mercury $^{\rm 26\text{-}28}$.

On the basis of the above nmr data and other identification data given in Tables 1 and 2, the structures shown in Fig. 1 have been suggested

Infrared Spectra

Selected infrared spectroscopic data of the prepared complexes (1)-(12) are listed in Table 2. All complexes display a sharp strong bands between (1620-1697cm⁻¹) attributed to the u(C=O) of the saccharin ligand coordinated as monodentate though the nitrogen atom^{29,30}. Two strong bonds at around (1240-1294) and (1147-

		Table 2 : I	.R. spectra	lª data cm⁻¹	of the liga	nds and cc	mplexes (1) – (12)			
v (C-H)	(Ĥ		ç	ð	ç	(CN	S)	(so	2)	υ(P-Hg)	υ(P-C)
Alp. Ar.	Ar.		(co)	(cc)	(CN)	$v_{\rm as}$	ູ	v_{as}	v		
3099 _w 3072	3099 _w 3072		1643_{vs}	1585 _m	1450 _m	966 _s	1336 _m	1275 _s 1257	1145 1126		
3078 _w	3078 _w		1697 _{vs} 1635 _{vs}	1583 _m	1456 _m	968 _°	1338 _m	1286 1251	1153 _{vs}		
2924 _w 3051 _w 2864	3051		1645 1620	1577 _m 1575 _m	1413 _m 1430 _s	960 _° 945 _m	1342 _° 1330 _m	1257 1253s	1153_{m} 1147 _{vs}	335_{vs}	513 _m
2906 _w 3057 _w	3057		1634 _s	1581 _m	1433 _m	947 _s	1340 _m	1294 _{vs} 1247	1155 _{vs}	350 _{vs}	515 _m
2935 _w 3055 _w	3055		1641 _s	1570 _m	1430 _s	951 _s	1340	1286°	1149 _{vs}	335 _{vs}	519 _m
2935 _w 3055 _w	3055		1686 _° 1645	1575 _m	1438 _m	957 _s	1330	12900 1246	1151v _s	330 _{vs}	519 _m
2926 _w 3059 _w 2866	3059 _w		1645 _{vs}	1568 _s	1444_{m}	950 _s	1334 _m	1290vs	1151 _{vs}	335 _{vs}	532 _m
2964 3059 3059	3059 _w		1662 _{vs}	1581 ^m 1564	1442 _m	954 _{vs}	1330 _m	1290 1244	1159 _{vs}	338 _{vs}	522 _m
2914 ^w 3059 ^w	3059 _w		1643 _s	1568°	1442 _m	951 _s	1330 _m	1288 1248	1149 _{vs}	335 _{vs}	524 _m
2926 _w 3059 _w 2868	3059		1645 _s	1572 _s	1425 _m	953 _s	1336 _m	1288° 1258°	1151 _{vs}	335 _{vs}	532 _m
2962 3057 3057	3057		1639 _s	1577 _m	1431 _m	951 _{vs}	1325 _m	1286 _{vs} 1247	1147 _{vs}	338 _{vs}	522 _m
2922 _w 3057 _w	3057		1635 _{vs}	1577 _s	1433 _m	949 _s	1330 _m	1278 1258	1147 _{vs}	335 _{vs}	524 _m
- 3056 _w	3056 _w		1661 _s	1585 _w	1433 _s	951 _s	1330 _w	1292 s	1153v _s	332_{vs}	511 _s
3056 _w	3056 _w		1649 _m	1570 _m	1431 _m	953 _s	1330 _w	1290 [°]	1151 _{vs} 1252 _s	352_{vs}	513 _s

s= strong, vs = very strong, m= medium , w = weak, a

DURY & AL-JIBORI, Orient. J. Chem., Vol. 28(2), 781-786 (2012)

784

Complexes δΡ δCH, ²J(¹⁹⁹Hg-³¹P) δPh.P. Solvent Seq. DMSO [HgCl(sac) (dppm)], 1 23.59 3.3 5166 7.37-7.88 [HgCl(sac) (dppe)] 2 7.38-7.84 DMSO 31.12 3.27 _ [Hg(sac)₂(dppe)] 6 45.00 DMSO --[Hg(sac)₂(dppp)] CD, OD 7 38.56 2.13-3.1 5519 7.27-7.38 [Hg(sac)₂(dppe)₂] 9 21.96 3.12 2195 7.16-7.75 CD,OD [Hg(sac)₂(dppp)₂] 10 15.0 1.378-2.994 2031 7.355-7.67 CD, OD

Table 3: The ¹H and ³¹P-{¹H} n.m.r. data^a of the prepared complexes.

 δ in ppm, J in Hz

X=Cl or sac; n=2,3 or4

1153cm⁻¹) are characteristic for the $u_{as} SO_2$ and $u_s SO_2$ modes of sac, respectively. Whereas the bands at ca. (1325-1342) and (949-968cm⁻¹) are assigned to the symmetric and asymmetric stretching of the CNS moiety in the sac ion. Additional bands between 332-352cm⁻¹ assigned to (P-C).The (C-H) aliphatic appeared at ca. 2906-2935cm⁻¹ while the (C-H) aromatic appeared at ca. 3051-3059cm⁻¹.

CONCLUSION

In summery reaction of the linear mercury(II) complex [HgCl(sac)] with mono or diphosphine resulted in the formation of tetrahedral complexes of the type [HgCl(sac)(diphos)]. Reaction of [Hg(sac)₂] with one mole equivalent of diphos. gave tetrahedral complexes of the type

[Hg(sac)₂(diphos)] while reaction with two mole equivalent gave octahedral complexes of the type [Hg(sac)₂(diphos)₂].

ACKNOWLEDGMENTS

We would like to thank the nmr department Institute for Anorganische Chemic, Martin- luther-University, Halle, Germany for measuring the nmr spectra.

REFERENCES

- N. Suzuki and H. Suzuki; *Cancer Res.*, **55**, 4253 (1995).
- J. Zurlo and R.A. Squire; *J.Natl-Cancer Inst.*, 90, 2 (1998).
- M. R. Weihrauch, V. Diehl and H.Bohlen; Mediz. Klin., 96, 670 (2001).
- 4. *Chem. Brit.*, **37**, 18 (2001).
- 5. E.G. Baran and V.T. Yilmaz; *Coord. Chem. Rev.*, **250**, 1980 (2006).
- S.Z. Haider, K.M.A. Malik, S. Das, M.B. Hursthouse; *Acta Crystallogr.*, C40 1147 (1984).
- 7. B. Kamenar, G. Jovanovski, D. Grdenic; *Cryst. Struct. Commun.*, **11**, 263 (1982).
- A. Hergold-Brundic, B. Kamenar, and G. Jovanovski; *Acta Crystallogr.*, C45: 556 (1989).
- O. Grupce, G. Jovanovski, B. Kaitner and P. Naumov; *Croat. Chem. Acta.*,**72**: 465 (1999).
- 10. Y. Topcu, O. Andac, V.T. Yilmaz and W.T.A. Harrison; *Cryst. Res. Technol.*, **37**:509 (2002).
- 11. V.T.Yilmaz, S. Hamamci, and C. Thoene; *Cryst. Res. Technol.*, **37**: 1143 (2002).
- 12. V.T.Yilmaz, S. Caglar, and W.T.A. Harrison; Z. *Anorg. Allg. Chem.*, **630**: 1512 (2004).
- Z. S. Seddigi, A. Banu and G. M. G. Hossain, The Arabian J. for Science and Engineering,. 32: 181 (2007).
- R.M.K. Deng, K.B. Dillon, A.E. Goeta, M. Mapolelo and H.J. Shepherd; *Inorg. Chim. Acta.*, **362**: 5109 (2009).
- W. Henderson, B. K. Nicholson, and L. J. McCaffrey., *Inorg. Chim. Acta.*, 285: 145 (1999).
- 16. L. R. Falvello, J. Gomes, I. Pascual, M. Tomas, E. P. Urriolabeitia and A. G. Schultz; *Inorg.*

Chem., 40: 4455 (2001).

- W. Henderson, B. K. Nicholson, and D.C. Chung; *Acta Crystallographica*, Section E. Structure reported Online., E58, m432 (2002).
- A.S.M. AL-Janabi, B.H. Abdullah and S.A. Al-Jibori; *Orient. J. Chem.*, **25**(2): 277 (2009).
- 19. G. Jovanovski, B. Kamenar, G. Ferguson, and B. Kaitner., *Acta Crystallogr.*, **C44**: 616 (1988).
- B. Kamenar, G. Jovanovski and D. Grdenic; Cryst. Struct Commun., 11: 263 (1982).
- 21. W.J. Geary; *Corrd. Chem. Rev.*, **7**: 81 (1971).
- 22. C.T. Hunt and A.L. Balch; *Inorg. Chem.*, **20**: 2267 (1981).
- L. J. Al-Hayaly, B. H. Abdullah, A.A.N. Al-Dulaimi and S.A. Al-Jibori; *Orient. J. Chem.*, 24(2): 38 (2008).
- 24. S. A. Al-Jibori, A. S. S. Al-Zaubi, M. Y. Mahammed and T. A. K. Al-Allaf ; *Trans. Met. Chem.*, **32**: 398 (2007).
- E.C. Aleya, S.A. Dias, R.G. Goel, W.O. Ogini,
 P. Pilom and D.W. Meek; *Inorg. Chem.*, **17**: 1697 (1978).
- 26. P.G. Pringle, D. Phill Thesis, Leeds University, U.K. (1983).
- 27. P.G. Pringle and B.L. Shaw; *J. Chem. Soc. Dalton Trans.*, **5**: 861 (1983).
- M.D. Lumsden, K. E.ichele, R.E. Wasylishen, T.S. Cameron and J.F.Britten; *J. Am. Chem. Soc.*, **116**: 11129 (1994).
- 29. S.A. Iqbal, Sibi Jose and Ishaq Zaafarany, *Orient. J. Chem.* **28**(1), 613-618 (2012)
- P. Naumov, and G. Jovanovski; *J. Mol. Struct.*, 263/264: 335 (2001).
- P. Naumov, and G. Jovanovski; *Curr. Org. Chem.*, 5: 1059 (2001).