

ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal

an international Open Tree Access, Teer Neweweet Nesearch Journa

ISSN: 0970-020 X CODEN: OJCHEG 2012, Vol. 28, No. (2): Pg.703-714

www.orientjchem.org

The Influence of H₂O-attaching on the NMR Parameters In the Zigzag and Armchair AIN Nanotubes: A DFT study

REZA SOLEYMANI ^{1*}, SAHAR FARSI-MADAN ², SHOHRE TAYEB ³ and KHALIL GHESMAT-KONANDEH ³

¹ Young Researchers Club, Shahre-Rey Branch, Islamic Azad University, Tehran (Iran). ²Payame Noor University (PNU), Shiraz (Iran).

³ Department of Chemistry, Shahre-rey Branch, Islamic Azad University, Tehran (Iran). * Corresponding author: E-mail address: reza.soleymani@hotmail.com

(Received: April 10, 2012; Accepted: May 18, 2012)

ABSTRACT

Zigzag (6,0) and armchair (3,3) Aluminum nitride nanotubes were investigated in perfect and H₂O-attach states by using density functional theory (DFT) in level of B3LYP and 6-31G(d) basis set. For this purpose, *Gaussian 09w* program of package was used and after final optimization, structural and NMR parameters were studied. However, GIAO method was used and effects of attaching of H₂O on values of chemical shift anisotropic and chemical shift isotropic were considered. Obtained results were shown that by attaching of H₂O group, value of CS¹ and CS^A, in various nucleuses ⁷N and ¹³Al more changed and was caused to some changes in different property of AINNTs.

Key words: AIN Nanotubes, CS^A, CS^I, DFT, NMR.

INTRODUCTION

In during recent decades research domain about nanostructure is developed a lot, and many studies are done about it. After discovery of fullerene ¹ and carbon nanotubes in 1991 by Ijimia², many investigations were done about chemical and physical properties of these compounds and quality of their application in industry³⁻⁶. Carbon nanotubes are arranged as a cylindrical structure. It means that it's carbonic empty tube. These structures exist as a single-wall and multi-wall. The single-walls nanotubes involve chiral, armchair and zigzag models. Arrangement of carbon atoms in wall of cylindrical structure is similar to carbon arrangement in graphite sheets and includes weak von der vales bonds. In multi-wall models, upper layers are attached to sub layers. Other type of nanotubes, is non carbonic nanotubes made by noncarbonic elements. These kind of applicable and known nanotubes are involving elements of III and V group in periodic Table⁷⁻⁸. These nanotubes are studied theatrically and experimentally. In the early, these compounds were introduced by theoretical methods, and subsequently synthesized experimentally⁹⁻¹⁰. However, many properties of Aluminum-Nitrogen Nano Tubes (AINNTs) are considered theoretically and experimentally. By addition of various chemical groups to these compounds, structural parameters and chemical shift are changed that caused to changing of electrical conductivity, thermal conductivity and physicochemical properties of these structures as a semiconductor. NMR parameters have given lots information about chemical medium around of nucleus, and considered base on two basic parameters involving isotropic chemical shift (CSI) and anisotropic chemical shift (CSA)11-12. However, NMR values and coupling constant in different nucleus are changed by doping or attaching of various chemical groups on these nanotubes¹³⁻¹⁴. Obtained results are shown that some structural parameters like bond angles and bond lengths are changed by doping or attaching of various atoms on these compounds¹³⁻¹⁴. Because of these properties, new effects of H₂O groups are considered for AINNTs in various models. Main aim of these changing and attaching of H₂O group is investigation of physicochemical effects of AINNTs and quality of H₂O effects on specific properties of these compounds.

Computational Details

For investigation of structural property and NMR parameters at first, proposed AINNTs were designed and for final optimization Gaussian 09 program of package was used¹². Molecular formula of this structure in armchair (3,3) model is AI₂₁H₁₄N₂₁O and in zigzag (6,0) model is AI₂₄H₁₄N₂₄O. Considered length of nanotube in various models is about 10 angstrom. All calculations were done in theory of the level B3LYP and 6-31G(d) basis set. The GIAO method was used for calculation of CS¹ and CS^A values and these parameters for ¹³Al and ⁷N nucleuses were calculated as equation 1 and 2 [13-15]. CS tensors in the principal axes system (PAS) ($\sigma_{33} > \sigma_{22} > \sigma_{11}$) obtained by mechanic quantum calculation^{16,17}.

$$\begin{split} & \text{CS}^{\text{I}}\left(\text{ppm}\right) = (\sigma_{_{11}} + \sigma_{_{22}} + \sigma_{_{33}})/3 \qquad \qquad \dots(1) \\ & \text{CS}^{\text{A}}\left(\text{ppm}\right) = \sigma_{_{33}} \cdot (\sigma_{_{11}} + \sigma_{_{22}})/2 \qquad \qquad \dots(2) \end{split}$$

All obtained results were calculated in gas phase condition, 298 K temperature and 1.0 atm pressure by pentium IV computer with Intel[®] core i7-1.73 GHz processor, 4G of memory in XP windows $^{\! \mathbb{8}}$.

RESULTS AND DISCUSSION

H₂O-attach and perfect AINNTs structures were considered in zigzag (6,0) and armchair (3,3) models (see fig 1 to 4). After calculations, obtained results were reported in Table 1 to 4. In this study, DFT method was used in theory of the level B3LYP and 6-31G (d) basis set.

Geometrical parameter

Obtained results are reported after final optimization for bond lengths in Table 1 and 2. It is shown that bond lengths are different in various states and it is because of neighbor atom effects or additional atoms to main structure. In armchair (3,3) model of AINNTs, H₂O is attached to ¹³Al40 atom by ⁸O55 and this linking is near to center of nanotube that this structure remains symmetric (Table 1). However in zigzag (6,0) model, like armchair (3,3) model, ⁸O61 is linked to ¹³Al41.

Bond length in (3,3) armchair AINNTs

As a result, after final optimization, values of bond length is about 1.016 Angstrom for bond between 7N and 8O in perfect state, and it is about 1.584 Å for bond between ¹H and AI (Fig 1). After addition of H₂O, bond lengths of Al-¹H are changed and it is about 1.585 to 1.586 Å (Fig 2). But bond lengths of N-1H aren't changed. Variation of bond lengths are high for ¹³Al and ⁷N. Before attaching of H₂O group, variation range of bond length is about 1.806 to 1.821 Å in different parts of AINNTs and after attaching of H₂O group, it is about 1.860 to 1.805 Å. Maximum variation range is belong to 7N12-¹³Al40 that bond length is changed to 1.860 Å. Similar changes are obtained for AINNTs in armchair (4,4) that variation range of 7N-AI, is about 1.820 to 1.830 Å¹⁴. In fact, these variation range is because of direct effect of 8O55 to 13Al40 and moreover because of high electro negativity of oxygen and high steric hindrance, have direct effect on length of nanotube in armchair model.

Bond length in (6,0) zigzag AINNTs

In zigzag model, variation range of bond length of ¹³Al-¹H is about 1.582 Å in perfect state

Fig 1. 2D views of the perfect in (3,3) armchair model of AINNTs.

and 1.583 to 1.840 Å in H_2O -attach state (Table 2). Variation range of bond length of ⁷N-¹H is about 1.019 Å in perfect state and after attaching of H_2O group, it is about 1.018 to 1.020 Å. But changing of bond length in ¹³Al-⁷N is different and its variation range is about 1.880 to 1.807 Å in perfect state that by attaching of H_2O group, it is about 1.783 to 1.821 Å (Fig 3 and 4). These obtained results are completely similar to zigzag (10,0) model of AlNNTs that is reported about 1.820 to 1.830 [11]. Maximum variation for ⁷N10-¹³Al40, are varied from 1.807 to 1.788 Å and for ⁷N14-¹³Al59 are varied from 1.807 to 1.873 Å. It is because that hydrogen in H_2O group

is being near to ⁷N13 and it is in middle of ¹³Al59 and ¹³Al60 atoms and hydrogen atoms attract ⁷N atom. By comparison of two nanotubes in perfect and armchair state, it is shown that, variation ranges aren't so much in two different state and results are similar approximately.

NMR properties

For calculation of NMR properties, at first all structures were optimized. After that, NMR parameters were considered by GIAO method for all proposed structures. So CS¹ and CS^A were considered in different states of AINNTs (Table 3, 4).

Fig 2. 2D views of the H₂O-attach in (3,3) armchair model of AINNTs.

CS¹ parameter

CS¹ in armchair (3,3) AINNTs in perfect and H₂Oattach

Quality of obtained results for chemical shift in different nucleus of oxygen, nitrogen and aluminum are reported in Table 3. AINNTs is symmetric of chemical property in perfect state. Because of it, similar results are obtained for CS¹ values in different parts of structure. The CS¹ value for AINNTs in armchair (3,3) model and without H₂Oattach, has minimum amount and it is about 168.08 ppm for ⁷N8 nucleus and has maximum amount for ⁷N19 and ⁷N14 nucleuses, is 197.60 ppm (Fig 1). As a result, H₂O has no effect on CS¹ value of ⁷N nucleus but by investigation of CS¹ value of ¹³Al nucleus, maximum value of CS^I in perfect state in ¹³Al34 nucleus is 440.31 ppm and maximum value of CS^I in ¹³Al40 nucleus is 460.26 ppm. By addition of H₂O, some changes have been seen in this process and for ¹³Al40 that attached to oxygen directly, CS^I has maximum amount and it's 501.36 ppm. In ¹³Al35 and ¹³Al52 nucleuses, minimum amount of CS^I has been seen and it's 439.89 ppm. Chemical shift for ⁸O55 nucleus is 284.40 ppm. As obtained results, ¹³Al has maximum amount of CS^I, ⁸O has medium amount and ⁷N and after that ¹H have minimum amount of CS^I. All obtained results depend on quality of field strength, shielding or deshielding groups and electron density of in different nucleus.

Fig 3. 2D views of the perfect in (6,0) zigzag model of AINNTs.

$\rm CS^{I}$ in zigzag (6,0) AINNTs in perfect and H₂O-attach

Investigating of AINNTs zigzag (6,0) in perfect and H₂O-attach state, is shown that, changing of CS¹ in this state, is different from armchair state (Table 4, Fig 3 and 4). Investigating of ⁷N nucleus is shown that, before addition of H₂O, minimum amount of CS¹ for ⁷N8 nucleus is 137.18 ppm and maximum amount of CS¹ for ⁷N1, ⁷N5, ⁷N9, ⁷N13, ⁷N17, ⁷N21 nucleuses is 221.44 ppm (See table 4). However, value of CS¹ is changed after attaching H₂O group and ⁷N12 nucleus of CS¹ is minimum value and for ⁷N5 nucleus has maximum value. Investigating of CS¹ in ¹³Al nucleus is shown that before addition of H_2O , ¹³Al40 and ¹³Al37 have minimum amount of CS¹ and it's about 433.37 ppm, ¹³Al54 and ¹³Al49 nucleuses have maximum amount of CS¹, it's about 454.54 ppm. Moreover after attaching of H_2O group, minimum value of chemical shift for ¹³Al49 nucleus, CS¹ has maximum amount and it's 498.05 ppm. However, CS¹ value for ⁸O61 nucleus is 255.67 ppm. Comparison of these two armchair and zigzag models, is shown that CS¹ value in zigzag model is less than armchair model. In same nanotube, obtained CS¹ value for ⁷N nucleus, is in range of 129 to 213 ppm, and it's so close to obtained results¹⁰.

Fig 4. 2D views of the H₂O-attach in (6,0) zigzag model of AINNTs.

CS^A parameter

CS^A in armchair (3,3) AINNTs in perfect and H₂Oattach

Obtained results of CS^A analysis are shown that, in AINNTs structure, obtained values of this parameter are different in armchair and zigzag models and addition of H_2O group has direct effect on this parameter (Table 3). Investigating of ⁷N nucleus is shown that minimum amount of CS^A before attaching of H_2O is in ⁷N16 and ⁷N17 nucleuses, and it's about 52.36 ppm. But after addition of H_2O group, CS^A parameter is changed that minimum amount of CS^A in ⁷N13 nucleus is 52.62 ppm. But in ¹³Al nucleus, before attaching of H₂O, maximum amount of CS^A in ¹³Al53 and ¹³Al45 nucleuses is 49.66 ppm and minimum amount of CS^A in ¹³Al35 and ¹³Al52 nucleuses is 23.50 ppm (Fig 3). After attaching of H₂O, this series are changed, that base of it, CS^A in ¹³Al35 and ¹³Al52 nucleuses is 22.62 ppm and for ¹³Al40 nucleus that attached to H₂O directly, is 66.87 ppm and it is maximum amount of CS^A. However CS^A value for ⁸O55 nucleus is obtained about 52.92 ppm

Bond length	Armchair Perfect	Armchair H ₂ O attach	Bond length	Armchair Perfect	Armchair H ₂ O attach
N1- H23	1.016	1.016	N13- Al34	1.814	1.812
N1- Al35	1.807	1.805	N13- Al39	1.813	1.815
N1- Al38	1.813	1.815	N13- Al42	1.818	1.824
N2- Al44	1.812	1.814	N14- Al24	1.016	1.016
N2- Al46	1.815	1.815	N14- Al36	1.807	1.807
N2- AI53	1.820	1.819	N14- Al39	1.813	1.815
N3- Al38	1.815	1.815	N15- Al48	1.813	1.815
N3- Al44	1.812	1.814	N15- Al49	1.814	1.812
N3- Al45	1.820	1.819	N15- Al50	1.818	1.824
N4- Al35	1.814	1.814	N16- Al40	1.812	1.835
N4- Al37	1.812	1.813	N16- Al47	1.820	1.813
N4- Al45	1.818	1.820	N16- Al48	1.814	1.809
N5- Al30	1.016	1.016	N17- Al39	1.814	1.809
N5- Al46	1.813	1.815	N17- Al40	1.812	1.835
N5- AI52	1.807	1.805	N17- Al41	1.820	1.813
N6- AI51	1.812	1.813	N18- Al36	1.814	1.811
N6- AI52	1.814	1.814	N18- Al38	1.813	1.811
N6- AI53	1.818	1.820	N18- Al41	1.819	1.824
N7- Al43	1.821	1.821	N19- H32	1.016	1.016
N7- Al45	1.813	1.815	N19- Al48	1.813	1.815
N7- AI53	1.813	1.815	N19- Al54	1.807	1.807
N8- Al37	1.815	1.812	N20- Al46	1.813	1.811
N8- Al42	1.821	1.823	N20- Al47	1.819	1.824
N8- Al43	1.813	1.811	N20- Al54	1.814	1.811
N9- H26	1.016	1.016	N21- Al41	1.814	1.812
N9- Al34	1.806	1.807	N21- Al44	1.821	1.817
N9- Al37	1.813	1.813	N21- Al47	1.814	1.812
N10-H29	1.016	1.016	H22- Al36	1.584	1.585
N10- Al49	1.806	1.807	H25- Al34	1.584	1.586
N10- Al51	1.813	1.813	H27- Al35	1.584	1.585
N11- Al43	1.813	1.811	H28- Al52	1.584	1.585
N11- Al50	1.821	1.823	H31- Al54	1.584	1.585
N11- Al51	1.815	1.812	H33- Al49	1.584	1.586
N12- Al40	1.821	1.860	Al40- O55	-	2.007
N12- Al42	1.814	1.807	H56- O55	-	0.969
N12- Al50	1.814	1.807	H57- O55	-	0.972

Table 1: Bond length (Angstrom) of perfect and H2O-attach in (3,3)armchair model of AINNTs.

Bond length	Zigzag Perfect	Zigzag H ₂ O attach	Bond	Zigzag Perfect	Zigzag H ₂ O attach
N1- H33	1.019	1.019	N14- Al59	1.807	1.783
N1- Al55	1.815	1.816	N15- Al47	1.815	1.816
N1- AI56	1.815	1.816	N15- Al48	1.815	1.815
N2- AI53	1.816	1.818	N15- Al49	1.811	1.835
N2- AI54	1.816	1.818	N16- Al37	1.818	1.817
N2- AI56	1.807	1.806	N16- Al38	1.818	1.815
N3- Al45	1.815	1.816	N16- Al47	1.814	1.819
N3- Al46	1.815	1.815	N17- H36	1.019	1.017
N3- AI54	1.811	1.810	N17- AI57	1.815	1.823
N4- AI40	1.818	1.818	N17- AI59	1.815	1.806
N4- Al41	1.818	1.818	N18- AI50	1.816	1.821
N4- Al46	1.814	1.814	N18- AI52	1.816	1.815
N5- H31	1.019	1.019	N18- AI57	1.807	1.806
N5- AI56	1.815	1.816	N19- Al43	1.815	1.808
N5- AI58	1.815	1.814	N19- Al47	1.815	1.816
N6- AI51	1.816	1.821	N19- AI50	1.811	1.808
N6- AI53	1.816	1.817	N20- AI38	1.818	1.818
N6- AI58	1.807	1.805	N20- AI39	1.818	1.815
N7- Al44	1.815	1.816	N20- AI43	1.814	1.814
N7- Al46	1.815	1.815	N21- H34	1.019	1.019
N7- AI53	1.811	1.812	N21- AI55	1.815	1.816
N8- Al41	1.818	1.816	N21- AI57	1.815	1.814
N8- AI42	1.818	1.818	N22- AI52	1.816	1.819
N8- AI44	1.814	1.814	N22- AI54	1.816	1.817
N9- H32	1.019	1.018	N22- AI55	1.807	1.806
N9- AI58	1.815	1.821	N23- Al43	1.815	1.817
N9- AI60	1.815	1.806	N23- AI45	1.815	1.815
N10- Al49	1.816	1.866	N23- AI52	1.811	1.812
N10- Al51	1.816	1.800	N24- AI39	1.818	1.819
N10- Al60	1.807	1.788	N24- AI40	1.818	1.817
N11- Al44	1.815	1.809	N24- Al45	1.814	1.814
N11- Al48	1.815	1.816	H25- Al42	1.582	1.584
N11- Al51	1.811	1.809	H26- Al41	1.582	1.583
N12- Al37	1.818	1.818	H27- Al40	1.582	1.583
N12- Al42	1.818	1.815	H28- Al37	1.582	1.583
N12- Al48	1.814	1.818	H29- Al39	1.582	1.583
N13- H35	1.019	1.020	H30- AI38	1.582	1.584
N13- Al59	1.815	1.856	O61- H62	-	0.973
N13- Al60	1.815	1.856	O61- H63	-	1.014
N14- AI49	1.816	1.851	O61- Al49	-	2.001
N14- AI50	1 816	1 796	-		

Table 2: Bond length (Angstrom) of perfect and H_2O -attach in (6,0) zigzag model of AINNTs

Armchair	Perfect		H ₂ O-Attach	
(3,3) AINNTs	CS	CS ^A	CS	CS ^A
N1	197.13	51.19	196.60	52.62
N2	168.67	17.88	167.37	18.48
N3	168.67	17.88	167.37	18.48
N4	173.03	26.75	171.96	27.96
N5	197.13	51.19	196.60	52.62
N6	173.03	26.75	171.96	27.96
N7	174.42	18.33	173.34	19.97
N8	168.06	17.96	169.98	17.97
N9	197.35	52.36	197.45	52.52
N10	197.35	52.36	197.45	52.52
N11	168.06	17.96	169.98	17.97
N12	173.97	18.55	182.52	11.80
N13	172.17	27.57	170.07	27.18
N14	197.60	52.17	196.32	51.96
N15	172.17	27.57	170.07	27.18
N16	169.41	17.48	172.20	20.31
N17	169.41	17.48	172.21	20.31
N18	171.39	27.42	171.36	24.20
N19	197.60	52.17	196.32	51.96
N20	171.39	27.42	171.36	24.20
N21	173.25	18.15	176.97	22.03
Al34	440.31	23.56	441.21	26.25
AI35	440.89	23.50	439.89	22.62
Al36	440.56	23.68	441.31	26.86
AI37	460.26	34.20	459.95	35.98
AI38	460.01	33.36	459.91	34.69
AI39	460.13	34.59	456.30	43.51
AI40	458.14	49.13	501.36	66.87
AI41	460.16	48.47	457.69	43.02
AI42	460.12	48.38	460.00	57.13
AI43	458.86	48.26	457.14	48.60
AI44	458.65	48.22	458.95	44.57
AI45	459.55	49.69	460.00	46.16
AI46	460.01	33.36	459.90	34.69
AI47	460.16	48.47	457.69	43.02
AI48	460.13	34.59	456.29	43.51
AI49	440.31	23.56	441.21	26.25
AI50	460.12	48.38	460.00	57.13
AI51	460.26	34.20	459.95	35.98
AI52	440.89	23.50	439.89	22.62
AI53	459.55	49.69	460.00	46.16
AI54	440.56	23.68	441.31	26.87
055	-	-	284.40	52.92
H56	-	-	29.09	21.59
H07	-	-	20.52	14.05

Table 3: Isotropic Chemical Shift (ppm) and Anisotropic Chemical Shift (ppm) values for various nucleus of perfect and H_2O -attach in (3,3) armchair model of AINNTs

Zigzag (6,0)		Perfect	H ₂ O-/	Attach
AINNTs	CS	CS ^A	CS	CS ^A
N1	221.23	30.27	219.98	35.20
N2	183.63	28.82	182.47	29.86
N3	173.32	27 71	172 12	28.12
N4	137 58	67.26	137.08	67 16
N5	221 44	28.42	221.69	27.85
N6	183.28	30.43	184 64	24.58
N7	173 94	26.84	174.65	26.59
N8	137 18	67.86	138.00	66.83
NG	221 44	28.42	219 72	27 75
N10	183.63	28.82	177 58	31.01
N11	173.04	26.84	17/ 08	25.45
N12	137 58	67.26	134 61	67.96
N12	221.23	30.27	220.80	21 98
N14	183.63	28.82	181.62	21.50
N15	173.32	20.02	178.07	25.82
N16	127 59	67.26	124 72	20.02
N17	221 44	29.42	221.02	27.26
	102 20	20.42	194.61	27.30
N10	172.04	26.94	175.40	20.10
N 19 N 20	173.94	20.04	170.40	23.00
	137.10	07.00	130.20	07.03
	221.44	20.42	221.41	27.00
	103.03	20.02	102.22	29.90
NZ3	173.94	20.84	174.38	20.75
	137.30	07.20	137.02	07.20
AI37	437.37	9.08	435.55	9.54
A138	437.52	9.08	439.17	12.12
AI39	437.52	9.08	437.44	9.85
AI40	437.37	9.08	437.16	8.70
AI41	437.52	9.08	437.35	9.54
AI42	437.52	9.08	439.06	11.79
AI43	454.53	28.30	454.56	31.62
AI44	454.53	28.30	454.53	30.85
AI45	454.40	28.19	453.75	27.87
AI46	454.40	28.19	453.88	28.00
AI47	454.40	28.19	454.61	37.07
AI48	454.40	28.19	453.47	37.33
A149	454.54	36.33	498.05	65.52
AI50	454.01	36.68	455.23	42.03
AI51	454.01	36.68	454.57	42.82
AI52	454.01	36.68	454.06	37.68
AI53	454.01	36.68	454.12	38.15
AI54	454.54	36.33	453.44	37.16
AI55	450.48	34.89	449.38	37.32
AI56	450.48	34.89	449.33	37.23
AI57	450.67	35.40	453.07	46.78
AI58	450.67	35.40	452.91	46.30
AI59	450.48	34.89	444.45	63.48
AI60	450.48	34.89	442.35	62.81
O61	-	-	255.67	33.97
H62	-	-	30.11	15.86
H63	-	-	23.43	24.80

Table 4: Isotropic Chemical Shift (ppm) and Anisotr	opic Chemical Shift (ppm)
values for various nucleus perfect and H ₂ O-attach in ((6,0) zigzag model of AINNTs

CS^A in zigzag (6,0) AINNTs in perfect and h20 attach

Obtained results for CS^A value in AINNTs in zigzag (6,0) model are similar to armchair model. However obtained values have few differences (Table 4). For 7N nucleus in AINNTs, before attaching of H₂O group, CS^A value for 7N7,7N11,7N19 and 7N23 nucleuses is similar to each other and it's 26.84 ppm that is minimum amount of CS^A. But when H₂O is attached to AINNTs structure, minimum amount of CS^A for ⁷N13 nucleus is 21.98 and maximum amount of CSA is in 7N16 nucleus. Obtained results are shown that, attaching of H₂O group has no effect on ⁷N nucleus. However investigating of ¹³Al nucleus before attaching of H₂O group is shown that minimum amount of CS^A in ¹³AI37, ¹³AI38, ¹³AI39, ¹³AI40, ¹³AI41 and ¹³AI42 is 2.08 ppm and ¹³Al50, ¹³Al 51, ¹³Al52 and ¹³Al53 nucleuses (36.68 ppm) have maximum amount of CS^A (Fig 3). But after addition of H₂O, this process is changed. In ¹³Al49 nucleus that attached to Oxygen of H₂O group directly, has maximum amount of CS^A and it's 65.52 ppm but in ¹³Al40 nucleus, minimum amount of CS^A is 8.70 ppm. However, CS^A value for ⁸O61 is 33.97 ppm. For AINNTs in zigzag (10,0) model, CS^A value for ¹³Al nucleus is in range of 16 to 29 ppm and for ¹H nucleus is in range of 19 to 63 ppm that is in agreement to other results¹³⁻²⁰.

CONCLUSION

→ In perfect state, for each armchair and zigzag models, regular and symmetric processes

exist for bond length and NMR parameters, that by attaching H_2O group, this regular changing will be changed and range of this changes increased regard to perfect state.

- → Investigating of CS¹ value in different state is shown that by addition of H_2O group, this parameter is changed and CS¹ value for ¹³Al nucleus in AINNTs is more than ⁸O and ⁷N nucleuses.
- → Investigating of CS^A process is shown that, this variation after attaching of H₂O in AINNTs zigzag (6,0) model is more than AINNTs armchair (3,3). However, by attaching of H₂O group, CS^A in different nucleus is changed strongly in armchair and zigzag models.
- → When hydrogen atom in H₂O group being near to AINNTs structure, structural parameters are changed that is because of attraction effects of two hydrogen atoms and tendency for formation hydrogen bond.
- → In final by attaching of H₂O group to AINNTs, electronic density, CS^A and CS^I value in various nucleuses, bond lengths and bond angles is changed and have more affected on nucleus that attach to H₂O group directly.

ACKNOWLEDGEMENTS

This work was supported by Islamic Azad University Shahre-rey branch and Payame Noor University (PNU), Shiraz branch.

REFERENCES

- 1. H.W. Kroto, J.R. Heath, S.C. Obrein, R.F. Crul, R.E. Smalley, *Nature*, **318**: 162 (1985).
- 2. S. lijima, *Nature*, **354**: (1991) 56.
- G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zetel, *Science*, **296**: 966 (1995).
- M.M. Radhi, W.T. Tan, M.Z.B. Rahman and AB Kassim. *Orient J. Chem.* 26(3): 805-812 (2010).
- Mehdi Vadi, Orient J. Chem. 28(1): 343-348 (2012).

- 6. Supachia Sompach and Apinon Nuntiya, *Orient J. Chem.* **28**(1): 319-325 (2012).
- M. Zhao, Y. Xia, D. Zhang, L. Mei, *Phys. Rev.* B, 68: 235415 (2003).
- D. Zhang, R.Q. Zhang, *Chem. Phys. Lett*, **371**: 426 (2003).
- R.R. Zope, B.I. Dunlap, *Phys. Rev. B*, **72**: 045439 (2005).
- F.A. Bovey, Nuclear Magnetic Resonance Spectroscopy, Academic Press, San Diego, (1988).

- M. Mirzaei, N.L. Hadipour, *J. Phys. Chem. A*, 16.
 110: 4833 (2006).
- M. Mirzaei, N.L. Hadipour, *Chem. Phys. Lett*, 438: 304 (2007).
- 13. M. Mirzaei, A. Seif, N.L. Hadipour, *Chemical Physics Letters*, **461** 246 (2008).
- A. Seif, M. Aghaie, K. Majlesi, Journal of Molecular Structure: *THEOCHEM*, 862: 118 (2008).
- 15. M.J. Frisch *et al.*, GAUSSIAN 09. Gaussian, Inc., *Pittsburgh*, PA, (2010).

- K. Wolinski, J.F. Hinton, P. Pulay, *J. Am. Chem. Soc*, **112**: 8251 (1990).
- 17. F.J. London, *Phys. Radium*, **8**: 397 (1937).
- 18. R. Ditchfield, Mol. Phys, 27: 789 (1974).
- R.S. Drago, *Physical Methods for Chemists,* Second ed, Saunders College Publishing, Florida, (1992).
- 20. U. Haeberlen, in: J.S. Waugh (Ed.), *Advances in Magnetic Resonance*, Academic Press, New York, (1976).s

714