

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

ISSN: 0970-020 X CODEN: OJCHEG 2013, Vol. 29, No. (3): Pg. 1199-1202

www.orientjchem.org

Comprative Infrared Studies of Cerium and Thorium Soaps

RAMAKANT SHARMA

Department of Chemistry, Ambah P.G. Ambah Morena, India.

DOI: http://dx.doi.org/10.13005/ojc/290352

(Received: July 12, 2013; Accepted: August 04, 2013)

ABSTRACT

Infrared spectra tests have shown that fatty acids exist with a dimeric structure through hydrogen bonding between two molecules of fatty acids whereas metal-to-oxygen bonds in metal soaps have an ionic character but the bonds are not purely ionic.

Key words: Infrared, Cerium, Thorium, Soaps.

INTRODUCTION

In spite of much work reported on alkali, alkaline earth and transition metal soaps, only few references¹⁻¹⁸ are available on tare earth metal soaps which have found wide application in industry. The present work was carried out with a view to investing the characteristics and structure of cerium and thorium soaps in the solid state by using infrared.

EXPERIMENTAL

The fatty acids were purified by distillation under reduced pressure. Cerium and thorium (vi) soaps (laurate and myristate) were prepared the metathesis of an aqueous solution of cerium nitrate and thorium nitrate with a hot solution of the corresponding sodium soap. The precipitated soaps were filtered and washed with distilled water, alcohol and finally with acetone. The metal soaps thus obtained were first dried in an air oven and finally under reduces pressure and were further purified by recrystallization. The melting points of purified cerium and thorium soaps were laurate 44°C and myristate 54°c. The soaps were analysed for carbon, hydrogen and metal contents and the result were found to be in agreement with the theoretically calculated values.

The infrared absorption spectra of lauric and myristic acids and their corresponding cerium and thorium soaps were determined using a Perkin-Elmer model 577 grating spectrophotometer in the region 4000-400 cm⁻¹ using the potassium bromide disc method.

RESULTS AND DISCUSSION

Infrared absorption spectra

The infrared spectral data of cerium and thorium soaps are listed in table 1,2,3,4 and compared with that of their corresponding fatty acids. The fatty acids (lauric and myristic acid) display a very broad intense peak due to -OH stretching near 2660-2650 cm⁻¹. The appearance

S. No.	Assignments		lauric acid	Sodium Iaurate	Cerium Iaurate
1.	CH ₂ C- H asym, st	retch,	2960vw	2940vw	2960w
2.	CH C- H asym, st	retch,	2920vs	2910M	2940vs
3.	CH, C-H sym stre	tch,	2855s	2840Ms	2880s
4.	OH stretch,		2660vs	-	-
5.	C = 0 stretch,		1680s	-	-
6.	COO ⁻ , C-O asym,	stretch,	-	1550vs	1540vs
7.	CH ₂ deform,		1470M	1460w	1470vw
8.	COO⁻, C-O sym, s	tretch	-	1430w	1450vw
9.	C-O stretch, O-H i	n - plane deform	-	1430Ms	-
10.	CH ₂ , (Adjacent to	COOH group) deform	1405vs	-	-
11.	CH, Sym, deform		1350w	1330w	1340Br
12.	Progressive bands (CH, twisting and wagging)		g) 1270-1220W	1300-1200W	1310-1200W
13.	CH ₃ Rocking	2	1110W	1100vw	11105
14.	OH, out-of-plane	deform	930vs	-	-
15.	CH ₂ ,Rocking		730vs	720vs	730Ms
16.	COOH, bending mode		690M	-	-
17.	COOH, wagging mode		550m	-	-
18.	Ce-O bond		-	-	450s
Key to abbreviation : MS = Medium strong M = Medium BR = Broad		MS = Medium strong BR = Broad	S = strong VS = Very Strong W=Weak VW= Very Weak		

Table 1: Fred	uencies (cm⁻¹) of	Absorptio	on maxima	with their	Assignments
	achieles (, , , ,	Absolptiv	on maxima	with their	Assignments

Table 2: Frequencies (cm⁻¹) of Absorption maxima with their assignments

S. No	Assignments	Myrestic Acid	Sodium myrestate	Cerium myrestate
1.	CH ₃ , C-H asym stretch,	2960W	2940W	2920VW
2.	CH_2 , C-H asym stretch,	2920VS	2920VS	2900W
3.	CH_2 , C-H sym stretch,	2850S	2890S	2840MS
4.	OH, stretch,	2650W	-	-
5.	C = 0 stretch,	1700VS	-	-
6.	COO⁻, C-O asym, stretch,	-	1600VS	1650M
7.	CH ₂ deform,	1470 1>1	1475MS	1455VW
8.	COO⁻, C-O sym, stretch,	-	1430MS	1430VW
9.	C-O stretch, O-H in-plane deform	1440M	-	-
10.	CH, (Adjacent to COOH group)	1405 W	-	-
11.	CH sym, deform,	1350W	1330W	1320W
12.	Progressive bands (CH, twisting and wagging)	1350 J-1090 W	1375 - 1200W	1300 -1160S
13.	CH, Rocking	1110 VW	1 110 VW	1090VS
14.	OH, Out-of- plane deform	9505	-	-
15.	CH2/Rocking	720W	720MS	720VS
16.	COOH, bending mode	690MS		
17.	COOH, Wagging mode,	550ws	-	-
18.	0-0 bond	-	-	440VS

Key to abbreviation :

S = strong VS = Very Strong W=Weak VW= Very Weak

BR = Broad

1200

MS = Medium strong

S. No.	Assignments	lauric acid	Sodium laurate	Cerium Iaurate
1.	CH ₃ , C-H asym, stretch,	2960VW	2940VW	2960VW
2.	CH_{2} , C-H asym, stretch,	292NS	29101M	2920VS
3.	CH ₂ C- H sym, stretch,	2855S	2840MS	2850VW
4.	OH, stretch	2660VS	-	-
5.	C = 0 stretch	1680S	-	-
6.	COO⁻, C-O asym, stretch,	-	1550VS	1530VW
7.	CH ₂ deform	1470M	1460W	1455VW
8.	COO, C-O sym stretch	-	1430W	1400S
9.	C-O stretch, O-H in-plane deform	1430 MS	-	-
10.	CH ₂ , (Adjacent to COOH group) deform	1405 VS	-	-
11.	CH3 ,sym- deform	1350W	1330W	1330VW
12.	Progressive bands (CH ₂ twisting and Wagging)	1270-1220W	1300 -1200W	1315-1235VW
13.	CH3 Rocking	1110W	1100VW	1110VW
14.	OH, out-of-plane deform	930VS	-	-
15.	CH ₂ Rocking	730VS	720VS	720MS
16.	COOH bending mode	690M	-	-
17.	COOH Wagging mode	550M	-	-
18.	Th-O bond	-	-	450W
BR = I	Broad W=Weak VW= Very W Table 4: Frequencies (cm ⁻¹) of Absorption	eak n maxima with	their assignme	nts
S. No	Assignments	Myrestic Acid	Sodium myrestate	Cerium myrestate
Ι.	CH _a ,C-H asym stretch	2960W	2940W	2940VW
2.	CH, C-H asym stretch	2920VS	2920 VS	2910S
3.	CH, C- H asym stretch	2850S	2890S	2840VS
4.	OH, stretch	2650W	-	-
5.	C = 0 stretch	700VS	-	-
6.	COO⁻, C-O asym deform	-	1600VS	1550VW
7.	CH, deform	1470M	1475 MS	1460VW
8.	COO C-O svm stretch	-	1430MS	1415Br
9.	C-O stretch O-H in-plone deform,	1440M		-
10.	CH _a (Adjacent to COOH group) deform	1405W	-	-
11.	CH _a ,sym deform	1350W	1330W	1360VW
12.	Progressive bands (CH, twisting and Wagging)	13501090 W	13751200W	13601060VW
13.		10001000 10		
14.	CH _a Rocking	1110VW	1110 VW	1 11 OMS
	CH ₃ Rocking OH out-of-plane deform	1110VW 950S	1110 VW -	1 11 OMS -
15.	CH ₃ Rocking OH out-of-plane deform CH ₂ Rocking	1110VW 950S 720W	1110 VW - 720MS	1 11 OMS - 720S
15. 16.	CH ₃ Rocking OH out-of-plane deform CH ₂ Rocking COOH bending mode	1110VW 950S 720W 690MS	1110 VW - 720MS -	1 11 OMS - 720S -

Table 3: Frequencies (CM⁻¹) Absorption Maxima with their Assignments.

Key to abbreviation :MS = Medium strongS = strongVS = Very StrongM = MediumBR = BroadW=WeakVW= Very Weak

-

18.

Th-O bond

440VS

-

of the absorption band near 1700-1680 cm⁻¹ in the spectra of fatty acids indicates that the fatty acids exist as dimmers¹⁷. One of the characteristic bands of dimeric carboxylic acids from the out-of- Plane Bending –OH group appearing near 950-930 cm⁻¹. The absorption maxima near 690 cm⁻¹ and 550 cm⁻¹ in the spectra of fatty acids are associated with carboxyl group bending and wagging modes.

In cerium and thorium (iv) Soaps, two absorption bands are observed near 1440-1410 cm⁻¹and 1610-1540 cm⁻¹ instead of one strong absorption band corresponding to carboxyl group observed near 1700 cm⁻¹ in the spectra of fatty acids. These bands correspond to symmetric and antisymmetric stretching vibrations of the carboxylate ion as pointed out by Duval, Lecomte and Douville¹⁷. The complete disappearance of the carboxyl frequency in the spectra of cerium and thorium soaps indicates that there is a complete resonance in the tow C-O bonds of the carboxyl group of the soap molecules. The metal –to- oxygen bond in cerium and thorium soaps in not purely ionic but is partially covalent in character. The bond observed at 440 cm⁻¹ in the spectra of cerium and thorium soaps corresponds to the Ce-0,Th-O bond. The absorption bands observed near 2650,940,690 and 550 cm⁻¹ which are associated with the carboxyl group of fatty acids, disappear completely in the spectra of cerium and thorium soaps.

The result confirm that the fatty acids in solid state exist with dimeric structure through hydrogen bonding between two molecules of fatty acids whereas metal-to-oxygen bonds in metal soaps are ionic in character but the bonds are not purely ionic.

REFERENCES

- 1. N. Mehrotra, A.S. Gahlot and Meera Sharma: J. Am. Oil Chemists Soc. 63: 1571 (1986).
- L.W. Rayan and W.W. Plechner: *Ind. Eng. Chem.*, 26: 909-10 (1934).
- 3. H.W. Chatfield: Pa Manuf., 6: 112-14 (1936).
- 4. Titanium Pigment *Co. Inc. Brit.* 395-406 (1933).
- 5. J. H. Skellon and J.W. Spence : *J. Soc. Chem. Ind. London*, **67**: 365-68 (1948).
- J.H. Skellon and J.W. Spence: J. Appl. Chem. London 3: 10-14 (1953).
- J.H. Skellon and K.E. Andrews: J. Appl. Chem. London, 5: 245-50 (1955).
- G. Marwedal: *Farbe u. lack* 60: 530-37 (1954);
 62: 92-96 (1956).
- S.N. Misra, T.N. Misra and R.C. Mehrotra: *J. Inorg. Nucl. Chem.*, **25**: 195-199, 201-203 (1963).
- 10. A.M. Bhandari, S. Dubey and R.N. Kapoor: *J.Am. Oil Chemists' Soc.*, **4**: 47 (1963).
- 11. R.C. Mehrotra: wiss. Z. Friedrich Schiller Univ.,

Jena Mitt. Naturwiss. 14(2): 171-80 (1965).

- 12. F.Mains, D. Mills and D.W. White: U.S.**3**: 320, 172 (1967)
- A.K. Solanki and A.M. Bhandari: *Tenside* Detergents. **18**(1): 34-36 (1981).
- 14. R.P. Varma and R. Jindal: *Tenside Detergents*, **20**(4): 193-195 (1983).
- L.D. Skrylev, V.F. Sazonna, M.E. Kornelli and N.A. Shumitina: *Khim. Khim, Tekhnol.* 21(4): 491-93 (1987).
- R.J. Dyer: "Applications of absorption spectroscopy of organic compounds " Prentice hall of India Private Ltd. New Delhi, P. 46 (1969).
- A.A. Ghoneima and S.A. Mohamed, *Orient J. Chem.*, **29**(2): 525-531 (2013).
- C. Duval, J. Lecomte and F. Douville: Ann. Phys., 17: 5 (1942).
- R.D. Vold and G.S. Hattiangdi: *Ind. Eng. Chem.*, 41: 2311 (1949).