

ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal

International Open Free Access, Peer Reviewed Research Journ

ISSN: 0970-020 X CODEN: OJCHEG 2013, Vol. 29, No. (3): Pg. 1121-1128

www.orientjchem.org

Theoretical Study Intramolecular Hydrogen Bond in Acetylacetone 3-substituted Derivatives: NMR, NBO analysis and Thermo-chemical Investigation

SEYED ABDOLLAH SEYED KATOULI^{1*}, MASOOME SHEIKHI², DAVOOD SHEIKH³ and SAYYED FARAMARZTAYYARI⁴

¹Department of Chemistry, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran. ²Department of Chemistry, Gonbad Kavoos Branch, Islamic Azad University, Gonbad Kavoos, Iran ³Young Researchers & Elites Club, Hamedan Branch, Islamic Azad University, Hamedan, Iran. ⁴Department of Chemistry, University of Ferdowsi, Mashhad 91774-1436, Iran. *Corresponding author E-mail address: Aliabadpnu@yahoo.com

DOI: http://dx.doi.org/10.13005/ojc/290338

(Received: July 12, 2013; Accepted: August 04, 2013)

ABSTRACT

The strength of the O–H···O hydrogen bridge in acetylacetone (AA) and acetylacetone derivatives is depending on the nature and size of the substitute groups and on the substitution position. We investigated the effect of electron-pull and electron-donor substitute on the formation of intramolecular hydrogen bonding at 3-substituted acetylacetone derivatives such as nitroacetylacetone (NAA) and methylacetylacetone (MAA). In this research NAA and MAA structures were fully optimized with B3LYP/6-31G*, 6-31G** and 6-311G**. From the electronic data we found that intramolecular hydrogen bonding in NAA is stronger than MAA.

Key words: Intramolecular hydrogen bond; Acetylacetone; Electronic data parameters.

INTRODUCTION

Hydrogen bonding is one of the most important phenomena in chemistry because it is crucial to understand many different interactions both in the gas phase and in condensed media^{1,2}. In a particular arrangement, which is represented by the intramolecular hydrogen bonds, two ends of the same molecule interact, resulting in a ring like structure. The properties of intramolecular hydrogen bond very often differ from those of intermolecular hydrogen bond and a number of regularities and relationships resulting from a general theory of hydrogen bond cannot be fulfilled in the case of intramolecular hydrogen bond. Intramolecular hydrogen bonding has a large impact on the reactivity of molecules.

One of the more significant structures capable of bearing hydrogen bonds is the O–H…O unit, which is the most widely studied and documented in this respect³⁻⁶. Acetylacetone

(pentane-2,4-dione, here labelled AA) is one of the simplest members of β-diketones, which has been extensively studied both experimentally and theoretically⁷⁻¹⁰. AA is postulated to have unusually strong H-bonds (O-H···O type) in their cyclic, conjugated enolic forms (Figure 1). The strength of the O-H-O hydrogen bridge in acetylacetone and acetylacetone derivatives is depending on the nature and size of the substitute groups and on the substitution position^{5,6,11}. Several experimental data suggest that the strength of such a bridge is enhanced when the H atom in position 3 is substituted by electron-withdrawing groups¹²⁻¹³, and it increases strongly when very cumbersome substituents are involved because steric interactions push the two oxygen atoms closer to each other14-18.

The *ab initio* calculations using the Møller– Plesset approach indicate that strengthening of the hydrogen bridge, on passing from the parent (AA) to the 3-substituted derivatives, is not so relevant as expected on the ground of literature data, the maximum increase being about 21 kJ mol⁻¹ (in 3-*t*butyl-acetylacetone)¹⁹.

MATERIAL AND METHODS

Ab initio calculations were carried out for nitroacetylacetone (NAA) and methylacetylacetone (MAA) using the Gaussian 98 program (Figure 2). We optimized the geometries of NAA and MAA to calculate ground state properties Becke's three parameter hybrid method (Becke, 1988) with the Lee *et al.* (1988)²⁰ correlation functional methods (B3LYP) and the following 6-31G*, 6-31G** and 6-311G** basis set. The Gaussian program does semiempirical and *ab initio* calculations.

We chose B3LYP as according to Monajjemi *et al.*²¹⁻²² this method is appropriate for calculating NMR properties

Important information that can be gleaned from these calculations is the Hartree-Fock energy ("E), Atomic charge and Dipole moment (Debye). We used Gaussian98 at the NMR shift calculation using the B3LYP and 6-31G*, 6-31G** and 6-311G** basis set, as these calculations provide valuable information for exploring the experimental NMR chemical shifts. The chemical shielding refers to the phenomenon which associated with the secondary magnetic field created by the induced motions of the electrons that surrounding the nuclei when in the presence of an applied magnetic field for chemical shielding (CS) tensors, which describes how the size of shielding varies with molecular orientation. The two values of the shielding tensor are frequently expressed as the isotropic value (σ_{iso}), the anisotropy shielding (σ_{aniso}) and the other parameters²³⁻²⁴.

The calculations also provide valuable information for exploring the thermodynamic parameters. Geometry optimization in NAA and AA was performed at the B3LYP method and using and 6-31G*, 6-31G** and 6-311G** basis set. We obtained the energy (Δ E), enthalpies (Δ H), Gibbs free energy (Δ G), entropies (Δ S) of NAA and MAA²⁵⁻²⁶.

We also studied electronic structures of NAA and MAA using Natural Bond Orbital (NBO) analysis at the same levels that were mentioned above in gas phase. A full NBO analysis is obtained in Gaussian 98²⁷⁻²⁹. The main listing of NBOs, displaying the form and occupancy of the complete set of NBOs that span the input AO space and for each orbital gives the type of orbital and the occupancy²⁹⁻³¹.

RESULTS AND DISCUSSION

NMR parameters

In this section we report and analyze NMR shielding tensors of 1H, 13C, 17O-NMR such as isotropic shielding $(\sigma_{_{\text{iso}}})$ and anisotropic shielding (σ_{aniso}) of MAA and its NAA, which obtain at B3LYP level using 6-31G*, 6-31G** and 6-311G** basis set in gas phase. The NMR technique is based on the sensitivity of magnetic properties. The calculation of NMR parameters using ab initio methods has important role in the molecular structure investigation. The quantitative knowledge of chemical shielding anisotropy (CSA) tensors is important in the context of bimolecular applications of nuclear magnetic resonance (NMR). In our current research, we have presented the results of our studies the intramolecular hydrogen bonding effects on the 1H, 13C, 15N-NMR shielding tensors of MAA and NAA. According to our theoretical data, it is apparent that the intramolecular hydrogen bonding effects seem quite significant. The ¹H, ¹³C, ¹⁷O-NMR parameters of MAA and NAA are given in Table 1. According to Table 1, at three levels are shown the isotropic shielding value (σ_{iso}) and anisotropic shielding value (σ_{aniso}) for C₂, C₃, C₄, O₇, O_a and the hydrogen atom that in the intramolecular hydrogen bond formation is involved (H₁₇ in NAA and H₁₈ in MAA). The calculated results in Table 1 showed that isotropic shielding value ($\sigma_{\rm iso}$) for H₁₇ atom of NAA is smaller than H₁₈ atom of MAA, while anisotropic shielding value ($\sigma_{\rm aniso}$) for H₁₇ atom of NAA is greater than H₁₈ atom of MAA. In fact, H₁₇ in

		B3LYP/6-31G*			1	B3LYP/6-31G**			B3LYP/6-311G**				
		গেso (ppm)	জনা so (ppm)	Atomic charge	μ	जिऽ० (ppm)	rainiso (ppm)	Atomic charge	и	also (ppm)	Øiniso (ppm)	Atomic charge	
NAA	C2	-2.866	117.592	0.466		-2.681	117.713	0.440		-23.672	125.896	0.270	
	Ca	16.573	57.621	0.098		16.412	57.596	0.093		-4.042	66.972	-0.061	
	C ₄	37.942	116.302	0.404	5	38.115	116.346	0.396	22	17.029	126.694	0.238	9
	O 7	215.491	81.694	-0.565	1.4.1	219.306	82.815	-0.498	1.4	207.217	80.735	-0.290	1.4
	OI	-259.85	796.669	-0.546		-259.61	796.163	-0.543		-323.55	858.484	-0.386	
	H ₁₇	26.060	14.508	0.464		25.030	15.432	0.394		25.252	14.907	0.277	
MAA	C2 C3	-15.178 61.143	145.538 75.100	0.415 0.016		-14.935 61.242	145.213 75.307	0.395 -0.016		-36.144 43.765	156.314 82.358	0.249 -0.288	
	C ₄	43.940	97.228	0.346	56	44.084	97.163	0.340	91	22.792	107.138	0.222	13
	O 7	206.316	92.266	-0.598	3.10	210.177	94.675	-0.525	3.21	196.070	97.894	-0.326	3.2
	OI	-285.21	874.020	-0.556		-284.93	873.502	-0.559		-350.53	939.402	-0.409	
	H_{18}	26.073	13.069	0.450		25.098	13.988	0.374		25.319	13.496	0.269	

Table 1: NMR parameters, atomic charge and dipole moment (1/4) for NAA and MAA with three levels

Table 2. Relative thermochemical parameters (energy ΔE kcal/mol, enthalpy ΔH kcal/mol, and Gibbs free energy ΔG kcal/mol, and entropy ΔS cal/ (molK),of NAA and MAA obtained in gas phase using three level

	Level	∆E(kcal/mol)	∆G(kcal/mol)	∆H(kral/mol)	∆S(cal/moIK)	Cv(cal/moIK)
NAA	B3LYP/6-31G*	-345175.919	-345203.999	-345175.326	96.169	37.216
	B3LYP/6-31G**	-345184.691	-345212.762	-345 184.098	96.141	37.182
	B3LYP/6-311G**	-345275.530	-345303.322	-345274.930	95.227	37.154
MAA	B3LYP/6-31G*	-241527.529	-241554.297	-241526.936	91.768	32.724
	B3LYP/6-31G**	-241538.973	-241565.844	-241538.380	92.112	32.695
	B3LYP/6-311G**	-241599.620	-241625.524	-241599.028	88.868	32.596

Table 3: Bond lengths (r, A f) for NAA and MAA

			NAA		MAA					
	C 2 C 8	$C_2 - O_8$	C., C.	CO,	0,-H p	C 2 C 8	$C_2 - O_8$	c.c.	C,-O,	O3-H18
B3LYP/6-31G*	1.468 242	1.2 5098 3	1.40189	130950	1.028181	1.4 🖸 308	1258467	1382302	1.327 463	1.01488 1
B3LYP/6-31G**	1.458 519	1255806	1.40623.4	1308652	1.044009	1,448 367	1.2 56 597	1384689	1329 006	1.022718
B3LYP/6-311G**	1.460986	1245878	1.398 16 9	130542 5	1.02 548 1	1.721367	1 2 1396 5	1329665	1.414252	0.993064

NAA is more influenced by the magnetic field and is deshielder than H_{18} . Also listed in Table 1 show that dipole moment of MAA is more than that NAA.

According to Table 1, in both structures the atomic charge of O_7 atom is negative value whereas H_{17} and H_{18} atoms have positive values. Our obtained results from the analysis of the calculated values yielded strong evidence that existence of electron-pull and electron-donor substitute effect on the C_3 atom and intramolecular hydrogen bonding effect play very important role in determining the ¹H, ¹³C, ¹⁷O -NMR chemical shielding tensors of NAA and MAA. With B3LYP/6-31G* level, atomic charge O_7 and H_{17} in NAA is -0.565 and 0.465 whereas atomic charge O_7 and H_{18} in MAA is -0.598 and 0.450, respectively. Electronic effects plays important role in determining the chemical shielding tensors. The electron-donor substitutes increase electronic density and shielding value, while electron-pull substitutes decrease electronic density and shielding value. O₇ in NAA has low atomic charge rather than O₈ in MAA, there for H₁₇ in NAA is free and contribute in formation of intramolecular hydrogen bonding. Also σ_{iso} value H₁₇ is 26.060 ppm and H₁₈ is 26.073 ppm. Our obtained results show good agreement was observed between atomic charges and NMR parameters.

Frequency calculations

The relative energy (ΔE), standard enthalpies (ΔH), entropies (ΔS), Gibbs free energy (ΔG) and constant volume molar heat capacity (Cv) values of NAA and MAA was obtained by theoretical methods using the 6-31G^{*}, 6-31G^{**} and 6-311G^{**} basis set to obtain minima of the potential energy. In this paper according to values listed in Table 2,

Loval		NAA		MAA				
Lever	Donor NBO (i)	Acceptor NBO (j)	E ⁽²⁾	Donor NBO (i)	Acceptor NBO (j)	E ⁽²⁾		
B3LYP/6-31G*	BD(1)C2-O8	BD*(1)(O ₇ -H ₁₇)	2.33	BD(1)C2-O8	BD*(1)(O ₇ -H ₁₈)	1.72		
	BD(1)C4-C5	BD*(1)(O ₇ -H ₁₇)	2.42	BD(1)C4-C5	BD*(1)(O ₇ -H ₁₈)	2.21		
	BD(1)O7-H17	BD*(1)(C4-C5)	5.52	BD(1)O7-H18	BD*(1)(C4-C5)	5.63		
	LP(2)O ₈	BD*(1)(O ₇ -H ₁₇)	50.82	LP(2)O ₈	BD*(1)(O ₇ -H ₁₈)	40.21		
	CR(1)N ₆	RY*(1)(C3)	1.29	CR(1)C4	RY*(2)(C3)	1.33		
	LP(2)O7	RY*(1)(H ₁₇)	1.53	LP(2)O7	RY*(1)(H ₁₈)	1.38		
	CR(1)O7	RY*(1)(H ₁₇)	0.87	CR(1)O7	RY*(1)(H ₁₈)	0.82		
B3LYP/6-31G**	BD(1)C2-O8	BD*(1)(O ₇ -H ₁₇)	0.95	BD(1)C2-O8	BD*(1)(O ₇ -H ₁₈)	2.38		
	BD(1)C4-C5	BD*(1)(O ₇ -H ₁₇)	2.34	BD(1)C4-C5	BD*(1)(O ₇ -H ₁₈)	2.16		
	BD(1)O ₇ -H ₁₇	BD*(1)(C4-C5)	5.99	BD(1)O ₇ -H ₁₈	BD*(1)(C4-C5)	5.95		
	LP(2)O ₈	BD*(1)(O ₇ -H ₁₇)	63.76	LP(2)O ₈	BD*(1)(O ₇ -H ₁₈)	47.65		
	CR(1)N6	RY*(1)(C3)	1.33	CR(1)C4	RY*(2)(C3)	1.35		
	LP(2)O7	RY*(1)(H ₁₇)	1.32	LP(2)O7	RY*(1)(H ₁₈)	1.28		
	CR(1)O7	RY*(1)(H ₁₇)	0.86	CR(1)O7	RY*(1)(H ₁₈)	0.86		
B3LYP/6-311G**	BD(1)C2-O8	BD*(1)(O7-H17)	0.95	BD(1)C2-O8	BD*(1)(O7-H18)	2.26		
	BD(1)C4-C5	BD*(1)(O7-H17)	2.06	BD(1)C4-C5	BD*(1)(O ₇ -H ₁₈)	1.16		
	BD(1)O7-H17	BD*(1)(C4-C5)	5.82	BD(1)O7-H18	BD*(1)(C4-C5)	4.38		
	LP(2)O ₈	BD*(1)(O7-H17)	48.16	LP(2)Os	BD*(1)(O7-H18)	42.35		
	CR(1)N ₆	RY*(1)(C3)	1.64	CR(1)C4	RY*(3)(C3)	0.58		
	LP(2)O7	RY*(1)(H17)	1.81	LP(2)O7	RY*(1)(H ₁₈)	0.96		
	CR(1)O7	RY*(1)(H ₁₇)	1.26	CR(1)O7	$RY^{*}(1)(H_{18})$	0.50		

Table 4: Second order perturbation theory analysis of Fock matrix in NBO basis threshold for printing: 0.50 kcal/mol for NAA and MAA

we compared intramolecular hydrogen bonding effect on thermochemical parameters of the NAA and MAA.

The calculated results in Table 2 showed that the relative energy (ΔE) Gibbs free energy (ΔG) and standard enthalpies (ΔH) values of NAA in the three levels are negative values and entropy (ΔS) and constant volume molar heat capacity (Cv) values are positive. The thermochemical

parameters values in NAA are larger than MAA that shows NAA is more stable than MAA.

Geometry optimization

Analysis of the geometrical parameters and according to values listed in Table 3 indicates that the main effect of 3-substitution is a lengthening of $r(O_7-H_{18})$ in MAA shortening of $r(O_7-H_{17})$ in NAA, that showing an electron-donor group decrease length bond O-H and electron-pull group increase

	Bond	B3LYP/6-31G*	I	B3LYP/6-31G**	•	B3LYP/6-311G**		
	A-B	А	в	А	В	А	в	
NAA	$\mathbf{C}_2 \cdot \mathbf{C}_3$	s p ¹⁸⁴ (0.6922)	s p ^{1.38} (0.7217)	sp ^{1 40} (0.6932)	s p ^{1.38} (0.7207)	s p ¹⁸³ (0.69 14)	s p ^{1.33} {0.7224}	
	C2-O1	sp ^{3.6} d ^{0.01} (0.58 30)	s p ^{1.49} d ^{0.01} (0.8 12 5)	s p ^{3.84} d ²⁰¹ (0.5826)	sp ¹⁸ d ¹⁰ (0.8127)	s p ³⁴⁵ d ^{0.01} (0.58 14)	s p ^{1.46} (0.8 136)	
	C 3-C4	s p ¹⁶⁰ (0.7 120)	s p ^{1.88} [0.702 2]	s p ^{1 %} (0.7 126)	s p ^{1 40} (0.7016)	s p ¹⁶⁷ (0.7 138)	s p ^{1.53} [0.7008]	
	$C_4 - O_7$	s p ³⁸⁵ d ⁶⁶⁵ [0. 5 760]	s p ^{1,89} d ^{0,01} [0,8 17 5]	s p ^{3.88} d ⁶⁰¹ (0.576 5)	sp ^{1,00} d ^{0,01} (0.8171)	s p ³⁸³ d ^{0.01} (0.573 5)	s p ^{1.81} (0.8 192)	
	C ₃ -N ₆	s p ³³⁴ (0.6 176)	s p ^{1.31} (0.786 5)	s p ^{1.31} (0.6 180)	s p ^{1.30} (0.7862)	s p ^{±3+} [0.6 160]	s p ^{1.36} {0.7878}	
	$\mathbf{O}_{7}\mathbf{H}_{17}$	s p ¹³³ d ¹⁰¹ (0.8991)	s (0.4877)	s p ^{1, 1} 'd ¹⁰¹ (0.9052)	s (0.42 50)	s p ^{1:13} [0.8904]	s[0.4558]	
MAA	$\mathbf{C}_2 \cdot \mathbf{C}_3$	s p ¹⁶⁷ (0.69 58)	S p ¹¹⁰ (0.7 182)	s þ., (D'8689)	Sp ^{3.10} [0.7 178]	s p ^{±11} [0.7029]	s p ^{3.84} [0.7 113]	
	C2-O1	s p ³⁴⁶ d ⁶⁶⁵ {0.5837}	s p ^{1.46} d ^{0.01} (0.8 120)	s p ^{3.46} d ⁶⁰¹ (0.583 5)	sp ^{1.48} d ^{0.01} (0.8.12.1)	s p ³³³ d ^{0.01} (0.569 5)	s p ^{1,17} [0,8220]	
	$C_3 - C_4$	s p ¹⁸⁵ (0.7 119)	s p ^{1.44} [0.702 B]	s p ^{1.96} (0.7 12 1)	s p ^{1 di} (0.7020)	s p ¹⁴⁴ (0.706 5)	s p ^{1.40} [0.7077]	
	C4-O7	s p ^{3.60} d ⁶⁶³ {0.57 52}	sp ^{1.00} d ^{0.01} (0.8180)	s p ^{1.86} d ⁰⁰¹ [0.57 58]	sp ^{1,00} d ^{0,01} (0.8176)	Sp ^{1.33} d ^{0.01} [0.5705]	S p ^{1.13} (0.82 13)	
	C 3-C6	s p ¹⁰⁴ (0.7 122)	s p ^{2.88} (0.702 0)	s p ^{1 m} (0.7 118)	s p ^{1.81} (0.7023)	S p ^{1.00} (0.7066)	s p ^{2.11} [0.7076]	
	$\mathbf{O}_{7^*}\mathbf{H}_{11}$	s p ³⁸¹ d ⁶⁶¹ (0.8942)	s (0.4477)	s p ^{1,34} d ¹⁰¹ (0.8990)	s (0.4379)	s p ¹⁵⁵ d ^{0.01} [0.8660]	s (0.5001)	

Table 5: Calculated NHOs and the polarization coefficient for each hybrid in the corresponding NBO (in parentheses) for NAA and MAA

Table 6: Occupancy and energy (kcal/mol) for NAA structure and MAA structure.

Level		NAA		MAA				
Lever	NBO	Occupancy	Energy	NBO	Occupancy	Energy		
B3LYP/6-31G*	BD(1)C2-O8	1.99436	-1.05683	BD(1)C2-O8	1.99569	-1.02015		
	BD*(1)07-H17	0.11331	0.35323	BD*(1)O7-H18	0.09711	0.40110		
	LP(1)07	1.97050	-0.59702	LP(1)O7	1.97347	-0.56245		
	LP(2)O8	1.83761	-0.37486	LP(2)O ₈	1.84767	-0.32322		
B3LYP/6-31G**	BD(1)C2-O8	1.99425	-1.05246	BD(1)C2-O8	1.99562	-1.01602		
	BD*(1)O7-H17	0.13254	0.36449	BD*(1)O7-H18	0.10983	0.41747		
	LP(1)07	1.96896	-0.59176	LP(1)O7	1.97226	-0.55719		
	LP(2)O8	1.82400	-0.39603	LP(2)O ₈	1.83896	-0.33671		
B3LYP/6-311G**	BD(1)C2-O8	1.99321	-1.06806	BD(1)C2-O8	1.99631	-1.10015		
	BD*(1)07-H17	0.11330	0.32964	BD*(1)O7-H18	0.01790	0.38667		
	LP(1)07	1.97057	-0.61398	LP(1)O7	1.98112	-0.58431		
	LP(2)O8	1.83294	-0.37356	LP(2)O ₈	1.86616	-0.28420		

length bond O-H. Also $r(C_2-C_3)$ and $r(C_3-C_4)$ in NAA is longer than MAA, while $r(C_2-O_8)$ and $r(C_4-O_7)$ in NAA is shorter than MAA. With existence electronpull group and formation of intramolecular hydrogen bonding increase length bond O-H but reduce length bond C-O.

NBO analysis

Natural bond orbital analysis provides the accurate possible natural Lewis structure. The result

Fig. 2: Structure of a: nitroacetylacetone (NAA) and b: methylacetylacetone (MAA)

of interaction is a loss of occupancy from the concentration of electron NBO of the idealized Lewis structure into an empty non-Lewis orbital. A careful examination of all possible interactions between "filled" (donor) Lewis-type NBOs and "empty" (acceptor) non-Lewis NBOs, allows us to get an estimate of their energetic importance by second-order perturbation theory. For each donor (i) and acceptor (j), the stabilization energy $E^{(2)}$ associates with the delocalization i j. The strengths of these delocalization interactions, $E^{(2)}$, are estimated by second order perturbation theory. Some of significant donor-acceptor interactions and their second order perturbation stabilization energies $E^{(2)}$ which were NAA and MAA are given in Table 4. This section shows some of the donoracceptor interactions and their second order perturbation energies (E⁽²⁾) for NAA and MAA.

It seems that in NBO analysis of hydrogen bond systems, the charge transfer between the lone pairs of proton acceptor and antibonds of proton donor is most significant. The results of the NBO analysis in Table 4 show that in NAA structure, LP(2)O₈ participates as donor and the BD*(O₇-H₁₇) interactions as acceptor in intramolecular hydrogen bonding interaction and in MAA structure, LP(2)O₈ participates as donor and the BD*(O₇-H₁₈) interactions as acceptor in intramolecular hydrogen bonding interaction. Electron density is transferred from one pair LP(2)O₈ to the anti-bonding BD*(O₇-H₁₇) orbital's in NAA and LP(2)O₈ to the anti-bonding BD*(O₇-H₁₈) orbital's in MAA. The resonance energy (E⁽²⁾) indicates amount of Participation of electrons in the resonance.

According to the simple bond orbital picture, each bonding NBO is defined as an orbital formed from two directed valence hybrids (NHOs) hA, hB on atoms A and B, with corresponding polarization coefficients cA, cb. Table 5 show share of orbitals contribute in the bonds (BD for 2-center bond). According to Table 3, by using B3LYP/6-311G^{**} for NAA, in the O₇-H₁₇ bond, BD= 0.9052sp^{2.71}d^{0.01} + 0.4250s reported. Polarization coefficients of the O₇-H₁₇ bond O₇= 0.9052 and H₁₇=

0.4250 reported, that sizes of these coefficients show the importance of the hybrid of O_7 in the formation of the bond, while for MAA in the O_7 -H₁₈ bond BD= 0.8990sp^{2.73}d^{0.01} + 0.4379s reported. Polarization coefficients of the O_7 -H₁₈ bond O_7 = 0.8990 and H₁₈= 0.4379 reported, that sizes of these coefficients show the importance of the hybrid of O_7 in the formation of the bond. Also values of Polarization coefficients H₁₇ and H₁₈ show share of contribute H₁₈ in bond O_7 -H₁₈ at MAA is greater than share of contribute H₁₇ in bond O_7 -H₁₇ at NAA. There for H₁₇ in NAA greater than H18 in

MAA contribute in formation of intramolecular hydrogen bonding

In the present study, we used a combination of theoretical tools to compare nitroacetylacetone (NAA) structure and methylacetylacetone (MAA) structure. The following conclusions are obtained from the current study:

- 1. The most stable structure, according to the optimization energy is NAA. It seems that intramolecular hydrogen bonding in NAA is stronger than MAA.
- NBO analysis indicated the presence of donor-acceptor centers in the investigated structures. In both the structures the resonance energy (E⁽²⁾) indicates amount of Participation of electrons in the resonance. The comparison between the NBO analysis

of two Compounds shows that values of $E^{(2)}$ for MAA are lower than NAA which means that in the MAA structure lesser electrons are involved in the resonance.

- 3. The s_{iso} value of H₁₇ in the NAA structure is lower than s_{iso} value of H₁₈ in MAA structure. This means that electron density around H₁₇ is lower than H₁₈. There for participation of H₁₇ at formation intramolecular hydrogen bonding is higher than that H₁₈ in MAA.
- The comparison of thermochemistry parameters of two structures that are expressed show that DG, DH, DE, DS and Cv values for NAA are more than those of MAA which again indicates the greater stability of NAA.
- 5. Analysis of the geometrical parameters and according to values listed showing an electron-donor group decrease length bond O-H and electron-pull group increase length bond O-H. With existence electron-pull group in NAA and formation of intramolecular hydrogen bonding increase length bond O-H but reduce length bond C-O.
- 6. Finally, our studies on the structures showed that intramolecular hydrogen bonding in NAA stronger than that MAA and NAA structure and NAA is more stable than MAA structure.

REFERENCES

- Schuster P., Zundel, G. and Sandorfy C., The Hydrogen Bond, vol. 1-3, North Holland Publ. Co, Amsterdam, (1976).
- 2. Buckingham A. D, Powler, P. W. and Hutson, J. M., *Chem. Rev.*, **88**: 963 (1988).
- 3. Ferreiro M. L. and Rodriguez-Otero J., *J. Mol. Struct. Theochem.*, **542**: 63 (2001).
- 4. Buemi G. and Zuccarello F., *Chem. Phys.*, **306**: 115 (2004).
- Tayyari S.F, Raissi H, Milani-Nejad F. and Butler I.S., *Vib. Spectrosc.*, 26: 187 (2001).
- 6. Raissi H. F, Farzad F. and Nowroozi A., *J. Mol. Struct.*, **752**: 130 (1972).
- Andreassen A. L. and Bauer, S.I., *J. Mol.* Struct., **12**: 381 (1972).
- 8. Tayyari S.F. and Milani-Nejad, F.,

Spectrochim. Acta., 56: 2679(2000).

- 9. Emsley. J., Struct. Bonding, Vol. 57, *Springer, Berlin*, 147 (1984).
- Hibbert F. and Emsley J., Hydrogen Bonding and Chemical Reactivity; Advances in Physical Organic Chemistry, Vol. 26, Academic Press, London, 255(1990).
- 11. Emsley J., Structure and Bonding, Vol. 57, *Springer, Berlin*, 147 (1984).
- 12. Yoshida Z, Ogoshi H. and Tokumitsu, T., *Tetrahedron.*, **26**: 5691(1970).
- Azam Marjanai and Saeed Shirazian, Orient J. Chem., 28(1): 23-28 (2012).
- Emsley J, Freeman N. J, Bates P. A. and Hursthouse, M. B., *J. Chem. Soc. Perkin Trans.*, 1: 297 (1988).

- Emsley J, Ma L. Y. Y, Bates P. A. and Hursthouse M. B., *J. Mol. Struct.*, 178: 297 (1988).
- Emsley J, Ma L. Y. Y, Bates P. A, Motevalli M. and Hursthouse M. B., *J. Chem. Soc. Perkin Trans.*, 2: 527 (1989).
- Emsley J, Ma L. Y. Y, Karaulov S. A, Motevalli M. and Hursthouse M. B., *J. Mol. Struct.*, **216**: 143 (1990).
- Emsley J, Ma L. Y. Y, Nyburg S. C. and Parkins A.W., *J. Mol. Struct.*, **240**: 59 (1990).
- Buemi G. and Zuccarello F., J. Theor. Ch., 2: 302 (1977).
- 20. Becke A. D., *Phys. Rev. A.*, **38**: 3098 (1988).
- 21. A. Taherpour and N. Mahdizadeh, *Orient J. Chem.*, **28**(1): 247-256 (2012).
- 22. Monajjemi M, Afsharnezhad S, Jaafari M. R, Abdolahi T, Nikosade A, Monajemi H., *Russ. J. Phys. Chem. A.*, **81**: 1956 (2007).
- 23. Monajjemi M, Azad M. T, Haeri H. H, Zare K, Hmedani Sh., *J. Chem. Res.*, **8**: 454 (2003).
- 24. Monajjemi M, Sheikhi M., J. Phys. Theor.

Chem. IAU Iran., 8: 119 (2011).

- 25. Monajjemi M, Afsharnezhad S, Jaafari M. R, Abdolahi T, Nikosade A, Monajjemi H., *Phys. Chem. Liquids.*, **49**: 318 (2011).
- Monajjemi M, Mahdavian L, Mollaamin F, Honarparvar B., Fullerenes, *Nanotubes Carbon Nano-structures.*, 18: 45 (2010).
- Monajjemi M, Sheikhi M, Mahmodi Hashemi1 M, Molaamin F. and Zhiani R., International Journal of Physical Sciences., 7: 2010 (2012).
- Gnanasambandan T, Gunasekaran S. and Seshadri S., Orient. J. Chem., 29: 185 (2013).
- 29. Noei M, Salari A. A, Baei M. Hajizadeh T. F, Kazemi Asl, J, Ramezani M., *Arabian Journal* of *Chemistry* (2011).
- Scholtzova E, Mach P, Langer V., Acta Cryst. A., 65: 270 (2009).
- Heidarnezhad Z, Ganiev I, Obidov Z, Heidarnezhad F. and Sharifi M. S. Orient J. Chem., 28: 1597 (2012).