

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

ISSN: 0970-020 X CODEN: OJCHEG 2013, Vol. 29, No. (3): Pg. 1047-1054

www.orientjchem.org

The Potentiostatic Electrodeposition of Indium Doped Aluminium Selenide Thin Films

R.K. PATHAK and SIPI MOHAN

Department of Chemistry, Holkar Science College, Indore - 452 017, India.

DOI: http://dx.doi.org/10.13005/ojc/290327

(Received: July 16, 2013; Accepted: August 25, 2013)

ABSTRACT

The In containing AISe thin films were electrosynthesized by electrochemical co-deposition technique. The morphological properties of thin films were studied through the Scanning Electron Micrograph (SEM) while the structural features through X-Ray Diffraction technique (XRD). The deposition current along with the film thickness values, the charge carrier density, flat band potential, corrosion characteristics i.e., corrosion current, corrosion potential and corrosion rate were calculated.

Key words: Potentiostatic Electrodeposition; Saturated Calomel Electrode (SCE); Scanning Electron Micrograph (SEM); X-Ray Diffraction (XRD); Charge Carrier Density (N_D); Flat Band Potential (E_m); Corrosion Current (Icorr); Corrosion Potential (Vcorr) and Corrosion Rate (CR).

INTRODUCTION

The In containing AISe thin films have significance in various applications particularly in electronic devices. The electrodeposition of these films was carried out potentiostatically. Certain methods are performed for this purpose but here thin films were electrosynthesized by electrodeposition method¹⁻¹⁴ which is considered as the simple, effective and cheap to obtain Aluminium chalcogenide thin films. The kinetics of electrode reactions was studied by I-t characteristics. The charge carrier density and flat band potential were determined by the capacitance measurement. With the help of I-t characteristics deposition current and film thickness were also determined. These films were characterized by Scanning Electron Micrograph (SEM) and structural features of these films were studied by X-Ray Diffraction technique (XRD). In order to study the corrosion characteristics of the films polarization techniques were used.

RESULTS AND DISCUSSION

The electrodeposition of In doped AlSe thin films had been carried out at -0.700 mV vs SCE at room temperature. The current-potential behavior of AlSe was helpful to decide the deposition potential value. Fig. 1 shows the currentvoltage behavior of AlSe solution. During the deposition of AlSe, the current decreases very fast upto a steady state values. Fig. 2 shows the variation of current with time for AlSe. These current-time characteristics were also studied for different compositions of In containing AlSe and AlIn thin films. The decrease in the current indicates the total coverage of the deposits on the surface of the substrate as well as the quality of the deposited material. The deposition current and the film thickness were also estimated by the amount of charge passed through the electrolyte. The deposition current and film thickness (f₁) values are given in table 1. These values were also estimated for the different compositions of In containing AlSe thin films and AlIn. The film thickness value increases on the inclusion of In concentration.

The charge carrier density (N_D) and the flat band potential ($E_{\rm fb}$) of these deposited films had also been studied with the help of Mott-Schottky plots¹⁵⁻²⁰. Fig. 3 shows the Mott-Schottky plot for In containing AISe film. The slope of these plots describes the N_D while the extrapolation and intersection of these curves at potential axis determines the $E_{\rm fb}$. The values of N_D and $E_{\rm fb}$ are also shown in table 1 for all the compositions of AISe, In containing AISe and AIIn solutions. The charge carrier density values increases with increasing the concentration of Indium in the electroplating solution. The capacitance data indicates that the prepared films shows p-type semiconductor.

The polarization studies of the electrodeposited films had been carried out. The potential of the working electrode was varied with respect to SCE and corresponding current flowing between the working and counter electrode was measured to obtain Tafel Plots. In order to improve the resistance of the electrodeposited thin films against corrosion the inhibitor Benzotriazole was added to the electrolyte. The corrosion characteristics²¹⁻²⁴ had also been studied in the presence of inhibitor. Fig. 4 shows the tafel plot for 0.006M In containing AISe thin film in the absence and in the presence of inhibitor. With the help of these tafel plots Icorr and Vcorr were estimated while the CR was calculated with the help of an expression:

S. No.		Comp	osition	Depositi Curre	on nt	Film Thickness	Charge Carrier Density (N _D)	Flat Band Potential
	AI	Se	In	(mAcr Initial	n ⁻²) Final	(10⁵ cm)	(10 ⁻²⁵ cm ⁻³)	(E _{fb})
1.	0.01	0.01	0.000	1.41	0.29	2.87	4.44	10.5
2.	0.01	0.01	0.002	2.23	0.72	3.03	7.14	10.9
3.	0.01	0.01	0.004	3.10	1.15	4.46	7.40	11.3
4.	0.01	0.01	0.006	4.30	1.71	6.85	9.52	12.5
5.	0.01	0.00	0.010	3.23	0.24	4.79	8.00	10.8

Table1: Electrochemical Parameters of In containing AISe thin films

Table 2: Corrosion characteristics of deposited thin films in the absence and in the Presence of inhibitor

S.	lcorr	Absence of Inhibitor		Presence of Inhibitor			
No.	(mA)	Vcorr (mV)	CR (MPY)	lcorr (mA)	Vcorr (mV)	CR (MPY)	
1.	0.8	300	2.57	1.00	300	5.15	
2.	1.2	200	5.18	2.21	250	11.34	
3.	1.5	100	7.73	2.5	160	12.89	
4.	2.6	150	12.89	4.2	80	21.66	
5.	4.2	40	21.66	6.0	40	30.94	

the

Where,

lcorr	=	Corrosion	Current	of
deposit	ed film.			
Eq.Wt.	=	Equivalent V	Veight of A	ISe.
F	=	Faraday's C	onstant.	
D	=	Density of A	lSe.	

A = Area of the substrate.

These tafel plots were constructed for AISe, In containing AISe from 0.002 M to 0.006 M concentration and Alln thin films, in the absence and in the presence of inhibitor. Table 2 shows the values of Icorr, Vcorr and CR in the absence and in the presence of inhibitor. These data shows that the values of Icorr and CR increases while Vcorr decreases with the increment of In in AISe solution in absence and in presence of inhibitor.

Scanning Electron Micrograph (SEM) is the source of studying the surface morphology of

120 100 (-)Oumant (mA cm⁻²) 80 60 40 20 0 0 10 20 30 40 50 Time (min) Fig.2 Variation of Current with Time for AISe thin film

Fig. 1: Current Voltage behaviour of AISe thin film

Fig. 2: Variation of Current with Time for AISe thin film

Fig. 3: Mott-Schottky plot for in containing AISe thin film

the deposited films²⁵⁻³⁰. Fig. 5 shows the SEM of the electrodeposited (a) AISe (b) 0.004 M In containing AISe and (c) AIIn thin films respectively. The increment of Indium in different compositions in the electroplating solution affects the morphology of the films. The particle size of the deposited films range from 100 nm to 400 nm. The change in the particle size also supports the fact that there is an addition of Indium in different concentrations in the electroplating solution. The surface of the film shows the continuity and homogeneity.

The crystallite size of the deposited films was studied by X-Ray diffraction method³¹⁻³⁶ (XRD) using Scherrer's formula,

$$d = \frac{\lambda}{\beta \cos \theta}$$

Where,

 λ = Wavelength used 1.5418 A^o

 β = Angular line width at half maximum intensity in radians

 θ = Bragg's angle grain size was found to be of the order of ~ 26nm in AlSe, ~ 22nm in In containing AlSe and ~42 nm in AlIn.

Fig. 6(a), 6(b) and 6(c) shows XRD pattern of AISe, 0.004M In containing AISe and AIIn thin films by SILAR method. Comparison of d-values with ASTM data for AISe shows that the material is AISe having hexagonal structure.

EXPERIMENTAL

The In doped AISe thin films have been electrosynthesized at -0.700 mV vs SCE at room temperature. The starting materials were 0.01 M $AIK(SO_4)_2(Sd fine), 0.01 M SeO_2(Sd fine) and 0.001 M InCl_3 (Sd fine). Among these materials, the concentrations of <math>AIK(SO_4)_2$ and SeO_2 were kept constant through out the experiment and the concentration of $InCl_3$ was varied from 0.002 M to 0.006 M. Different compositions of In were added in the total concentration of AISe solution. Thus, five electrodes were prepared for each concentration of In AISe.

Fig. 4(a): Tafel Plot for 0.006 M in containing AISe thin film in absence of inhibitor

Fig. 4(b): Tafel Plot for 0.006 M in containing AISe thin film in presence of inhibitor

Fig. 5(a): SEM of AISe thin film

Fig. 5(b): SEM of 0.004 M In containing AISe thin film

Fig. 5(c): SEM of Alln thin film

Fig. 6(a): XRD pattern of AISe

Fig. 6(b): XRD pattern for 0.004 M In containing AISe thin film

Fig. 6(c): XRD pattern for Alln thin film

Two Ti plates were used among which one was used as working electrode, another as counter electrode and SCE as reference electrode. All the three electrodes were dipped in electrolyte for some time in order to attain the state of equilibrium. The deposition of electrode was carried out for one hour. The deposited films obtained were then investigated under different parameters. The corrosion characteristics of these deposited films were determined. For this determination, the redox solution $AIK(SO_4)_2$ and KI/I_2 was prepared. The deposited films were dipped in this redox solution to test the corrosion parameters in absence and in presence of inhibitor. Tafel plots were also constructed to determine the Icorr, Vcorr and CR. The capacitance of the films was measured by the LCR meter (systronic). The characterization of these deposited films was done with the help of SEM and the structural features were determined with the help of XRD.

ACKNOWLEDGEMENTS

The author is extremely grateful to the Principal and Head of the Chemistry Department Holkar Science College, Indore for their encouragement and co-operation. Our sincere thanks to the Director, UGC-DAE, Indore for providing SEM and XRD facility. Also thanks to Mr. V.K. Ahire and Mr. Ram Chaudhary for their guidance.

REFERENCES

- Soon Hyung Kang, Yu-Kyung Kim, Don-Soo Choi and Yung-Eun Sung, *Electrochimica Acta*, 512: 14433-4438 (2006)
- A. Goetzberger, and C. Hebling, Sol. Energy Mater. Sol. Cells, 62: 1-19 (2000).
- M.A. Green, K. Emery, D.L. King, S. Igari, and W. Warta, *Prog. Photovolt.: Res. Appl.*, 9: 55-61 (2002).
- 4. S. Siebentritt, *Thin Solid Films*, 403-404: 1-8 (2002).
- D. Schmid, M. Ruckh, F. Grunwald, and H.W. Schock, *J. Appl. Phys.*, **73**: 2902-2909 (1993).
- R. Klenk, *Thin Solid Films*, **387**: 135-140 (2001).
- Dhananjay, J. Nagaraju and S.B. Krupanidhi, Materials Science and Engineering: B, 127(1): 12-16 (2006).
- U. Rau, A. Jasenek, H.W. Schock, F. Engelhardt, and Th. Meyer, *Thin Solid Films*, 361-362: 298-302 (2000).
- Ming-Zhe Xue and Zheng-Wen Fu, *Thin Solid Films*, **516**(23): 8386-8392 (2008).
- G. Hanna, A. Jasenek, U. Rau, and H.W. Schock, *Thin Solid Films*, **387**: 71-73 (2001).
- T. Dullweber, O. Lundberg, J. Malmström, M. Bodegård, L. Stolt, U. Rau, H.W. Schock, and J.H. Werner, *Thin Solid Films*, 387, 2001, 11-13.
- 12. T. Dullweber, G. Hanna, W. Shams-Kolahi, A. Schwartzlander, M.A. Contreras, R. Noufi, H.

W. Schock, *Thin Solid Films*, **361-362**: 478-481 (2000).

- T. Wada, N. Kohara, S. Nishiwaki, and T. Negami, *Thin Solid Films*, **387**: 118-122 (2001).
- 14. T. Nakada, T. Kume, T. Mise, and A. Kunioka, *Jpn. J. Appl. Phys.*, **37**: L499-L501 (1998).
- F.-J. Haug, D. Rudmann, G. Bilger, H. Zogg, and A.N. Tiwari, *Thin Solid Films*, 403-404, 293-296 (2002).
- Kato Tatsuya, Yamanashi Hidenori, Eto Akihiro, Kando Masashi, *Reports of the Graduate School of Electronic Science and Technology*, 21: 69-74 (2000).
- A. Jasenek, U.Rau, K. Weinert, I.M. Kötschau, G. Hanna, G. Voorwinden, M. Powalla, H.W. Schock, and J.H. Werner, *Thin Solid Films*, 387: 228- 230 (2001).
- A. Jasenek, and U. Rau, *J. Appl. Phys.*, **90**: 650-658 (2001).
- M. Köntges, R. Reineke-Koch, P. Nollet, J. Beier, R. Schäffler, and J. Parisi, *Thin Solid Films*, 403-404: 280-286 (2002).
- 20. M. Bodegård, K. Granath, and L. Stolt, *Thin Solid Films*, 361-362, 2000, 9-16.
- 21. N.W.Khun, E.Liu and X.T.Zeng, *Corrosion Science*, **51**(9): 2158-2164 (2009).
- 22. Rishi Sharma, P.K. Barhai and Neelam Kumari, *Thin Solid Films*, **516**(16): 5397-5403 (2008).

- M.E. Soares, C.A.C. Souza and S.E. Kuri, Surface and Coatings Technology,201(6): 2953-2959 (2006).
- Y. Gao, Z. J. Zheng, M. Zhu and C. P. Luo, Materials Science and Engineering A, 381(1-2): 98-103 (2004).
- 25. M. Lammer, U. Klemm, and M. Powalla, *Thin Solid Films*, **387**: 33-36 (2001).
- A. Meeder, L. Weinhardt, R. Stresing, D. Fuertes Marrón, R. Würz, S. M. Babu, T. Schedel-Niedrig, M. Ch. Lux-Steiner, C. Heske and E. Umbach, *Journal of Physics and Chemistry of Solids*, 64(9-10): 1553-1557 (2003).
- U. Rau, and H.W. Schock, *Appl. Phys. A: Mater.* Sci. Process., 69: 131-147 (1999).
- A. Rockett, J.S. Britt, T. Gillespie, C. Marshall, M.M. Al Jassim, F. Hasoon, R. Matson, and B. Ba_ol, *Thin Solid Films*, 372, 2000, 212-217.
- S.-H. Wei, S.B. Zhang, and A. Zunger, *J. Appl. Phys.*, 85: 7214-7218 (1999).
- 30. M.A. Contreras, B. Egaas, D. King, A.

Schwartzlander, and T. Dullweber, *Thin Solid Films*, 361-362, 167-171 (2000).

- 31. R. Caballero, and C. Guillén, *Thin Solid Films,* 403-404, 107-111 (2002).
- M. Klenk, O. Schenker, V. Alberts, and E. Bucher, *Semicond. Sci. Technol.*, **17**: 435-439 (2002).
- D. W. Lane, K. D. Rogers, J. D. Painter, D. A. Wood and M. E. Ozsan, *Thin Solid Films* 361-362, 1-8 (2000).
- J.M. Merino, S. Mahanty, M. LeoÂn, R. Diaz, F. Rueda, J.L. Martin de Vidales, *Thin Solid Films*, 361-362: 70-73 (2000).
- Kong-Wei Cheng, Chao-Ming Huang, Guan-Ting Pan, Wen-Sheng Chang, Tai-Chou Lee and Thomas C.K. Yang, *Journal of Photochemistry and Photobiology A: Chemistry*, **190**(1): 77-87 (2007).
- S. Zein El Abedin, A.Y. Saad, H.K. Farag, N. Borisenko, Q.X. Liu and F. Endres, *Electrochimica Acta*, **52**(8): 2746-2754 (2007).

1054