

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

ISSN: 0970-020 X CODEN: OJCHEG 2013, Vol. 29, No. (1): Pg. 177-180

www.orientjchem.org

Potentiometric and Thermodynamic Studies of Some Metal Complexes with Carboxy Methyl Mercapto Succinic Acid

K.K. GUPTA, TEJINDER KAUR and EKTA DADHICH*

P.G. Department of Chemistry, Government College, Kota - 324 001, India. *Corresponding author E-mail: ektadadhich@yahoo.com

(Received: January 09, 2013; Accepted: February 15, 2013)

ABSTRACT

The metal ligand stability constants of carboxy methyl mercapto succinic acid with some transition metals ions have been determined in dioxane –water mixture at ionic strength μ = 0.1M(KNO₃) at three different temperature (25°,35° and 45°C) employing Bjerrum-Calvin pH titration technique. The stability of complexes follows the order.

 $Cu^{2+} > Ni^{2+} > Mn^{2+}$

The free energy, enthalpy and entropy changes involved in the complexation have also been evaluated at 35° C in 40%(v/v) dioxane – water mixture.

Key words: Free energy, Dioxane, Potentiometry, Stability constant.

INTRODUCTION

Mercapto compounds have several applications in biological, pharmaceutical and other chemical fields and are well known to form complexes with various metals. Gupta and coworker¹⁻⁴ have carried out significant investigation on the electrochemical behavior of several biologically active organo-sulphur compounds and their complexation behavior with metals.

Carboxy methyl mercapto succinic acid has coolant additive with corrosion inhibitor and scale preventive⁵ property. The complex ester of c.m.m.s.a. may be used directly as lubricants⁶, or

may be blended with other mineral or synthetic lubricants and various additive and it is also used as adhesive7, biodegradable, bleach -stabilizers for detergents8. In view of wide pharmaceutical and analytical applications of c.m.m.s.a., it seems interesting to study the complexation equilibria of c.m.m.s.a. with some transition metals in dioxane water mixture. This communication reports the formation, stability constants, and thermodynamic parameters of Ni2+ , Cu2+ ,Mn2+, complexes with c.m.m.s.a. by employing potentiometric technique. The log K_{stab} values determined at 25°,35°,and 45°C by Calvin and Melchior's extension⁹ of Bjerrum's method¹⁰.The stability constant have been further determined by correction term¹¹ and Schroder's convergence formula¹².

MATERIALS AND METHOD

All the chemicals used for experiment, such as dioxane, potassium nitrate, nitric acid and c.m.m.s.a.. etc were of analytical grade, Double distilled water was used in preparation of various solutions. All the metal ion solutions were prepared in double distilled water and standardized by using conventional procedures¹³. A carbonate free sodium hydroxide was used as a titrate and standardized against oxalic acid. The pH measurements were carried out with 335-Systronic pH meter (accuracy±0.05 units) using glass and calomel electrode. The electrode system was calibrated by using standard buffer solutions of pH 4.00,7.00,9.2. The empirical correction to pH meter reading in dioxane medium was corrected according to Van-Uitert and Hass relation¹⁴. The following sets of titrations were performed under nitrogen atmosphere at ionic strength $\mu = 0.1 \text{ M} (\text{KNO}_{2})$ at temperature 25°,35°,45°C in 40%(v/v) dioxane water mixtures against 0.1 M NaOH .The temperature were controlled by an electrically maintained thermostat.

- (i) Free HNO₃ (2.0 X 10 ⁻³ M)
- (ii) Free HNO₃ (2.0 X 10 ⁻³ M) + Ligand (2.0 × 10 ⁻³ M)
- (iii) Free HNO₃ (2.0 X 10 $^{-3}$ M) + Ligand (2.0 × 10 $^{-3}$ M) + metal ion solution (4.0 × 10 $^{-4}$).

The log K_{stab} were values determined at 25°,35°,and 45°C by Calvin and Melchior's extension⁹ of Bjerrum's method¹⁰.The stability constant have been further determined by correction term¹¹ and Schroder's convergence formula¹². The thermodynamic parameter for binary complex systems were calculated by Gibb's Helmholtz and Isobar equation¹⁶.

RESULTS AND DISCUSSION

Identical titration curves were obtained for the different binary system under investigation, according to the sequence described in experimental section. For the sake of brevity only fig (1,2,3) representing formation curves of metal ions have been given.

Metal	Method	Temperature								
Complexes		25 °			35°			45°		
		logK ₁	logK ₂	log β	logK ₁	logK ₂	log β	logK ₁	logK	log β
	а	4.46	3.17	7.63	4.64	3.32	7.96	4.78	3.47	8.25
Cu ²⁺	b	4.39	3.25	7.64	4.57	3.39	7.96	4.72	3.54	8.26
	С	4.39	3.26	7.65	4.57	3.37	7.94	4.73	3.54	8.27
Mean Value		4.41	3.23	7.64	4.59	3.36	7.95	4.74	3.52	8.26
	а	4.32	3.08	7.40	4.46	3.12	7.58	4.60	3.24	7.84
Ni ²⁺	b	4.24	3.16	7.40	4.40	3.19	7.59	4.59	3.24	7.83
	С	4.34	3.11	7.45	4.47	3.14	7.61	4.63	3.25	7.88
Mean Value		4.30	3.12	7.42	4.44	3.15	7.59	4.59	3.26	7.85
	а	4.06	2.94	7.00	4.18	2.98	7.16	4.32	3.12	7.44
Mn ²⁺	b	3.95	3.05	7.00	4.09	3.07	7.16	4.22	3.18	7.40
	С	3.94	3.04	6.98	4.08	3.07	7.15	4.21	3.19	7.40
Mean Value		3.98	3.01	6.99	4.12	3.04	7.16	4.25	3.16	7.41

Table 1: Metal ligand stability constant of complexes of Cu²⁺, Ni²⁺ and Mn²⁺ with C.M.M.S.A. In 40%(v/v) dioxane-water mixture at different temperature and ionic strength μ = 0.1 m (kno₂)

Method a,b and c represent Extension of Bjerrum's Method, Schroder's convergence formula and Correction Term Method respectively.

Metal Complexes	∆G =KJMOL ⁻¹ (-ve)	ΔH= KJMOL ⁻¹ (-ve)	ΔS =JMOL ⁻¹ K ⁻¹ (+ve)
Cu ²⁺	46.88	40.40	21.04
Ni ²⁺	44.76	39.63	16.65
Mn ²⁺	42.22	38.29	12.76

Table 2: Thermodynamic parameter (ΔG), (ΔH) and (ΔS) of complexes of Cu²⁺, Ni²⁺ and Mn²⁺ with C.M.M.S.A. AT 35[°]C

Metal-ligand stability constant

Calvin and Melchior's extension of Bjerrum's⁹ method was used for determining stability constant of the complexes from potentiometric titration data and their values were further determined by Schroder's Convergence formula ¹¹ and Correction term method¹⁴ the values of stability constants are given in Table 1.

The values of log K₁ and log K₂ at 25°,35°,and 45°C were read directly from the formation curves at $\overline{n} = 0.5$ and $\overline{n} = 1.5$ (fig-1,2,3). These values increases with temperature which shows that higher temperature is favorable for the formation of stable complexes and follow the order

Which is in agreement with Irving-Williams order of stability¹⁴

Thermodynamic Functions

The values of overall changes in free energy (Δ G),enthalpy (Δ H) and entropy (Δ S) accompanying complex reactions have been determined at 35°C with the help of Gibbs – Helmholtz and Isobar equation¹⁵ the values of Δ G, Δ H and Δ S in 40% (v/v) dioxane -water mixture are given in Table -2.The negative value of free energy (Δ G) shows that the reaction tends to proceed spontaneously. The values of enthalpy changes are negative indicating the exothermic nature of the reaction and the positive values of the entropy changes confirming that the complex formation is entropically favorable. Plots of $\frac{1}{n}$ as a function of -log C

ACKNOWLEDGEMENTS

For the research work of "Potentiometric and thermodynamic studies of some metal complexes with carboxy methyl mercapto succinic acid". The Authors are thankful to Dr.K.K.Gupta Head of Chemistry Department and Shri Sunil Bhargav Principal government college Kota for providing research facilities.

REFERENCES

- 1. Saxena R.S., Gupta, K.C. and Mittal M., *Cand.J.Chem*, **46**: 311 (1968).
- Saxena R.S., Gupta, K.C., Z. Naturforschung, 24B: 795 (1969).
- Saxena R.S., Gupta, K.C., Z. Phys. Chem 241: 169 (1969).
- 4. H. Imam, B. Kumar and M.D. Shafayat., *Orient. J. Chem.*, **27**(1): 287-291 (2011).
- 5. Gulley H.J., US Patent, 4: 711,735 (1987).
- 6. Andrew.G., U.S. Patent, 5: 405, 545 (1995).
- Yamada A.and Kimura K., U.S.Patent 4: 196, 271 (1980).
- Hatman R., Woodbury P., U.S.Patent 5: 362,412, (1994).
- Calvin M. and Melchior N.C., J. Am. Chem. Soc, 70: 3270 (1948).
- 10. Bjerrum J."metal amine formation in aqueous

solution" Hasse P.and son. Copenhagen, 298 (1941).

- Irving H. & Rossotti H.S., J.Chem.Soc, 35: 3397, 2904 (1953-1954).
- 12. Schroder K.N., *Acta.Chem, Scand*, **20**, 1401 (1966).
- Vogel A.I.,Quantitative chemical analysis, 5thedition,Longman,UK.326,(1984).
- Van Uitert L.G.and Haas C.G. J. Am. Chem. Soc, 75(2): 451-457 (1953).
- 15. Irving H. and William R.J.P., *Nature, J. Chem. Soc,* 3192-3210 (1953).
- Yatsimirskii K .B. and Vasilev V.P. "Instability Constants of Complex Compounds" Pergamon Press Oxford, New York, 47-52, (1960).