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ABSTRACT

A quantitative structure-property relationship (QSPR) study is suggested for the prediction
of mobilities (m) of benzoaromatic carboxylates. Ab initio theory was used to calculate some
quantum chemical descriptors including electrostatic potentials and local charges at each atom,
HOMO and LUMO energies, etc. Also, Dragon software was used to calculate some descriptors
such as WIHM and GETAWAY. Modeling of the mobility of benzoaromatic carboxylate derivatives
as a function of molecular structures was established by means of the least squares support
vector machines (LS-SVM). This model was applied for the prediction of the mobility of
benzoaromatic carboxylates, which were not in the modeling procedure. The resulted model
showed high prediction ability with root mean square error of prediction (RMSEP) of 3.734, 1.931
and 0.018 for MLR, PLS and LS-SVM, respectively. Results have shown that the introduction of
LS-SVM for quantum chemical, WIHM and GETAWAY descriptors drastically enhances the ability
of prediction in QSAR studies superior to multiple linear regression (MLR) and partial least squares
(PLS).
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INTRODUCTION

Separation selectivity in capillary zone
electrophoresis is determined by the relative
difference in the total ionic mobility of the separands.
In capillary zone electrophoresis with
electroosmotic flow, this total mobility consequently
consists of two incremental parts, the nonspecific
mobility of the electroosmotic flow, and the individual
effective mobility of the solutes. The effective

mobility, y .., depends on the degree to which the

particle is charged and the mobility of the fully
charged particle.’®

The main aim of QSAR studies is to
establish an empirical rule or function relating the
structural descriptors of compounds under
investigation to mobility in this study. This rule of
function is then utilized to predict the same
properties of the compounds not involved in the
training set from their structural descriptors. Whether
the properties can be predicted with satisfactory
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accuracy depends to a great extent on the
performance of the applied multivariate data
analysis method, provided the property being
predicted is related to the descriptors. Among the
investigation of QSAR,* one of the most important
factors affecting the quality of the model is the
method to build the model. Many multivariate data
analysis methods such as multiple linear regression
(MLR),%® partial least squares (PLS)” and artificial
neural network (ANN)® have been used in QSAR
studies. MLR, as most commonly used
chemometrics method, has been extensively
applied to QSAR investigations. However, the
practical usefulness of MLR in QSAR studies is
rather limited, as it provides relatively poor accuracy.
ANN offers satisfactory accuracy in most cases but
tends to overfit the training data. The support vector
machine (SVM) is a popular algorithm developed
from the machine learning community. Due to its
advantages and remarkable generalization
performance over other methods, SVM has attracted
attention and gained extensive applications.®™ As
a simplification of traditional of SVM, Suykens and
Vandewalle' have proposed the use of least-
squares SVM (LS-SVM). LS-SVM encompasses
similar advantages as SVM, but its additional
advantage is that it requires solving a set of only
linear equations (linear programming), which is
much easier and computationally more simple.

A major step in constructing QSAR models
is finding one or more molecular descriptors that
represent variation in the structural property of the
molecules by a number.'>'* A wide variety of
descriptors have been reported to be used in QSAR
analysis. Recent progress in computational
hardware and the development of efficient
algorithms have assisted the routine development
of molecular quantum chemical calculations.
Quantum chemical calculations are thus an
attractive source of new molecular descriptors, which
can, in principle, highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital
(LUMO) energies, molecular polarizability, dipole
moments, and energies of molecule are examples
of quantum chemical descriptors used in QSAR
studies. Also, Dragon software was used to calculate
some topology and geometry descriptors such as
GETAWAY (GEometry, Topological, Atoms-Weighted
AssemblY) and WHIM (Weighted Holistic Invariant

Molecular descriptors). In this study, the MLR, PLS
and LS-SVM methods were applied in QSAR for
modeling the relationship between the mobility of
26 benzoaromatic carboxylates. Ab initio geometry
optimization was performed at the B3LYP level, with
a known basis set, 6-31**G". Local charges,
electrostatic potential, dipole moment, polarizability,
HOMO-LUMO energies, hardness, softness,
electronegativity and electrophilicity were
calculated for each compound and WHIM and
GETAWAY descriptors were calculated by Dragon
software.

Theory

Theory of LS-SVM has also been
described clearly by Suykens and Vandewalle' and
application of LS-SVM in quantification’®'® and
QSAR?'" reported by some of the workers. So, we
will only briefly describe the theory of LS-SVM. The
LS-SVM is capable of dealing with linear and
nonlinear multivariate calibration and resolves
multivariate calibration problems in a relatively fast
way. In LS-SVM a linear estimation is done in kernel-

induced feature space (¥ = w' @i x)+ &) .Asin SVM,

it is necessary to minimize a cost function (C)
containing a penalized regression error, as follow:

| 1 &,
C==w'w+— h
: : ?‘g. ; (1)

such that:

=W ) thte (2)

forall i =1,..., where ¢ denotes the
feature map.

The first part of this cost function is a weight
decay which is used to regularize weight sizes and
penalize large weights. Due to this regularization,
the weights converge to similar value. Large weights
deteriorate the generalization ability of the LS-SVM
because they can cause excessive variance. The
second part of Eq. (1) is the regression error for all
training data. The parameter g, which has to be
optimized by the user, gives the relative weight of
this part as compared to the first part. The restriction
supplied by Eq. (2) gives the definition of the
regression error. Analyzing Eq. (1) and its restriction
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given by Eq. (2), it is possible to conclude that we
have a typical problem of convex optimization which
can be solved by using the Lagrange multipliers
method as follow:

1 2 A r
L=l + 7z e - Zatwat) b re-r).(3)

To obtain the optimum solution, one sets
all corresponding partial first derivatives to zero;
the weights obtained are linear combinations of
the training data:

aliw, be, @)

. =w_z:a_¢,;x_;. =0 w =Za_svir_} (4

aliw.b,e a) &
—=Z:Vé?—€¥='3 ..(5)

aé' iml

then:

I i
W= Zﬁ%fi‘?{?&:‘ = ZT’% x5l ()

iml i=l

An important result of this approach is that
the weights (w) can be written as linear
combinations of the Lagrange multipliers with the
corresponding data training . Putting the result
of Eq. (6) into the original regression line

(¥=w g x)+ &), the following result is obtained:

¥ =2a_¢::x_:r'¢::x}+b=2a_ fatx) @izl +d  (7)

for a point y, to be evaluated it is:

2 =T an) s )46 = T () )b +E (s

The attainment of the kernel function is
cumbersome and it will depend on each case.
However, the kernel function more used is the radial

basis function (RBF), exp(~(|}5 - [ 17207, a simple
Gaussian function, and polynomial functions

{s,x ) ,where ¢’ is the width of the Gaussian
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function and d is the polynomial degree, which
should be optimized by the user, to obtain the
support vector. For o of the RBF kernel and d of the
polynomial kernel it should be stressed that it is
very important to do a careful model selection of
the tuning parameters, in combination with the
regularization constant vy, in order to achieve a good
generalization model.

Materials and computational methods
Hardware and software

All calculations were run on a Pentium IV
personal computer with windows XP operating
system. ChemDraw Ultra version 9.0 (ChemOffice
2005) software was used to draw the molecular
structures and optimization by the AM1. Descriptors
were calculated utilizing Dragon software (Milano
Chemometrics group, http://www.disat.unimib.it/
chm/) and with MATLAB (version 6.5, Mathwork,
Inc.). The PLS evaluations were carried out by using
the PLS program from PLS-Toolbox Version 2.0 for
use with MATLAB from Eigenvector Research Inc.
The LS-SVM optimization and model results were
obtained using the LS-SVM lab toolbox.

(%)

These descriptors are calculated using
two-dimensional representation of the molecules
and therefore geometry optimization is not essential
for calculating these types of descriptors. Gaussian
98 was operated to optimize with the 6-31+*G™ basis
set for all atoms at the B3LYP level. No molecular
symmetry constraint was applied; instead, full
optimization of all bond lengths and angles was
carried out at the B3LYP/6-31+*G™ level. Local
charges (LC) and electrostatic potential (EP) at each
atom, highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO)
energies, molecular polarizabilities (MP) and
molecular dipole moment (MDP) were calculated
by Gaussian 98. Quantum chemical indices of
hardness (h), softness (S), electronegativity (c),
chemical potential (m) and electrophilicity (w) were
calculated according to the method proposed by
Thanikaivelan et al."®

Data set

The mobilities of benzoaromatic
carboxylate derivatives were measured by Sarmini
and Kenndler." In Table 1 the actual mobilities of
the 26 benzoaromatic carboxylates are given. The
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structures of benzoaromatic carboxylates and their
corresponding mobilities are listed in Table 1. In
order to guarantee that training and prediction sets
cover the total space occupied by the original data
set, the set was divided into the parts of training and
prediction set according to the Kennard-Stones
algorithm.2°2' The Kennard-Stones algorithm is
known as one of the best ways of building training
and prediction sets and it has been used in many
QSAR/QSPR studies.

RESULTS AND DISCUSSION

Principal component analysis of the data set

In order to detect the homogeneities in the
data set and identify possible outliers and clusters,
PCA was performed within the calculated structure
descriptors space for the whole data set. PCA is a
useful multivariate statistical technique in which new
variables (called principal components, PCs) are
calculated as linear combinations of the old ones.

Table 1: The structures and actual mobilities of benzoaromatic carboxylates
in aqueous medium measures by capillary zone electrophoresis

No. Substituent, R Mobility (m) No. Substituent, R Mobility (m)
1t Benzoic 33.27 14t 2,-diMe 29.21
2t 2-OH 36.29 15! 2,5-diMe 29.36
3t 3-OH 36.17 16! 3,4-diMe 29.38
4r 4-OH 31.08 17t 3,5-diMe 28.94
5t 2,3-diOH 32.62 18 2-NO, 32.78
6! 2,4-diOH 32.53 19 3-NO, 32.27
7t 3,4-diOH 29.68 20! 4-NO, 32.65
8! 3,5-diOH 28.97 21t 3,4-diNO, 31.03
9r 2,4,6-triOH 34.00 22! 3,5-diNO, 30.63
10! 3,4,5-triOH 27.69 23! 2,4,6-triNO, 28.42
11t 2-Me 31.59 24r 2-Cl 32.34
12t 3-Me 31.53 25! 3-Cl 32.63
13 4-Me 31.51 26! 4-Cl 32.25

! training set, P prediction set

Table 2: The calculated quantum chemical descriptors used in this study

Descriptor name Notation Description

Local charges LC, The local charges at each atom of the base unit
Electrostatic potential EP, The electrostatic potential at each atom of the base unit
Molecular polarizability MP Total molecular polarizability

Dipole moment DM Total molecular dipole moment

HOMO E,ovo Highest occupied molecular orbital energy

LUMO ELuvo Lowest unoccupied molecular orbital energy
Electronegativity X -0.5 (E,.om0 ~ELumo)

Hardness p 0.5 (E,.omo *+ ELumo)

Softness S 1M

Electrophilicity [0) x3/2n

GETAWAY GEometry, Topological, Atoms-Weighted AssemblY
WHIM Weighted Holistic Invariant Molecular descriptors




HAMZEHALI & NIAZI, Orient. J. Chem., Vol. 29(1), 81-88 (2013)

These PCs are sorted by decreasing information
content (i.e. decreasing variance) so that most of
the information is preserved in the first few PCs. An
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important feature is that the obtained PCs are
uncorrelated, and they can be used to derive scores
which can be used to display most of the original

Table 3: Statistical results of multiple linear regression analysis

Descriptor Coefficient S.E. of coefficient t value P value
Intercept 32.35 2.12 6.66 0.076
RTp 0.36 0.06 5.23 0.062
R1u 0.98 0.04 2.56 0.064
P2e 0.46 0.03 3.06 0.046
G2s 0.78 0.04 2.15 0.063
Dm 0.11 0.01 1.06 0.078
S 6.35 0.21 1.12 0.092
0.39 0.07 0.13 0.071

*Standard error

carboxylates using MLR, PLS and LS-SVM models

Table 4: Actual and predicted values of mobility for benzoaromatic

Substituent,R  Actual () MLR Error (%) PLS Error (%) LS-SVM Error (%)
4-OH 31.08 29.66 -4.57 30.26 -2.64 31.07 -0.03
2,4,6-triOH 34.00 31.03 -8.74 31.36 -7.76 34.03 0.09
4-Me 31.51 28.66 -9.04 29.68 -5.81 31.49 -0.06
2-NO, 32.78 26.89 -17.97 30.89 -5.77 32.79 0.03
2-Cl 32.34 28.33 -12.40 30.32 -6.25 32.33 -0.03
NPC’ 5
PRESS 0.061
Y 10
(s 20
RMSEP 3.734 1.931 0.018
RSEP (%) 11.541 5.967 0.055
Table 5: Comparison of the statistical
parameters by different QSPR models
Methods Data set R? Q
MLR Training 0.9223
Test 0.9110
PLS Training 0.9409 0.8323
Test 0.9365 0.8267
LS-SVM Training 0.9991 0.9561
Test 0.9989 0.9413

*Q2 coefficient for the model validation by leave-one-out
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variations in a smaller number of dimensions. These
scores can also allow us to recognize groups of
samples with similar behavior. The detailed
description of the PCA can be found in.

Here, PCA gives five significant PCs
(eigenvalues > 1), which explains 88.94% of the
variation in the data (46.25%, 23.17%, 11.06%,
6.33% and 2.13%, respectively). Fig. 1 shows the
distribution of compounds over the two first
components. As can be seen from Fig. 1, there is
not a clear clustering between compounds. The data
separation is very important in the development of
reliable and robust QSAR models. The quality of
the prediction depends on the data set used to
develop the model. The mobility of 26 specified
benzoaromatic carboxylates were classified into a

training set (21 mobility data) and a prediction set
(5 mobility data) according to Kennard-Stones
algorithms. As shown in Fig. 1, the distribution of the
compounds in each subset seems to be relatively
well-balanced over the space of the principal
components. The data were centered to zero means
and scaled to the unit variance. The data set of 26
benzoaromatic carboxylates includes recent data
on mobility' as summarized in Table 1. The
calculated descriptors for each molecule are
summarized in Table 2.

For the evaluation of the predictive ability
of a different model, the root mean square error of
prediction (RMSEP) and relative standard error of
prediction (RSEP) can be used:
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Fig. 1: Principal components analysis of the structural descriptors for the data set
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Fig. 2: Plot of PRESS versus number of factors by PLS model
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where ¥; ez Is the predicted mobility

using different model, ¥, , is the observed value

of the mobility and
the prediction set.

is the number of samples in

Multiple linear regression analysis

Among the descriptors calculated, the
most significant molecular descriptors were
identified using multiple linear regression analysis
with a stepwise forward selection method. The best
equation obtained for the mobility of the
benzoaromatic carboxylates derivatives was:

Mobility = 32.35 + 0.36 RTp + 0.98 R1u +
0.46 P2e + 0.78 G2s + 0.11 Dm + 6.35 S + 0.39 ®

where RTp, R1u, P2e, G2s and Dm are
GETAWAU and WHIM descriptor and S, are
softness and electrophilicity, respectively. In this
model, the highly correlated descriptors were not
considered. As seen, the resulting model has eleven
significant descriptors (correlation coefficient > 0.5).
Table 3 shows the descriptors coefficients, the
standard error of coefficients, the t values for null
hypothesis, and their related P values.

Partial least squares analysis

The factor-analytical multivariate
calibration method is a powerful tool for modeling,
because it extracts more information from the data
and allows building more robust models.?2:28
According to mobility data (Table 1), data classified
to training and prediction sets according to Kennard-
Stones algorithm. The optimum number of factors
to be included in the calibration model was
determined by computing the prediction error sum
of squares (PRESS) fro cross-validated models
using a high number of factors (half of the number
of total training set + 1). The cross-validation method

employed was to eliminate only one compound at
a time and then PLS calibrated the remaining of
training set. The retention time of the left-out sample
was predicted by using this calibration. This process
was repeated until each compound in the training
set had been left out once. According to Haaland
suggestion,?* the optimum number of factor was
selected. In Fig. 2, the PRESS obtained by optimizing
the training set of the descriptor data with PLS
model is shown. Table 4 shows the optimum
number of factor and PRESS value.

Least squares — support vector machine
analysis
The all descriptors were used as the input
to develop nonlinear model by LS-SVM. The quality
of LS-SVM for regression depend on g and s?
parameters. In this work, LS-SVM was performed
with radial basis function (RBF) as a kernel function.
To determine the optimal parameters, a grid search
was performed based on leave-one-out cross-
validation on the original training set fro all
parameter combinations of g and s?from 1 to 100,
with increment steps of 1. Table 4 shows the optimum
ng and s? parameters for the LS-SVM and RBF kernel,
using the calibration sets for 21 mobility data.

Prediction of mobility of benzoaromatic
carboxylates

The predictive ability of these methods
(MLR, PLS and LS-SVM) were determined using 5
mobility data (their structure are given in Table 1).
The results obtained by MLR, PLS and LS-SVM
methods are listed in Table 4 and 5. Table 4 also
shows RMSEP, RSEP and the percentage error for
prediction of mobility of benzoaromatic
carboxylates. As can be seen, the percentage error
was also quite acceptable only for LS-SVM. Good
results were achieved in LS-SVM model with
percentage error ranges from -0.06 to 0.09 for
mobility of benzoaromatic carboxylates. Also, it is
possible to see that LS-SVM presents excellent
prediction abilities when compared with other
regression.

According to the results, quantum
chemical descriptors with WHIM-GETAWAY are
suitable descriptors for describing the mobility of
benzoaromatic carboxylate derivatives. When LS-



88 HAMZEHALI & NIAZI, Orient. J. Chem., Vol. 29(1), 81-88 (2013)

SVM method with all descriptors is used, prediction
of mobility in test step, with a small error is possible,
which is improved in comparison with other methods
(MLR and PLS). Which shows that by using all
chemical quantum, WHIM and GETAWAY
descriptors and also LS-SVM method, the mobility
of benzoaromatic carboxylate derivatives are
predicted with satisfactory results.

CONCLUSION

LS-SVM was established to predict the
mobility of some benzoaromatic carboxylates. A

suitable model with high statistical quality and low
prediction errors was obtained. The model can
accurately predict mobility of benzoaromatic
carboxylate that do not exist in the modeling
procedure. The quantum chemical, WHIM and
GETAWAY descriptors concerning all the molecular
properties and those of individual atoms in the
molecule were found to be important factors
controlling the mobility behavior. In this study, the
results obtained by LS-SVM, are compared with
results obtained by MLR and PLS. The results show
that, LS-SVM is more powerful in prediction of
mobility of benzoaromatic carboxylates than MLR
and PLS.
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