

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

www.orientjchem.org

ISSN: 0970-020 X CODEN: OJCHEG 2013, Vol. 29, No. (4): Pg. 1339-1349

Studies on the Pyrazine Complexes of Some DiaryItellurium Dihalides

JITENDER KUMAR NARWAL*, SHASHI CHHABRA, RAJESH KUMAR MALIK, SAPANA GARG and K.K. VERMA

*JVMGRR College, Department of Chemistry, CharkhiDadri, Haryana, India. Department of Chemistry, Maharshi Dayanand University, Rohtak, India. *Corresponding author Email: jitender.narwal@yahoo.com

http://dx.doi.org/10.13005/ojc/290409

(Received: Septembe 01, 2013; Accepted: October 15, 2013)

ABSTRACT

Nine new Pyrazine Complexes of diaryltelluriumdihalides, $R_2 TeX_2$. Pyz (R = *p*-methoxyphenyl, *p*-hydroxyphenyl and 3-methyl- 4-hydroxy phenyl; X=Cl, Br, I; Pyz = pyrazine) have been prepared by reactions of diaryltelluriumdihalides with pyrazine in 1:1 molar ratio. These complexes have been characterized by elemental analysis, conductance and cryoscopic measurements, infrared and proton magnetic resonance spectral studies. Conductance studies in nitrobenzene, acetone and acetonitrile predict their non-electrolyte type behaviour in these solvents, which is well supported by cryoscopic data in nitrobenzene. IR and ¹H NMR studies suggest the unidentate nature of pyrazine in these complexes, involving only one nitrogen atom in coordination. Thus, tellurium in $R_2 TeX_2$. Pyz complexes attains a coordination number of five probably in a square pyramidal.

Key words: Diaryltellurium dihalides, Pyrazine complexes.

INTRODUCTION

Aryltellurium tryhalides are known to behave as Lewis acids and form molecular complexes with several nitrogen, oxygen and sulphur donor bases. It has been reported¹ that Lewis acidity of tellurium atom falls significantly on going from RTeX₃ to R₂TeX₂. Kulkarni and coworkers screened the adducts of a,a' –bis(3-nitro/amino benzoyl) tellurium dichloride with N donor bases for biological activity and were found to be effective Ach E inhibiting agents². ShekharSrivastava and coworkers³ have prepared R₂TeX₂.L type compounds where R = benzyl and L = 2,2'-bipridyl; 1,10-phenanthroline and neocuproine. In these adducts, donor ligands are coordinated to tellurium atom. In the view of this and in continuation of our earlier work^{4,5} on reactions of various diorganyltelluriumdihalides R₂TeX₂with some N-donor bases we hereby, report the synthesis and characterization of pyrazine complexes of bis(*p*-hydroxyphenyl),bis(3-methyl-4hydroxyphenyl),bis(*p*-methoxy phenyl) tellurium(IV) dihalides.

EXPERIMENTAL

Materials and Methods

All the chemicals used were of Analytical Reagents grade. Solvents were purified and dried by conventional methods.

Preparations

All the preparations have been carried out in a dry conditions under inert atmosphere of dry nitrogen, as the compounds are sensitive to moisture and air.

Preparation of DiaryItellurium(IV) Dihalides

Bis(*p*-hydroxyphenyl)tellurium dichloride, bis(3-methyl-4-hydroxyphenyl) tellurium dichloride and bis(*p*-methoxyphenyl)tellurium dichloride were obtained by reactions of tellurium tetrachloride with phenol, *o*-cresol and anisole respectively. The diaryltelluriumdichlorides were converted to corresponding dibromides and diiodides by halogen exchange processes by using KBr or KI in dry methanol.

Preparation of Pyrazine Complexes Pyrazine Complexes of Bis(p-hydroxyphenyl) tellurium(IV) Dihalides

A saturated solution of pyrazine (0.40 gm, 5.0 mmol) in benzene (~10 ml) was added to a saturated solution of 5.0 mmol of $R_2 TeX_2$ (1.92 g, 2.37 g, 2.84 g for chloride, bromide and iodide respectively) in about 20 ml of methanol. The contents were stirred for about 3 h which resulted in the separation of a dark coloured solid product. This was filtered, extracted with diethyl ether and dried over P_4O_{10} in vacuum desiccator.

Pyrazine Complexes of Bis(3-methyl-4hydroxyphenyl) tellurium(IV)Dihalides

A saturated solution of pyrazine (0.40 gm, 5.0 mmol) in benzene (~10 ml) was added to a saturated solution of 5.0 mmol of $R_2 TeX_2$ (2.06 g. 2.51 g. 2.98 g for chloride, bromide and iodide, respectively) in about 20 ml of dry methanol. The contents were stirred for 4 h. Brown coloured solid product thus obtained was filtered, washed with diethyl ether and dried over P_4O_{10} in vacuum desiccator.

Pyrazine Complexes of Bis(p-methoxyphenyl) tellurium(IV) Dihalides

A saturated solution of pyrazine (0.40 gm, 5.0 mmol) in benzene (~10 ml) was added to a saturated solution of 5.0 mmol of $R_2 TeX_2$ (2.06 g. 2.51 g. 2.98 g for chloride, bromide and iodide respectively) in methanol + chloroform (20:80). The contents were stirred of 4 h. Orange brown solid product obtained was filtered, extracted with diethyl ether and dried over P_4O_{10} in vacuum desiccators.

Physical studies

Elemental analysis for Carbon, hydrogen and nitrogen contents were got estimated from Sophisticated Analytical Instrumentation Facility, Punjab University, Chandigarh on a ELEMENTAR VARIO EL III or CARLO ERBA Model 1108. The conductance studies were carried out in acetone, nitrobenzene and acetonitrile on a highly sensitive Systronics Conductivity Bridge Type 305. A dip type cell with smooth platinum electrodes was used. The molecular weights of the complexes of diaryltellurium(IV) dihalides have been determined cryoscopically using purified nitrobenzene as the solvent. A Beckmann's freezing point apparatus is used. Infrared spectra of the complexes of diaryltelluriumdihalides prepared during this course of study have been recorded in the region 4000-400 cm⁻¹ on a SHIMAZDU FTIR-8300 or PERKIN ELMER Model 2000 FTIR Spectrometer using KBr pellet technique. The spectra were got recorded from Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Kurukshetra University, Kurukshetra and Sophisticated Analytical Instrumentation Facility, Panjab University, Chandigarh. 'H NMR spectra were recorded on a BRUKER AC-300F operating at 299.9486 MHz and BRUKER AVANCE II 400 NMR spectrometer operating at 400.13 MHz. The data were obtained from Sophisticated Analytical instrumentation facility, Punjab University, Chandigarh. The solutions were prepared in deuterated DMSO-d_. Spectra were recorded at room temperature immediately after preparing the solution using tetramethylsilane as an internal reference.

RESULTS AND DISCUSSION

These diaryltellurium dihalides when reacted with pyrazine give 1 : 1 type complexes, $R_2 TeX_2$.L as per scheme-1

 $R_2 TeX_2 + Pyz = R_2 TeX_2 Pyz$

R2TeX2	Complex (Empirical Colour	Colour		An	Analysis Found (Calculated) %	ind (Calcu	Ilated) %		Yield
(R)	Formula)	(Formula Wt.)	Te	×	ပ	т	z	m.p*∘C	%
R _s TeCl ₃	R, TeCl,. Pyz	Purplish Pink	27.87	16.12	40.37	3.40	6.51	135-137	78
(p-hydroxyphenyl)	C ₁ _k H ₁ Čl ₃ N ₃ O ₃ Te	(466.0)	(27.45)	(15.26)	(41.34)	(3.04)	(6.03)		
R ₃ TeBr ₃	R _a TeBra.Pyz	Orange Brown	23.42	28.57	34.41	2.60	5.12	146-148	75
(<i>p</i> -hydroxy phenyl)	C ₁ _k H₁₄Br _s N _s O _s Te	(553.7)	(23.04)	(28.86)	(34.71)	(2.55)	(2.06)		
R ₃ Tel ₃	R,Tel,.Pyz	Green Brown	19.57	38.90	29.53	2.21	4.28	162-164	68
(p-hydroxyphenyl)	C ₁ _k H ₁ JN,O,Te	(647.7)	(19.70)	(39.19)	(29.67)	(2.18)	(4.33)		
R ₃ TeCl ₃	R,TeCl, Pyz	Orange Brown	25.74	14.41	43.79	3.57	5.34	139-141	80
(3-methyl-4-hydroxyphenyl)	C ₁ "H ₁ "ČI ₂ N ₂ O ₂ Te	(492.9)	(25.89)	(14.39)	(43.87)	(3.68)	(2.68)		
R ₃ TeBr ₃	R _, TeBr., Pyz	Dark Brown	21.89	27.45	37.01	3.20	4.77	161-163	70
(3-methyl-4-hydroxyphenyl)	C ₁ "H, Br ₂ N ₂ O ₂ Te	(581.8)	(21.93)	(27.47)	(37.16)	(3.12)	(4.82)		
R ₃ Tel ₃	R, Tel, Pyz	Dark Brown	18.83	37.43	31.84	2.71	4.21	168-170	72
(3-methyl-4-hydroxyphenyl)	C, H, I, N, O, Te	(675.8)	(18.88)	(37.56)	(31.99)	(2.68)	(4.15)		

ileq	D
6	נ
-	5
	>
5	2
- 5	
- 2	3
- 3	2
ž	
5	5
	Ĕ
	C
*	5
C	2
<u>u</u>	Ŋ.
ģ	2
6	6
-	ŝ
2	É
5	E
2	Ś
C	,
0	٥
	y az
P	١
<u> </u>	D
5	5
Δ	
2	
	2
	n
ž	ś
	÷
>	
<u>ح</u>	2
5	
q	0
9	מ
.0	5
	Ó
. <u>i</u>	Ś
Q	
nor.	
'ADDO'	
Dronar	
Dronor	
Dronor	
ical Droner	
reical Droner	
Tonor Dronor	
hveicel	
Dhysical Dronar	
hveicel	ומי בוואסורמו בוסאכו ובי
hveicel	מומי ב וואסוכמו ב ו סאכו ווכי
hveicel	המומי ב ווזסוכמו ב וכחבו וובי
hveicel	וו המומי בוואסוכמו בוסאבו ובי
hveicel	ימו המומי בווזטורמו בוסאכו ובי
hveicel	lical dala, riiyaical riopel lie
hveicel	y lical data, r liysical r lobel lic
hveicel	aiy iicai Dala, Fiiysicai Fiopei lie
hveicel	iiaiy iicai Dala, Fiiysicai Fichei lie
ualytical Data Dhysical	אוומווץ נוכמו
hveicel	אוומווץ נוכמו

R ₂ TeX ₂	Complex	Nitrobenzene	nzene	Acetone	ne	Aceto	Acetonitrile
(R)		Molar Conc. C x 10³ mol L ⁻¹	Molar Cond. $\Lambda_{\rm M}^{\rm A}$ ohm ⁻¹ cm ² mol ⁻¹	Molar Conc. C x 10³ mol L ^{.1}	Molar Cond., ∆ _w Ohm⁻¹cm²mol¹	Molar Conc. C x 10³ mol L⁴	Molar Cond., $\Lambda_{\rm n}^{\rm A}$ Ohm ⁻¹ cm ² mol ⁻¹
R,TeCl,	R, TeCl,. Pyz	1.00	1.38	1.00	5.36	1.00	17.60
, p-hydroxy-	1	1.67	1.30	1.67	4.76	1.67	13.44
phenyl)		2.14	1.21	2.14	4.02	2.14	11.20
		2.50	0.95	2.50	3.54	2.50	10.05
		2.71	0.80	2.71	1.10	2.71	8.62
$R_2 TeBr_2$	R_2 TeBr $_2$.Pyz	1.00	2.13	1.00	15.67	1.00	24.20
(<i>p</i> -hydroxy-		1.67	2.06	1.67	11.36	1.67	19.51
phenyl)		2.14	1.98	2.14	10.47	2.14	17.23
		2.50	1.36	2.50	8.54	2.50	16.54
		2.71	1.02	2.71	2.45	2.71	13.36
$R_2 Tel_2$	R ₂ Tel ₂ .Pyz	1.00	8.93	1.00	18.76	1.00	35.23
(<i>p</i> -hydroxy-		1.67	6.67	1.67	12.59	1.67	29.90
phenyl)		2.14	4.33	2.14	9.97	2.14	28.56
		2.50	4.01	2.50	7.32	2.50	27.50
		2.71	2.76	2.71	3.98	2.71	14.28
R ₂ TeCl ₂	R2TeCl2.Pyz	1.00	0.28	1.00	7.40	1.00	24.67
(3-methyl-4-		1.67	0.17	1.67	5.06	1.67	20.13
hydroxy phenyl)		2.14	0.13	2.14	4.76	2.14	18.70
		2.50	0.12	2.50	4.52	2.50	14.36
		2.71	0.99	2.71	4.36	2.71	10.57
$R_2 TeBr_2$	R_2 TeBr ₂ .Pyz	1.00	1.76	1.66	15.70	1.00	27.60
(3-methyl-4-		1.67	1.47	1.67	10.63	1.67	24.55
hvdroxvphenvl)		2.14	1.40	2.14	9.54	2.14	18.76

NARWAL et al., Orient. J. Chem., Vol. 29(4), 1339-1349 (2013)

		2.50	1.32	2.50	9.21	2.50	16.34
		2.71	1.14	2.71	9.01	2.71	12.23
$R_2 Tel_2$	R ₂ Tel ₂ .Pyz	1.00	2.73	1.00	18.00	1.00	32.66
(3-methyl-4-		1.67	1.98	1.67	14.01	1.67	28.74
hydroxyphenyl)		2.14	1.40	2.14	12.09	2.14	20.22
		2.50	1.29	2.50	12.48	2.50	18.26
		2.71	1.21	2.71	12.40	2.71	10.73
	R2TeCl2.Pyz	1.00	4.80	1.00	6.06	1.00	12.00
(p-methoxy-		1.67	4.31	1.67	5.78	1.67	9.34
phenyl)		2.14	3.93	2.14	5.53	2.14	8.69
		2.50	3.34	2.50	4.84	2.50	8.63
		2.71	3.76	2.71	4.39	2.71	8.18
$R_2 TeBr_2$	R_2 TeB r_2 .Pyz	1.00	5.40	1.00	72.45	1.00	18.76
(<i>p</i> -methoxy-		1.67	4.67	1.67	68.73	1.67	16.45
phenyl)		2.14	4.44	2.14	54.36	2.14	15.23
		2.50	4.32	2.50	44.14	2.50	15.06
		2.71	4.10	2.71	38.12	2.71	14.33
$R_2 Tel_2$	R_2 Tel $_2$.Pyz	1.00	6.00	1.00	83.76	1.00	24.60
(<i>p</i> -mcthoxy-		1.67	5.02	1.67	74.39	1.67	22.28
phenyl)		2.14	4.81	2.14	63.38	2.14	20.75
		2.50	4.70	2.50	59.76	2.50	20.40
		2.71	4.67	2.71	40.44	2.71	20.30
Pyz = pyrazine							

 $r_{yz} = p_{yrazime}$ Λ_{w} reported² for 1 : 1 electrolyte : nitrobenzene = 20 - 30, acetone = 100 - 140 and acetonitrile = 120 - 160.

R ₂ TeX ₂ (R)	Complex	Formula Weight	Concentration in mmoles/ litre of solvent	Molecular weight found
R ₂ TeCl ₂	R ₂ TeCl ₂ .Pyz	466.0	1.421	412.4
(p-hydroxyphenyl)			2.137	439.9
			2.953	459.8
			3.131	470.4
R ₂ TeBr ₂	R ₂ TeBr ₂ .Pyz	553.7	1.377	521.7
(p-hydroxyphenyl)			2.178	535.8
			2.784	546.3
			3.182	574.6
R ₂ Tel ₂	R ₂ Tel ₂ .Pyz	647.7	1.276	601.4
(p-hydroxyphenyl)			2.047	620.3
			3.009	628.8
			3.921	654.6
R ₂ TeCl ₂	R ₂ TeCl ₂ .Pyz	492.9	1.257	453.7
(3-methyl-4-hydroxyphenyl)			2.193	468.9
			2.804	482.6
			3.314	501.3
R ₂ TeBr ₂	R ₂ TcBr ₂ .Pyz	581.8	1.078	548.7
(3-methyl-4-hydroxy phenyl)			1.931	560.4
			2.487	579.9
			3.208	588.3
R ₂ Tel ₂	R ₂ Tel ₂ .Pyz	675.8	1.269	643.3
(3-methyl -4-hydroxyphenyl)			2.084	657.8
			2.978	674.3
			3.483	689.1
R ₂ TeCl ₂	R ₂ TeCl ₂ .Pyz	492.9	1.374	451.4
(p-methoxyphenyl)			2.038	477.6
			2.938	483.3

Table 3: Molecular Weight Data for Pyrazine Complexes of DiaryItellurium(IV) Dihalidcs

Scheme 1. Formation of Pyrazine complexes Where

R =p-hydroxyphenyl, 3-methyl-4hydroxyphenyl, p-methoxyphenyl Pyz = pyrazine All the compounds were analysed for their tellurium and halogen contents and some for carbon, hydrogen, nitrogen contents as well(results are given in table I). These complexes of diaryltellurium(IV) dihalides are generally coloured, crystalline solid which are fairly stable in dry air. These are generally soluble in polar organic solvents and insoluble in non polar solvents.

Pyz = pyrazine

The L_M values for the pyrazine complexes in nitrobenzene, acetone and acetonitrile are generally much lower than those reported for 1 : 1 electrolytes thus suggesting their non-electrolyte type behaviour in these solvents. Also the L_M values in a particular

		R Tel Dvz	R TeCL Pvz	R TeBr Pvz	R Tel Dvz	Assignment
R = (<i>p</i> -hydroxy- phenyl)	R = (<i>p</i> -hydroxy- phenyl)	R = (<i>p</i> -hydroxy- phenyl)	R = (3-methyl-4- hydroxy phenyl)	R = (3-methyl-4- hydroxyphenyl)	R = (3-methyl-4- hydroxyphenyl)	
3400-3200 s b	3414-3214 sb	3466-3287 s b	3413-3202 sb	3393-3195 sb	3454.3140 sb	n _{o.} u
3100m	3118m	2924 m	3117s	3112m	3100m	aromatic C-H
3059 s b	3044 s	2880 s b	3100 m	3080 m	2925 s	stretching +
3010 sb	2963 s		3054 s	3050 s b	2920 s	и(сн)ofPyz+nr-сн ₃
2978 s b	2913 m		3000 m	2930 s b	2880 s	
2887 s b			2943 m	2870 m	2810m	
2760 s b			2925 m 2910 m			
2553 m b	2450 m b	2371 mb	2430 m b	2540 m b	2610 mb	overtones and
2490 m b	2371 mb	2350 m b	2180mb	2230 m b	2470 m b	combination bands
2400 m b	2248 m b	2310 mb	2100 m	2030 m b	2250 m b	
2280 m b	2016 mb	2280 m b			2110mb	
2036 m b						
1640 w	1627 m	1628 m	1575 s	1573 s	1620 m	V Ceed
1569 s	1553 s	1560 s 1540 m			1514s	
			1495 vs	1492 s	1518m 1488 s	sym. ring stretch
1478 vs rind	1475 s	1480 vs	1477 vvs	1475 s	1448 s	inplaneantisym.
1450 s	1418m	1403 m	1450 m		1420 sh	stretch + antisym.
CH3	1420 sh					bending + u <i>ring</i> of
1370 sh	1367 sh	1362 sh	1395 s	1394 m	1402 m	pyz. d <u>,</u> ⁺ in the plane
		1340 w	1347 m	1345 m	1342 m	antisym. ring def. +
						sym. methyl C-H bending
1257 s	1268 s	1280 s	1273 ws	1274 vs	1274 vs	nc-o

Table 4: IR Data (cm⁻¹) for Pyrazine Complexes of DiaryltelluriumDihalides

NARWAL et al., Orient. J. Chem., Vol. 29(4), 1339-1349 (2013)

1150 W	1104 m	1239 m 1170 vs 1160 m 1125 vs	1168 m 1168 m 1150 w 1123 s	1244 m 1156m 1114s	aromatic in the plane vib. + ring of Pyz.
1054 m	1060 m	1067 m 1034 m 1010w	1065 m 1032 w 1008 w	1060 m 1020 w	sym. in plane ring breathing
<i>967 m</i> 886 s	<i>960 m</i> 741 m	<i>985 m</i> 919m	<i>981 m</i> 917m	<i>957 m</i> 898 s	Pyz. <i>unidentate</i> C-H out of plane H-
826 m		912 m	879 s	872 s	bending vib + n _{ev} of
750 m		882 m	850 m	800 m	Pyz.
718 m		859 m	807 m	780 m	
		808 s	742 s		
		758 s	719 m		
		744 s			
		721 m			
644 m	615 m	681 w		680 m	646 m ing
524 m	550 sh	650 m		640 mb	
	491 m	620 m		598 w	
		599 w	*	550 w	
		553 m			
		450 m437 s	455 m		phenyl modes + g
			435 w		ring or Fyz.

vvs = very very strong, vs = very strong, s = strong, sh = shoulder, m = medium, vw= very weak, b - broad

R ₂ TeCl ₂ .Pyz	R ₂ TeBr ₂ .Pyz	R ₂ Tel ₂ .Pyz	Assignment
3200 s	3178 s	3129 s	aromatic C-H strech + n(сн)of Pyz.
3075 m	3096 m	3100 m	
3010 m	2994 m	3000 m	
2900 m b			
2175 m	2184m	2200 m	overtones and combination bands
2100 mb	2093 m b	2100 mb	
2040 m	1988 m	2000 m	
1900 m	1856 m	1975 m	
1871 m	1743 m	1875 m	
		1800 m	
		1725 m	
1600 m	1586 s	1582 vs	$\nu_{c=c}$ skeletal in plane ring
1580 vs			stretch
1492 s	1498 s	1500 s	n ring of Pyz
1456 m	1460 m	1487 s	
	1410m	1457 m	
		1420 m	
1399 m	1348 m	1300 s	asym. C-O-C stretch
1301 s	1283 s	1275 s	
1255 s	1258 s	1246 vs	
1175 s	1178s	1179 vs	g ring of Pyz. + aromatic in the plane vib. + sym
C-O-C	1110m	1107 m	1110m stretch.
1053 m	1024 s	1023 vs	
1021 vs		1000 w	
965 s	953 s	957 s	Pyz. unidentate
815 vs	835 s	880	C-H out of plane H-bending vib + g_{cH} of Pyz.
780 s sh		800	
		776 m	
715 m	718 w	712 m	out of the plane ring bending vib.
690 w	640 w	610 w	
610 w		580 w	

Table 5: IR Data (cm⁻¹) for Pyrazine Complexes of Bis(p-methoxyphenyl)tellurium Dihalides

vs = very strong, s = strong, sh = shoulder, m = medium, w = weak, vw = very weak, b = broad

solvent for pyrazine adducts varies in the order. R₂Tel₂.Pyz > R₂TeBr₂.Pyz > R₂TeCl₂.Pyz

Cryoscopic measurements

The cryoscopic data for the pyrazine complexes (Table III) show that molecular weights of these complexes arc quite close to the formula weights, thus suggesting their molecular monomeric nature in nitrobenzene, as predicted by conductance studies as well.

IR Spectra

The important IR data (cm⁻¹) for pyrazine complexes of diaryltelluriumdihalides are presented in Tables IV and V. The spectra are quite complex and the frequencies from which concrete conclusion can be drawn are listed in the Tables. This may be mentioned that assignments made in the table are

Compound	Chemical Sh	ift	Assignment
R ₂ TeCl ₂ .Pyz		*	
(R = <i>p</i> -hydroxyphenyl)			
	2.21 ^s	(6H)	-CH ₃
	6.94 ^d	(2H)	Η [¯]
R ₂ TeCl ₂ .Pyz			Phenyl ∫
$(\ddot{R} = 3-methyl-4-hydroxyphenyl)$	7.50 - 7.69 ^m	(4H)	HA &Hc
	8.05 ^b	(2H)	-OH
	8.61°	(4H)	Ha (pyrazine)
	3.86 ^s	(6H)	-OCH ₃
	7.02 ^d	(4H)	H _r J
R2TeCl2.Pyz			Phenyl ∫
(R = <i>p</i> -methoxyphenyl)	7.94 ^d	(4H)	Ha
	8.60°, 8.22°	(4H)	Ha(pyrazine)

Table 6: ¹H INMR Data (d ppm) for Pyrazine Complexes of DiaryltelluriumDichlorides in DMSO-d_e.

s = singlet, b = broad, m = multiple, cm = complex multiple, d = doublet

* Spectra not well resolved.

based on comparison of spectra of parent $R_2 TeX_2$ and pyrazine. The ring vibrations of these may be mixed with each other.

The pyrazine molecule $(C_4H_4N_2)$ has the centrosymmetric and planar structure with D_{2b} symmetry in the vapour and solid phases. The assignments of the infrared spectra of pyrazine in solid⁶, liquid⁷⁻⁸ and vapour⁹⁻¹⁰ phases and in solution^{6,10,11} have been reported to be in accord with the D_{2b} symmetry. The important infrared frequencies which are observed^{10,11} in free pyrazine are 3061, 3011 (n_{CH}), 1483, 1412 (n_{ring}), 1150 (n_{ring}), 1130 $(D_{CH})_{9}$ 1061 (D_{CH}) , 1019 (D_{ring}) , 785(ucm)and $418(n_{ring})$. In metal complexes in which both N-atoms of pyrazine are coordinated to two metal atoms, the D_{2h} symmetry is preserved but is removed in unidentate coordination. Several modes of pyrazinein complexes have upward shift in wave number in comparison with those of free pyrazine. This blue shift in pyrazine bands in the complexes indicates the coordination through N-atom as in pyridine^{12,13}. This blue shift in ppyrazine stretching may be due to back bonding from tellurium to pyrazine ring through formation of extensive -bonding.

Lever *et al*¹⁴⁻¹⁷ and Kantara¹⁸ have reported that in complexes where pyrazine is bonded through

only one N-atom, the low local symmetry experienced by the pyrazine moiety atoms allows a band to appear in the 950-1000 cm⁻¹ region, which may be taken as an evidence for unidentate nature of pyrazine. This band is reported to be absent in the bridged polymers where pyrazine functions as bidentate ligand. In pyrazine complexes of diaryltellurium(IV) dihalides prepared during this course of study exhibit a medium to strong intensity band in this region, thereby confirming the unidentate nature of pyrazine in these complexes. Thus, tellurium in R₂TeX₂.Pyz complexes attains a coordination number of five probably in a square pyramidal environment.

¹HNMR Spectra

The ¹H NMR data for pyrazine complexes are given in Table VI. The four equivalent protons of free pyrazine which resonate at 8.59^{19} d ppm appear at slightly downfield side in R₂TeCl₂.Pyz complexes due to shifting of electron density from N of pyrazine to Te of R₂TeCl₂. Also in some cases separation between the pyrazine protons has been observed which may be due to monodentate nature of pyrazine. Conversely, the aryl protons of R₂TeCl₂group resonate at upfield side as compared to the parent diaryltellurium dichloride, indicating thereby the shielding of phenyl protons especially those *ortho*to TeCl₂ group. This may be due to an increase in electron density at the tellurium atom after accepting the electrons from the pyrazine molecule. Similar shift has also been reported for pyridine complexes^{20,21} of RTeCl₃. Thus tellurium in these pyrazine complexes acquires a coordination number of five.

CONCLUSION

Bis (*p*-hydroxyphenyl), bis (3-methyl-4hydroxyphenyl) and bis(*p*-methoxyphenyl) tellurium (IV) dichlorides are obtained by direct reaction of tellurium tetrachloride with phenol, *o*-cresol and anisole respectively.

These diaryltelluriumdihalides have been reacted with pyrazine. The solution behaviour of complexes of diaryl tellurium (IV) dihalides has been investigated by conductance measurement in nitrobenzene, acetone and acetonitrile and cryoscopic measurement in nitrobenzene. The Structural aspects of the complexes of diaryltelluriumdihalides have been investigated conjointly by infrared and proton magneticre-sonance spectroscopy. These complexes of diaryl tellurium (IV) dihalides are generally coloured, crystalline solid which are fairly stable in air. These are generally soluble in polar organic solvents and insoluble in non polar solvents.

ACKNOWLEDGEMENTS

The authors are thankful to Maharshi Dayanand University, Rohtak for providing the necessary facilities.

REFERENCES

- G. Maslakov, E. Gresham, T. A. Hamor, W. R. Mcwhinnie, M. C. Perry and N. Saikh, *J. Organometal. Chem.*, **480**: 261 (1994).
- 2. Y.D. Kulkarni, Archana Rani and R.A. Siddiqui, J. Indian Chem. Soc, **69:** 353 (1992).
- 3. ShekharSrivastava, Dilip Kumar Soni and Hari Shankar Gupta, *J. Indian Chem. Soc.*, **73**: 255 (1996).
- K. K. Verma and Sunil Verma, Proc. Indian Council of Chemist 27th Annual Conference, GurukulKangri University, Haridwar, Dec. 26-28: paper no. IO-10, p. 23 (2008).
- K. K. Verma and Sunil Verma, Proc. Indian Council of Chemist 27th Annual Conference, GurukulKangri University, Haridwar, Dec. 26-28, paper no. IO-17, p. 27 (2008).
- G. Sbrana, V. S. Chettino and R. Righini, *I* Chem. Phys., 59, 2441 (1973).
- R. C. Loard, A. J. Marson and F. A. Miller, Spectrochim., Acta, 9: 113 (1957).
- J. Zarembowitch and L. Bokibza-Sebagh, Spectrochim. Acta, A32: 605 (1976).
- 9. S. Califano. G. Adembri and G. Sbrana, Spectrochim. Acta, **20**: 385 (1964).
- J. F. Arenas, J. J. Lopez-Navarrate, J. C. Otero, J. I. Macros and A. Cardenate, *J. Chem. Soc. Faraday Trans.*, 81: 405 (1985).

- Z. Kantarci, B. Davarcioglu and C. Bayrak, J. of Inc. Phenom. and Macr. Chem., 39: 115-121 (2001).
- 12. N. N. Greenwood and K. Wade, *J. Chem. Soc,* A, 1130 (1960).
- 13. J. K. Wilmhurst and H. J. Bernsteim, *Can. J. Chem.*, **35**: 1183 (1957).
- 14. B. P. Lever, J. Lewis and R. S. Nyholm, *Nature Lond.*, **189**: 58 (1961).
- 15. B. P. Lever, J. Lewis and R. S. Nyholm, *J. Chem. Soc*, 1235 (1962).
- 16. B. P. Lever, J. Lewis and R. S. Nyholm, *J. Chem. Soc*, 3156 (1963).
- 17. B. P. Lever, J. Lewis and R. S. Nyholm, *J. Chem. Soc*, 5042 (1963).
- H. D. Stidham and J. A. Chandler, *J. Inorg. Nucl. Chem.*, **27**: 397-403 (1964).
- 19. SDBS 3641
- K. K. Verma, Reena and DayaSoni, Synth. React. Inorg. Met. -Org. Chem., 29: 1033 (1999).
- 21. Reena, *Ph.D. Thesis*, M.D. University, Rohtak (1998).
- 22. Om Prakash, S.A. Iqbal and G. Jacob, *Orient J. Chem.*, **29**(3): 1079-1084 (2013).
- 23. Neeti Rathore and Bal Krishan, *Orient. J. Chem.*, **29**(3): 1001-1008 (2012).