

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

ISSN: 0970-020 X CODEN: OJCHEG 2014, Vol. 30, No. (2): Pg. 623-629

www.orientjchem.org

Thermodynamic Investigation of Tripeptide Tyr-Aaa-Gly in Gas Phase in Different Solvents

EBRAHIM BALALI*

Department of Chemistry, College of Basic Sciences, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran. *Corresponding author E-mail: e.balali93@gmail.com

http://dx.doi.org/10.13005/ojc/300230

(Received: April 04, 2014; Accepted: May 05, 2014)

ABSTRACT

Tripeptide Tyr-Aaa-Gly (1a, 2b) is methionine-enkephalin analogues [Aaa = (R,S)-(1adamantyl)glycine]. The unique structure of adamantane is reflected in its highly unusual physical and chemical properties, which can have many applications including drug design and drug delivery. In this research, Quantum-mechanical calculations were performed at the HF/6-31G, HF/6-31G*, B3LYP/6-31G, B3LYP/6-31+G, B3LYP/6-31G* and BLYP/6-31G** levels in the gas phase and four solvents such as water, DMSO, methanol and dichloromethane. According to these theoretical results we extracted thermo chemical parameters such as energy of the whole system, enthalpy, Gibbs free energy and entropy for Tripeptide Tyr-Aaa-Gly. The results were revealed that parameters are strongly affected by inducing different solvent media. According to these theoretical results it can be drastically concluded that the dielectric permittivity of the solvent is a key factor that determines the chemical behavior of Tripeptide Tyr-Aaa-Gly in solution.

Key words: Adamantane; Enkephalin; thermo chemical; Enthalpy; Gibbs free energy; entropy; gas phase; solvent effect.

INTRODUCTION

Adamantane is a highly lipophilic compounde, it is readily soluble in organic solvents, sublimes at 209-212 °C, crystallizes at -30 °C and melts in sealed tubes at 268 °C. The unique structure of adamantane is reflected in its highly unusual physical and chemical properties, which can have many applications including drug design and drug delivery. The carbon skeleton of adamantine comprises a cage structure, which may be used for the encapsulation of other compounds, like drugs. Although adamantane has been the subject of many research projects in the field of pharmacophore-based drug design, its application to drug delivery and drug targeting systems is a new matter of considerable importance¹.

Among the major biological activities displayed by adamantane derivatives, the

antiviral², antibacterial³, antifungal⁴, antiinflammatory⁵, central nervous⁶ and 11b-HSD1 inhibitory activities⁷ are the most important ones. Due to the high lipophilicity of adamantane, the incorporation of the adamantyl moiety into several molecules results in compounds with relatively high lipophilicity, which in turn can modify the biological availability of these molecules.

Opioid peptides act as cell growth factors, in addition to regulating neurotransmission/ neuromodulation in the nervous system. To obtain more selective opioid peptides with improved or novel activity profiles toward malignant diseases, modifications using lipophilic moieties may be of particular benefit to passive or active cellular absorption by membrane penetration or attachment. The diastereomeric tripeptides Tyr-(*S*)-Aaa-Gly and Tyr- (*R*)-Aaa-Gly [Aaa = (*R*,*S*)-(1-adamantyl)glycine] (Figure 1) showed similar, cell-selective, cytotoxic effects on tumor cell lines irrespective of Aaa chirality⁸. They are methionine-enkephalin analogue.

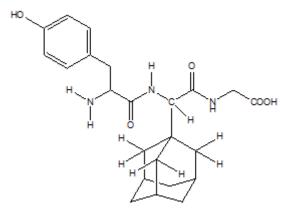


Fig. 1: Structure of Tripeptide Tyr-Aaa-Gly

Another example of adamantane utilization for poorly-absorbed-drug delivery to the brain is the conjugation of [D-Ala2]Leu-enkephalin derivatives with a 1-adamantyl. The antinociceptive effect of Leu-enkephalin disappears when it is administered peripherally since proteolytic enzymes would decompose it. As a result it cannot penetrate into the CNS (Central Nervous System). It is feasible to conjugate the [DAla2] Leu-enkephalin with a 1-adamantane vector via an ester, amide or a carbamate linkage in order to enhance the drug lipophilicity and thus facilitate its delivery across the blood-brain barrier (BBB) to the brain⁹. The adamantane-conjugated [D-Ala2]Leu-enkephalin prodrugs are highly lipophilic and show a significant antinociceptive effect because of their ability to cross the BBB¹⁰. These results suggest that adamantyl is a promising brain-directing drug vector providing a high lipophilicity, low toxicity and high BBB permeability for sensitive and poorly absorbed drugs^{9,11}.

Methods of Computations

At first, we have modeled the Tripeptide Tyr-Aaa-Gly (Figure 2) with ChemDraw package. Then using Chem3D performed an energy minimization. The ab initio molecular calculations were carried out using the Gaussian 98 program (Frisch et al., 1998)¹². Gaussian is one of the most widely used quantum chemical program packages for molecular applications, and is used both in industry and in many scientific areas in academia. Geometry optimization in the gas phase and solution for molecules were performed at the HF method with the 6-31G, 6-31G* basis sets and at the B3LYP method with the 6-31G, 6-31+G and 6-31G* basis sets and BLYP method with the 6-31G** basis set in the gas phase and four solvents such as water, dimethylsulfoxide (DMSO), methanol and dichloromethane. The solvent effect is taken into account using the self-consistent reaction field (SCRF) method. This method is based on the Onsager reaction field theory of electrostatic salvation. In this model, a solvent is treated as a uniform dielectric with a given dielectric constant. A solute is placed into a cavity within the solvent. We optimized the geometries of Tripeptide Tyr-Aaa-Gly in various solvents using the Onsager model at the Hartree-Fock, BLYP and B3LYP levels of theory and compared our results with those obtained for the gas phase the effect of the permittivity of solvents on the stability of this structure. The energy of the whole system (ΔE), enthalpies (ΔH), Gibbs free energies (Δ G), entropies (Δ S) of Tripeptide Tyr-Aaa-Gly were carried out in solution and gas phase. IR spectra studied in conjunction with normal mode calculations by quantum chemical methods provide details of conformational studies (Monajjemi et al., 2008)¹³. The first step of the calculations consisted of geometry optimization of the Tripeptide. SCRF approaches differ in how they define the cavity and reaction field (Monajjemi et al., 2010)14.

				310 334.97 186.31	87,556 9.91	87 562	334.22 184.11		87556 6.50		335.04 189.96	- 87556 7.00	- 87 562 4.32	334.22 183.80	- 87,556 6.51	- 87,562	2.54 335.03 190.36	- 87556 7.00	- 87562 4.40
HF/6-31G, HF/6-31G*, BLYP/6-31G** levels in gas phase and various solvent			AG (Kcalimol)	308 334.71 185.44	875570 20	875624	334.09 183.52		875566 .71	875622		- 875567 22		334.09	875566 72		.29 334.84 189.66	875567 .18	875624 32
	31G ⁺ al/mol)	<u>AS(cal/molK)</u> АН(Kcal/mol)		306 334.46 184.76	87,5570 .38	87 5624	333.89 182.94		875566 .97	87 5622	334.74 188.55	87,5567 .46	87,5623 .78	333.89 182.82	87 5566 98	- 87 5622	.07 334.74 188.95	87,5567 .36	87,5625 .01
	BL YP/6-31G ⁺⁺ ΔE (Kcal/mol)	ΔS(cal/molK) ΔH(Kcal/mol	∆G (Kc	304 334.33 184.18	875570 .59	875624	333.63 182.33				334.52 187.85	875567 .68	875623 .45		875567 .14		.62 334.51 188.24	875567 .59	875624 .75
				302 334.18 183.29	875570 .86	875624	333.44 181.72	•	875567 .34	875621	334.32 187.14	- 875567 91		333.44 181.57	875567 35	575621	.26 334.32 187.54	- 875567 .81	875624 34
				300 334.09 182.45	875 <i>57</i> 1 .02	875623	333.28 181.12	•	875567 .59	875621		875568 .10					.06 334.11 187.03	- 875568 .08	- 875.623 .00
				310 355.78 186.42	87 0449 .85	87 0507	.00 355.77 185.70		87 0449 .80	87 0507	355.77 355.77 185.71	87 0449 .80	87 0507 .34	355.77 185.72	87 0449 .80	87 0507	.38 355.77 185.78	- 87 0449 .82	87 0507 .41
				308 355.57 185.74	870450 .06	870507	.2/ 355.56 185.02	•	870450 .01	870506	355.56	870450 .01	870507 .00	355.56 185.04	870450 .01	870507	.01 355.56 185.10		
	HF/6-31G⁺ ∆E(Kcal\mol)	ΔS(calmolk) ΔH(Kcalmol)	ΔG(Kca	306 355.37 185.06	870450 27	870506	355.35		870450 22	870506	355.36	- 870450 22	870506 .63	355.35 184.35	870450 22	570506	.64 355.36 184.42	- 870450 - 24	- 870506 .67
	AE(Ko	ΔS (calm ΔH(Kca		304 355.16 184.37	870450 .48	870506	355.15 183.65		870450	870506	355.15 183.66	870450 .43	870506 .26	355.15 183.67	870450 43	- 870506	.27 355.15 183.74	870450 .44	870506 .30
				302 354.96 183.69	870450 .69	870506	354.95					- 870450 .64					.90 354.95 183.05		870505 93
				300 354.76 183.01	870450 .89	870505	.00 354.75 182.29		870450 .84	870505	354.75 182.29	5	870505 .53	354.75 182.31	870450 84	- 870505	.54 354.75 182.37	- 870450 .86	870505 .57
				310 356.28 182.18	87 0082 .33	87 0138	.00 356.15 186.82		87 0079 .14	87 0137	356.15 186.84	87 0079 .14	87 0137 .06	356.15 186.86	87 0079 15	- 87 0137	.07 355.49 179.53	- 87 0079 .84	87 0135 .49
				308 356.08 181.51	87 0082 .53	87 0138	355.94 186.14	•	87 0079 35	87 0136	355.94 186.16	- 87 0079 35	87 0136 .69				.70 355.29 178.87	87 0080 .04	87 0135 .14
	HF/6-31G AE (Kca l/mol)	ΔS (calmolk) ΔH (Kcalmol)		304 306 308 355.58 355.88 355.08 180.17 180.84 181.51	870082 .74	870138	355.74	•	870079 .55	870136	355.74	- 870079 .56	870136 32	355.74 185.51	- 870079 .56	- 870136	.33 355.10 178.21	870080 25	870134 .78
	AE (Ko	DA (Ca	7G(K¢	304 355.68 180.17	870082 94	870137	355.54 355.54 184.80	•	870079 .76	870135	355.54	870079 76	870135 95	355.54 184.84	870079 76	- 870135	.96 354.90 177.55	- 870080 .45	870134 .42
				302 355.48 179.50	870083 .15	870137	355.34	•	870078 96	870135	355.34	570079 96	870135 .58	355.34 184.17	570079 97	- 870135	.59 354.70 176.89	- 870080 .65	870134 .07
				300 355.28 178.83	870083 .35	870137	355.14 183.45	•	870080 .16	870135	355.14	870080 .17	870135 21	355.14 183.50	870080 17	870135	22 354.51 176.23	- 870080 .85	870133 .72
				gas phase			water				DWSO			methan	0		CHICI		

Table 1: Relative thermochemical parameters of Tripeptide Tyr-Aaa-Gly obtained using HF/6-31G. HF/6-31G*. BLYP/6-31G** levels in das phase and various solvent

	310 333.55 187.55 87238 3.26	87360 227 332.69 185.02 8.7237 8.56	- 3.11 3.11 3.33.82 190.32 190.32 9.99 9.99	87359 8.74 8.74 332.91 184.83 8.7237 8.57	- 87359 2.96 333.57 190.89 190.89 6.7238 0.15	87359 8.95 8.95
	308 333.35 185.85 872383 45	873801 88 332.50 184.32 872378 872378	873582 78 333.61 189.60 872380 20	873596 43 332.70 184.14 872.37 8 77	- 873692 63 333.36 190.18 190.18 - 31	873696 85
-31G* lilmol) molK) alimol)	306 333.15 185.16 872383 64	873.601 .07 .07 183.62 183.62 872.378 .96	873.592 46 333.42 188.89 872.380	873596 .12 .332.49 183.44 183.44 872.378 .97	873.592 31 3133.15 189.47 189.47 872.380	873596 .36
B3LYP/6-31G* ΔΕ(Kcal/mol) ΔS(cal/molK) ΔH(Kcal/mol)	304 332.95 184.46 872383 872383	873600 .47 .332.20 182.93 87.2379 .15	873592 .13 .333.01 188.21 87.2380 .61	87 3595 81 332 30 182.75 87 2379 16	873591 873592 98 31 33295 33315 188.78 189.47 872380 872380 .71 49	87.3586 .01
	302 332.74 183.78 872384 .00	873599 80 331.98 182.24 872379. 35	873591. 80 332.80 187.51 872380. 82	873595. 50 332.10 182.05 872379 35	873591 85 85 332.74 188.08 872380 872380	873595 .72
					873591. 32 322.54 187.37 872381. 13	
	310 333.91 188.31 87.3677 .15	874886 87 333.40 184.73 87306 87306 9.99	87488 2.55 334.10 190.05 87367 1.08	87488 4.87 333.31 184.40 87367 0.00	- 87488 245 234.00 190.54 87367 1.16	87488 5.07
	308 333.70 185.59 87.3677 .37	874886 .38 .333.21 184.02 873670 .19	874882 .33 .33.81 189.33 189.33 873671 .29	874884 .46 .333.10 183.68 873670 .19	874882 .24 333.80 189.81 873671 .37	874884 .68
+31+G lumol) molK) almol)	306 333.51 184.87 87.3676 59	874885 87 332.91 183.30 873670 23	874882 .02 .02 .188.61 188.61 873671 49	874884 .06 .332.90 182.97 873670 24	874881 94 333.61 189.09 873671 873671	874884 26
B3LYP/8-31+/G ΔE(Kcal/mol) ΔS(cal/molK) ΔH(Kcal/mol) ΔG(Kcal/mol)	304 333.31 184.15 87.3676 81.3676	874885 35 332.70 182.59 873.670 873.670	874881 .72 .333.41 187.88 873.671 .70	874883 .65 .332.69 182.27 .873.670 .46	374881 874881 87488 331 84 94 333.19 333.40 333.61 187.64 183.35 189.06 373671 873671 873671 87367 399 78	874883 87
	302 333.10 183.42 87.3677 .03	874884 .84 .332.50 181.89 873670 .66	874881 .40 .333.20 187.16 873671 .91	874883 .43 .332.50 181.56 873670 .66	874881 .31 .333.19 187.64 873671 .99	874883 .64
	300 332.98 182.70 87.3677. 25	874884. 32 33228 181.18 873670. 88	874881. 09 333.00 186.45 873672. 11	874883. 03 33228 180.84 873670. 87	874881. 00 1332.99 186.91 873672.	874883. 23
	310 334.19 186.28 875566 8755666	875624 .70 .333.37 184.71 875564 .89	875621 95 334.11 190.03 875564 90	875623 81 333.38 184.37 184.37 875564 70	- 875621 86 334.11 190.50 875564 .97	875624 .02
	308 333.97 185.55 875567 .18	875624 33 333.16 184.00 875564 .91	875621 .58 .333.89 189.31 189.31 189.31 13 .13	875623 .43 .333.16 183.66 875564 .92	- 875621 .49 .333.89 189.78 189.78 875565 .19	875623 .64
B3L YP/6-31G ΔΕ(Koal/mol) ΔS(cal/molK) ΔH(Kcal/mol) ΔG(Koal/mol)	306 333.75 184.83 875987 40	875623 .96 .332.94 183.28 87.5685. 13	87.5021. 21 333.68 188.59 87.5585. 35	875623. 06 332.95 182.95 875565.	87562 875621. 0.76 875621. 333.46 333.67 188.33 189.06 87556 875505. 5.63 41	87.5623. 26
B3LYP AE(Kce AS(cel AH(Kce AG(Kce	304 333.53 184.11 87.5567 .62	875623 59 332.73 182.57 182.57 875585 34	875620 85 333.46 187.86 87558 87558	87562 2.68 33273 18224 87558 5.36	5.63 0.76 0.76 333.46 188.33 188.33 188.33 5.63 5.63	- 87562 2.89
	302 333.32 183.38 183.38 875567 .84	875623 22 332.52 181.86 87556 5.56	87562 0.48 0.48 333.25 187.14 875565 79	875622 31 31 332.52 181.53 875565 875565	875620 39 333.24 187.61 875565 875565	875822 .48
	300 333.10 182.66 875568 06	875622 86 332.31 181.15 875665 77	875520 .12 .333.03 186.42 875566	875621 .93 .332.31 180.82 875585 .78	875620 03 333.03 186.89 875566	875622 .14
	gas phase	water	DMISO	methan ol	ъ́но	

Table 2. Relative thermochemical parameters of Tripeptide Tyr-Aaa-Gly obtained using B3LYP/6-31G, B3LYP/6-31+G, B3LYP/6-31G* levels in gas phase and various solvent.

626

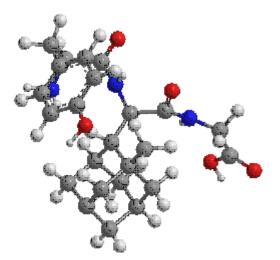


Fig. 2: Optimized structure of Tripeptide Tyr-Aaa-Gly.

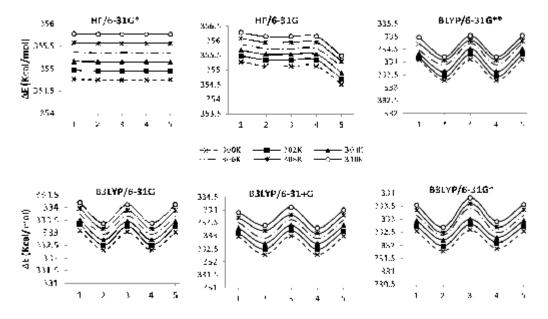


Fig. 3: Comparison of energy (∆E) (Kcal/mol) of Tripeptide Tyr-Aaa-Gly in 1= gas phase, 2= water, 3= DMSO, 4= methanol and 5= CH₂Cl₂ using the different levels at six temperatures (300, 302, 304, 306, 308, 310 K)

DISCUSSION

Solvent effects on relative stabilities

Tripeptide Tyr-Aaa-Gly (Figure 1) was studied in gas phase and various solvent media with dielectric constants of gas phase ($\mu = 1$), water ($\mu = 80$), dimethylsulfoxide ($\mu = 46.7$), methanol ($\mu =$ 32.63) and dichloromethane ($\mu = 10.36$). First, Tripeptide Tyr-Aaa-Gly was fully optimized by HF method with the 6-31G and 6-31G* basis sets and at the B3LYP method with 6-31G, 6-31+G and 6-31G* basis set and BLYP method with 6-31G** basis set to obtain minima of the potential energy. The influence of the solvent on the relative stability of our molecule was studied by means of the Onsager approach (the SCRF method) at six temperatures 300, 302, 304, 306, 308 and 310 Kelvin (Table 1, 2). We found that there was some difference between these functions obtained by the different levels. As in Table 1, 2 and Figure 3 can be seen, in gas phase and solvents, the "E value increased with increasing of temperatures.

In fact at all medium (gas phase and different solvent) and using all levels, the "E value increased with increasing of temperatures. As in Figure 3 can be seen, using HF/6-31G* with change of medium don¿t change most. Using HF/6-31G level, "E value in dichloromethane is the smallest value. The "E value, using four levels BLYP/6-31G**, B3LYP/6-31G, B3LYP/6-31+G and B3LYP/6-31G* in water and methanol is smaller than other, while in gas phase, dimethylsulfoxide and dichloromethane is larger than other medium. The effect of solvents on the stabilization of the active site is of interest, it plays a major role in their activities. When solvent is added to Tripeptide Tyr-Aaa-Gly the intermolecular hydrogen bonds are formed between Tripeptide and molecule of solvent. Water and methanol are protic solvents and from five sites with Tripeptide have interaction furthermore are formed strong hydrogen bonds. DMSO and dichloromethane have interaction with Tripeptide but intermolecular hydrogen bonds are not formed. We found that the relative energies ("E) of Tripeptide in solvents of water and methanol are smaller than in dimethylsulfoxide, dichloromethane and gas phase, because interactions in water and methanol are stronger than in dimethylsulfoxide and dichloromethan. On the other hand, interactions between water and methanol with Tripeptide reduce the energy of the whole system ("E). Also according to values listed in Table 1, 2, the largest value for "E is watched using HF/6-31G level.

Solvent effects on thermochemical parameters

Thermochemical parameters such as standard enthalpy ("H), entropy ("S) and Gibbs free energy ("G) of Tripeptide Tyr-Aaa-Gly was obtained in gas phase and four solvent at six temperatures 300, 302, 304, 306, 308 and 310 Kelvin (Table 1, 2) using six levels. As in Table 1, 2 can be seen in gas phase and solvents, entropy ("S) value increased with increasing of temperature and the enthalpy ("H) and Gibbs free energy ("G) of are negative values. We found that there was some difference between these functions obtained by the different levels. A study of hydrogen bonding between Tripeptide Tyr-Aaa-Gly and water, dimethylsulfoxide, methanol and dichloromethane was performed for optimized structure in solution (Table 1, 2).

According to Table 1, 2, we found that using HF/6-31G* level the largest value of "S observed in gas phase because in gas phase does not constitute. With HF/6-31G level in water, methanol and dimethylsulfoxide, the "S value is larger than in gas phase and dichloromethane. Also with four levels of BLYP/6-31G**, B3LYP/6-31G, B3LYP/6-31+G and B3LYP/6-31G*, the smallest value of "S belongs to water and methanol, while the greatest value belongs to dimethylsulfoxide, dichloromethane and gas phase. According to Table 1, 2, we found that using all methods, the most negative value of "H observed in gas phase. And finally as shown in Table 1, 2, the "G value using four levels BLYP/6-31G**, B3LYP/6-31G, B3LYP/6-31+G and B3LYP/6-31G* in gas phase, dimethylsulfoxide and dichloromethane is more negative than the other method. With two levels HF/6-31G and HF/6-31G*, the most negative value is observed in gas phase.

CONCLUSION

In our current research, we have also theoretically studied the effects of water, DMSO, methanol, dichloromethane and gas phase at different temperatures on the thermodynamic parameters of Tripeptide Tyr-Aaa-Gly involving in active site and its structural stability. In order to investigate the influence different solvent media on the thermodynamic parameters through HF, BLYP and B3LYP methods and using 6-31G, 6-31G*, 6-31+G and 6-31G** basis sets. The best levels are BLYP/6-31G**, B3LYP/6-31G, B3LYP/6-31+G and B3LYP/6-31G*. In gas phase and solvents, entropy ("S) value and stability energy ("E) value increased with increasing of temperature. Also with increasing of temperature, the enthalpy ("H) and Gibbs free energy ("G) of are negative values. On the basis of the results of our calculations, we found that the relative energies ("E) of Tripeptide Tyr-Aaa-Gly in solvents of water and methanol are smaller than in dimethylsulfoxide, dichloromethane and gas phase, because interactions in water and methanol are stronger than in dimethylsulfoxide and dichloromethan. On the other hand, interactions between water and methanol with Tripeptide reduce the energy of the whole system (ΔE). This Tripeptide, interactions in water and methanol are stronger than in dimethylsulfoxide and dichloromethane and gas phase, there for ΔS value in water and dichloromethane is larger than the other media. HF/

6-31G*, the most negative value is observed in gas phase. According to our calculations, in the best methods, the most negative value of ΔH observed in gas phase and the ΔG value in gas phase, dimethylsulfoxide and dichloromethane is more negative than the other method.

REFERENCES

- Ramezani H., Mansoori G. A., Diamondoids as Molecular Building Block for Nanotechnology, Drug Targeting and Gene delivery, to appear 2006.
- 2. Wendel H. A., Snyder M. T., Pell S., *Clin. Pharmacol. Therap.*, **1966**; *7*, 38-43.
- 3. Krimmel C. P., U.S. Patent, **1971**; *3*, 565.
- Georgiev V. S., Bennett G. A., Radov L. A., Kamp D. K., Trusso L. A., Arch. Pharm., 1987; 320, 465-470.
- 5. Krimmel C. P., U.S. Patent **1968**; 3, 374,244.
- Schwab R. S., England A. C., Poskanzer D. C., Young R. R., J. Am. Med. Assoc., **1969**; 208, 1168-1170.
- Balkovec J. M., Thieringer R., Mundt S. S., Hermanowski-Vosatka A., Graham D. W., Donald W., Patel G. F., Susan S. D., Waddell S. T., Sherman T., Olson S. H., Maletic M., PCT Int. Appl. WO 20030814; Chem. Abstr. 2003; 139, 180065.
- 8. Horvat S., Mlinaric-Majerski K., Glavas-

Obrovac L., Jakas A., Veljkovic J., Marczi S., Kragol G., Roscic M., Matkovic M., Milostic-Srb M., *J. Med. Chem.* **2006**; *49*, 3136-3142.

- 9. Tsuzuki N., Hama T., Hibi T., Konishi R., Futaki S., Kitagawa K. Biochemical Pharmacology. 41, R5-R8 **1991**.
- Kazimierczuk Z., Gorska A., Switaj T., Lasek W., *Bioorganic & Medicinal Chem.Lett.s.* 2001; *11*: 1197-1200.
- Kitagawa K., Mizobuchi N., Hama T., Hibi T., Konishi R., Futaki S. Chem. & Pharmaceutical Bulletin (Tokyo). 1997; 45, 1782-1787.
- 12. Frisch M. J. and et al GAUSSIAN 98, Revision A.6, Gaussian, Inc., Pittsburgh PA, 1998.
- Monajjemi M., Rajaeian E., Mollaamin F., Naderi F., Saki S., *Inter. J. Phys. Sciences*, 2008; *5*: 1450-1464.
- Monajjemi M., Mahdavian L., Mollaamin F., Honarparvar B., Fullerenes, *Nanotubes Carbon Nanostructures*, **2010**; *18*, 45-55.