

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

www.orientjchem.org

ISSN: 0970-020 X CODEN: OJCHEG 2014, Vol. 30, No. (1): Pg. 359-360

Synthesis of *N*-citralbenzenamines by NaBH₄/B(OH)₃System

DAVOOD SETAMDIDEH* and MOHSEN MINAEE

Department of Chemistry, College of Sciences, Mahabad Branch, Islamic Azad University, Mahabad, Iran. *Corresponding author e-mail: d.setamdideh@mahabad-iau.ac.ir

http://dx.doi.org/10.13005/ojc/300149

(Received: December 30, 2013; Accepted: February 01, 2014)

ABSTRACT

Citral as α , β -unsaturated carbonyl compound has been reacted with structurally different anilines with sodium borohydride in the presence of boric acid for the synthesis of their corresponding *N*-citralbenzenamineswith good yields (75-85%) within 5 min in CH_aCNat room temperature.

Key words: NaBH₄, B(OH)₃, Citral, *N*-citralbenzenamines.

INTRODUCTION

Reduction of α , β -unsaturated carbonyl compounds can follow two pathways: addition to carbonyl group (1,2-reduction) to give allylicproducts or addition to the conjugated double bond (1,4-reduction) to give saturated carbonyl compounds. NaBH₄ (common reducing agent) uses for the 1,2-reduction of conjugated carbonyl compounds under different reducing system¹⁻⁹. On the other hands, in the synthetic project we needed some *N*-citralbenzenamines.Also, recently we reported a convenient system for direct reductive amination of aldehydes by NaBH₄/B(OH)₃ system¹⁰. Therefore we decide to use of this reducing system for the synthesis of *N*-citralbenzenamines with this hope,the reductive amination of citralas an α , β -unsaturated

carbonyl compoundfollow addition to carbonyl group (1, 2-addition) to give the corresponding α , β -unsaturated*N*-benzenamines.

RESULTS AND DISCUSSIONS

We have done the reductive amination reactions based on the optimized reaction that has been reported in the literature ⁷. These reactions were carried out with molar ratio of citral (1 mmol), anilines (1 mmol), $B(OH)_3$ (1 mmol) and $NaBH_4$ (1 mmol) in CH_3CN (3 mL) at room temperature. The reactionswere completed within 5 min with 75-85% yields of product as shown in scheme 1. In this reactions *N*-(3,7-dimethylocta-2,6-dienyl) benzenamines (*N*-citralbenzenamines) as major products have been produced more than

75%;butgeraniol and unreacted anlinesas byproducts less than 15%.

EXPERIMENTAL

The products were characterized by their ¹H NMR (400 MHz Bruker) or IR (PerkinElmer FT-IR RXI) and comparison with authentic samples (melting or boiling points). TLC was applied for the purity determination of substrates, products and reaction monitoring over silica gel 60 F_{254} aluminum sheet.

Reductive amination of citral and aniline with $NaBH_4/AI(OH)_3$, A typical procedure

In a round-bottomed flask (10 mL) equipped with a magnetic stirrer, a solution of citral (0.152 g, 1 mmol), aniline (0.093 g, 1 mmol) and Al(OH)₃ (0.078, 1 mmol) in CH₃CN (3 mL) was prepared. The resulting mixture was stirred for 5 min at room temperature. Then the NaBH₄ (0.036 g, 1 mmol) was added to the reaction mixture and stirred at room temperature. TLC monitored the progress of the reaction (eluent; CCl₄/Ether: 5/2). The reaction was

G: H (85%), 4-Br (80%), 4-Me (80%), 2-MeO (75%), 4-MeO (80%), 4-NO₂ (75%)

Scheme 1:

filtered after completion within 5 min. Evaporation of the solvent and short column chromatography of the resulting crude material over silica gel (eluent; CCl_4 /Ether: 5/2) afforded the *N*-(3,7-dimethylocta-2,6-dienyl)benzenamine(0.195 g, 85%).

CONCLUSION

In this investigation, we have shown that the combination reducing system of $NaBH_4/B(OH)_3$ in CH₂CN can be used for reductive amination of

REFERENCES

- 1. Varma, R. S.;Kabalka, G. W. Synth. Commun.,**15:** 155 (1985).
- 2. Nutaitis, C. F.;Bernardo, J. E. *J. Org. Chem.***54**: 5629 (1989).
- Krishnamurthy, S.; Brown, H. C.J. Org. Chem.40: 1864 (1975).
- Krishnamurthy, S.; Brown, H. C. J. Org. Chem.42: 1197(1977).
- Kim, S.; Moon, Y. C.;Ahn,and K. H.J. Org. Chem.47: 3311(1982).
- 6. Mahesh D, Bhanushali and S.M. Hipparagi,

Orient J. Chem., 29(2): 545-551 (2013).

citral with a variety of anilines to their corresponding

N-citralbenzenaminesin good yields (75-80%) within

5 min at room temperature. Reduction reactions were

carried out with 1 molar equivalents of NaBH, in the

ACKNOWLEDGEMENTS

financial support of this work by Mohsen minaee.

The authors gratefully appreciated the

presence of 1 molar amounts of B(OH)₃.

- A. Goyal, N. Jain and S. Jain., *Orient J. Chem.*, 29(2): 553-558 (2013).
- Setamdideh, D;.Khezri, B.; Rahmatollahzadeh, M.;Aliporamjad, A.*Asian J. Chem.* 24: 3591(2012).
- Mohamadi, M.; Setamdideh, D.; Khezri, B. Org. Chem. Inter., doi:10.1155/2013/127585 (2013).
- 10. Setamdideh, D.; Hasani, S.; Noori, S. *J. Chin. Chem. Soc.*,**60:** 1267 (2013).