

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

ISSN: 0970-020 X CODEN: OJCHEG 2014, Vol. 30, No. (2): Pg. 567-570

www.orientjchem.org

U.V., E.P.R. and X.R.D. Spectral Analysis of Bromo Mn(II) Tetra Seleniazide Complex

GOVIND KUMAR GUPTA and S.P.S. JADON*

Department of Chemistry, S.V. College, Aligarh - 202001, India. *Corresponding author E-mail; sps_jadon@yahoo.co.in

http://dx.doi.org/10.13005/ojc/300221

(Received: April 05, 2014; Accepted: May 18, 2014)

ABSTRACT

The complex of Mn (II) compound with Se₄N₃Br synthesized, was analyzed by U.V., E.P.R. and X.R.D. spectra. From the results, it is evident that the complex is good conductor, having paramagnetic character and orthorhombic geometry.

Key word: Se₄N₃Br, Orthorhombic, Geometry, Magnetic susceptibility.

INTRODUCTION

The complexes of halogenated derivative of Se₄N₄ have been reported ^{1,2}. The adducts of Se₄N₃Cl with urea, thiourea, hydrazine and phenyl hydrazine have also been synthesized and reported ^{3,4}. The Mass and I.R. spectral studies Mn (II), Fe(III), Co (II) complex with Se₄N₃Br have been reported by us ⁵⁻⁷. The present investigations are in continuation of previous work.

EXPERIMENTAL

To synthesis the complex, first of all Se_4N_3Br was prepared by the reaction of dry HBr on $Se_4N_4^{8,9}$ which was prepared by the ammoniation of $SeBr_4$ in benzene. Equimoler ratio of $MnCl_2$ and Se_4N_3Br (1:1) was mixed and refluxed for 6 hrs. in DMF. The grayish product formed, was separated,

washed with D.M.F. and alcohol, dried and stored in vacuum desiccators over fused CaCl₂.

U.V.,E.P.R, and X.R.D. spectra of complex, were recorded subsequently on Perkin-Elmer-Lambda-15 spectrophotometer (200-800nm) Varian's X-E-4 band spectrometer at room temperature and PW-1710 X-ray power diffractometer using $\lambda = 1.5418$ Å, CuK_a, as source of radiation in the 20 range 0°-80°.

RESULTS AND DISCUSSION

On the basis of the quantitative ,Mass & I.R. spectral analysis the complex bromo Mn(II) tetra seleniazide has been assigned as $(Se_4N_3Br)_2$ $MnCI_2$. $4H_2O$ (loc. cit). The U.V. spectrum (fig-1) consist three prominent peaks at 200, 222.5, 282.5 nm. Former two bands 200, 222.5, corresponding

6.2, and 5.57ev energy, showing the ionic environment are due to the charge transfer transition in the complex. The last band, 282.5nm is on account of p_{π} -d_{\pi} transition for Se₄N₃ ring present in the complex. This is also confirmed from the frequencies ratios $v_1/v_2 = 1.27$ less than 2. The oscillator strength 'f' of the order 10⁻⁵ (Table-1, Column-3) suggest the low spin Laporte forbidden transition in the complexes which is due to the sharing of electrons in Se₄N₃ ring. The low value of band gape energy,

 Δ Eg (Table-1,Column-4) and high value of number of conducting electrons, N_c of the order of 10⁵ expounds the good conductive nature of complex.

A single broad peak of high intensity has occurred in E.P.R. spectrum (fig-2) suggesting the paramagnetic character of complexes which is supported by the low value of magnetic susceptibility, $\chi_A = 1.2352 \times 10^{-3}$ e.s.u. (Table-1, Column-10). The value of $g_x = g_y = 1.9407$ (Table-

U.V	E.P.R. Spectral Data								
Band Assigned nm (cm ⁻¹)	Transitio	n f×10⁵	∆Eg (ev)	N _c × 10⁵	Magnetic Field H (Gauss)	$g_x = g_y$	g _z	μ _{eff} (B.M.)	χ _Α × 10 ⁻³ (e.s.u.)
1	2	3	4	5	6	7	8	9	10
200 (50,000)	C.T.	3.15659	-	-	3251.90	1.9407	2.0790	1.7215	1.2352
222.5 (44943.82)	C.T.	2.43540	0.3135	0.1299					
282.5 (35398.23)	$p_{\pi} - d_{\pi}$	0.46635	0.5920	6.0342					

Table 1. U.V. and E.F.R. Spectral Data of the Complet	Table	1:	U.V.	and	E.P.R.	Spectral	Data	of	the	Com	plex
---	-------	----	------	-----	--------	----------	------	----	-----	-----	------

Table 2: X-ray Diffraction pattern of complex										
S. No.	2 0 (°) 1	Sin² θ 2	(h² + k² + l²)Q 3	hkl 4	d(A°) Obs	d _{hki} (Å) 6				
1	10.48	0.00834	1×(0.00834)	(100)	8.4408	(8.4339)	8.4404			
2	13.81	0.01445	2(0.00725)	(110)	6.4124	(6.4022)	5.9682			
3	23.00	0.03974	5(0.007948)	(210)	3.8668	(3.8635)	3.7746			
4	27.29	0.05565	6(0.009275)	(211)	3.2679	(3.2663)	3.4457			
5	29.21	0.06358	8(0.007947)	(220)	3.0573	(3.0557)	2.9841			
6	31.61	0.07418	9(0.008242)	(221)	2.8304	(2.8289)	2.8135			
7	40.86	0.12184	14(0.00870)	(321)	2.2085	(2.2066)	2.2557			
8	43.11	0.13948	17(0.008204)	(322)	2.06415	(2.0970)	2.04711			
9	44.83	0.14539	18(0.008077)	(330)	2.0217	(2.0204)	1.9894			
10	51.21	0.18670	22(0.008486)	(332)	1.7838	(1.7826)	1.7995			
11	55.57	0.21730	25(0.00869)	(430)	1.6537	(1.6526)	1.6881			
12	66.18	0.25897	30(0.00863)	(521)	1.5148	(1.5136)	1.5410			
13	64.56	0.28521	34(0.008388)	(530)	1.4434	(1.4423)	1.4475			
14	69.62	0.32587	38(0.00857)	(532)	1.3504	(1.3493)	1.3692			
15	70.88	0.33622	40(0.008405)	(620)	1.3294	(1.3284)	1.3345			

Q_{av} = 0.008343

 $a_0 = 8.4399$ Å, $b_0 = 18.8723$ Å, $c_0 = 9.2454$ Å and $\alpha = \beta = \gamma = 90$

Fig. 1: U.V. spectrum of the Complex

1,Column-7) less than two explore the presence of vacant 3d energy shells in Mn atom to accept the electron pairs form N atom of Se_4N_3 ring, forming coordinate bond. The value of $g_z = 2.0790$ (Table-1,Column-8) greater than two indicate the sharing of electrons i.e. covalent bonding in Se_4N_3 ring of the complex.

Thus bromo Mn(II) tetra seleniazide, $(Se_4N_3Br)_2MnCl_24H_2O$ possess ionic bond due to Mn²⁺ and 2Cl⁻, coordinate bond, Se-N \rightarrow Mn and Se-N, Se-Br covalent linkage with the 3d⁵ configuration of Mn²⁺ because the value of μ_{eff} =1.7215 is according to the presence of one unpaired electron. Thus the complex formed having quadridentated, coordinated linkage with square planar structure as reported (loc. cit) fig. 4.

Fig. 2: E.P.R. spectrum of the Complex

Fig. 3: X.R.D. Pattern of the Complex

Fig. 4: Proposed Geometrical Structure of Complex, (Se₄N₃Br)₂MnCl₂.4H₂O

The X.R.D. pattern of complex recorded in 20 range 0°-80° (fig-3) possesses a strong and intense peak at 29.21° for the Se₄N₃ ring. From the X-ray pattern the values of sin²0, miller indices, hkl, and inter planar distances 'd', calculated, resembles to the theoretical values (Table-2). From these X.R.D. data, the values of axial ratio and axial angles (Table-2) calculated are corresponding $a_0 \neq b_0 \neq c_0$ and $\alpha = \beta = \gamma = 90^\circ$ for the orthorhombohedral geometrical packing of the molecule in the complex.

ACKNOWLEDGMENTS

Authors wish to express to thank to the Director SAIF, Punjab University Chandigarh, Director SAIF, IIT Bombay, Director ACMS IIT Kanpur to provide instrumental facilities.

REFERENCES

- Thewalt, U.; Holl, K. Z. Naturforsch, 1984, Sec. B, 39, 145.
- Chivers, T. The Chemistry of Inorganic Ring Systems; Steudel, R. (Ed.), Elsevier Science Publishers, Amstardam, 1992, p. 409-427.
- 3. Dixit ,H.; Jadon, S.P.S. *Int. J. Chem. Sci.*,**2005**, *3(4)*, 709-714 .
- 4. Dixit,H.; Jadon, S.P.S. *Asian J. Chem.*,**2006**, *18(1)*, 295 298.
- 5 Gupta, G.K.; Jadon, S.P.S. Int.J.Chem.Sci.

2009, *7(4)*, 2861-2866.

- Gupta, G.K.; Jadon, S.P.S. *Int.J.Chem.Sci.* 2012, 10(2), 1091-1095.
- 7 Gupta, G.K.; Jadon, S.P.S. *Int.J.Chem.Sci.* **2013**, *11(1)*, 306-312.
- Gowik, P.; Klopotke, T. Spectrochim Acta A. 1990, 46, 1371.
- Siivari, J.; Chivers,T.; Laitinen, R.S. *Inorg. Chem.***1993**, *32*, 1519 - 1520.