
INTRODUCTION 

	  Asymmetric synthesis starting from achiral 
reactants to produce synthetically useful chiral 
compounds  is an attractive and established branch 
of synthetic organic chemistry. (R)-cyclohexenol 1 
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ABSTRACT

	 (R)-Cyclohexenol is a valuable building block in organic synthesis. This mini-review provides 
methods for synthesis of (R)-cyclohexenol from commercially available reactants. Only reactions with 
yields in excess of 80% are discussed (ee’s range from 99% to 26%). The asymmetric synthesis 
methods include enantioselecive deprotonation of cyclohexene oxide by chiral lithium amides, 
asymmetric hydrosilylation of 2-cyclohexen-1-one with chiral catalyst followed by hydrolysis, and 
enantioselective hydroboration of 1,3-cyclohexadiene with chiral dialkylboranes.

Key words: (R)-cyclohexenol, asymmetric synthesis, chiral Li-amides.

serves as a versatile chiral precursor for synthesis 
of natural products and complex medicinally active 
compounds like (+) Daphmandin E 2,(1) and 
antiarrhythmic aminohydroisoquinocarbazole RS-
2135 3 (2) respectively (Figure 1).

Fig. 1: (R)-Cyclohexenol is a valuable building block in organic synthesis
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	 A scifinder scholar® search of methods 
to synthesize (R)-cyclohexenol in February 2014 
resulted in 129 hits. This mini-review discusses 
methods from these 129 results wherein the isolated 
yield for the target from commercially available 
reactants was in excess of 80% and the ee ranged 
from 99% to 26%. This mini-review is intended to 
present synthetic chemists with a guide for synthesis 
of (R)-cyclohexenol and its derivatives.

Synthetic strategies to (r)-cyclohexenol
From cyclohexene oxide
	 Asami et al.(3) report conversion of 
cyclohexene oxide 4 to 1 (80% yield, 78% ee) using 
chiral catalyst – cyclohexyl[(S)-1-ethylpyrrolidin-2-yl]
methylamine 5 from (Scheme 1). The mechanism 
involves enantioselective deprotonation of 
symmetrical epoxide 4 using the chiral lithium amide 
prepared from n-butyl lithium and 5. HMPA is used 

as an additive. It has been suggested that additives 
inhibit the formation of reactive but unselective 
aggregates of chiral Li-amides4-7.

   As lithium amide induced transformation of 
epoxides to allylic alcohols I supposed to proceed in 
a cyclic concerted manner8 Asami et al.,3 presume 
the transition states’ (TSs’) as shown in figure 2 to 
account for the stereoselectivity of the reaction. As 
indicated in transition state T1, epoxide approaches 
the lithium amide from the less hindered side in 
such a way that the steric repulsion can be avoided. 
Thus T1 is favored over T2, and the alcohol with 
R-configuration is obtained.
 

Fig. 2: Transtion state model for 
enantioselective deprotonation by 5

Scheme 2: Asymmetric transformation of cyclohexene oxide by catalyst 6

Scheme 1: Asymmetric transformation of cyclohexene oxide by catalyst 5
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	 Sodergren et al.,9 report conversion of 
cyclohexene oxide 4 to 1 (91% yield, 96% ee) using 
chiral catalyst – 3-aminomethyl-2-azabicyclo [2.2.1] 
heptane 6 (Scheme 2). DBU is used as an additive. 
The authors reasoned that Li-amide with a more rigid 

back bone would adopt a more well-ordered TS in the 
deprotonation reaction to afford higher asymmetric 
induction as the result of more strict discrimination 
between the enantiotopic protons in 4.
	

Scheme 3: Asymmetric transformation of cyclohexene oxide by catalyst 7

	 Bertilsson et al.10 report conversion of 
cyclohexene oxide 4 to 1 (95% yield, 99% ee) 
using chiral catalyst – (1R,3R,4S)-3-(((2R,5R)-2,5-

dimethylpyrrolidin-1-yl)methyl)-2-azabicyclo[2.2.1]
hept-5-ene 7 (Scheme 3).

Scheme 4. Asymmetric transformation of cyclohexene oxide by catalyst 8

	 As indicated in the TS model (Figure 3), 
the (2R,5R)-dimethyl groups do not interfere with 
the favored TS II, whereas the unfavored pathway 
is effectively blocked by the steric repulsion between 
the (2R)-methyl group and the cis-g -proton of the 
epoxide.

	 Malhotra11  repor ts conversion of 
cyclohexene oxide 4 to 1 (82% yield, 95% ee) 
using chiral catalyst – C2-symmetric (“)-N,N-
diisopinocampheyl- amine (DIPAM) 8 (Scheme 4). 
No additive was used in the reaction.

Fig. 3: Transtion state model for enantioselective deprotonation by 7
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Scheme 5: Asymmetric transformation of 2-cyclohexene-1-one by ZnEt2/pybox system

Scheme 6: Asymmetric transformation of cyclohexene oxide by catalyst 8

From 2-cyclohexen-1-one
	 Junge et al.,12 repor t conversion of 
2-cyclohexen-1-one 9 to 1 (88% yield, 26% ee) 
by asymmetric hydrosilylation with a combination 

of  ZnEt2,  chi ra l  2,6-bis((R ) -4-phenyl-4,5-
dihydrooxazol -2-yl)-pyridine (pybox) catalyst 10, 
and polymethylhydrosiloxane (PMHS), followed by 
hydrolysis to the alcohol (Scheme 5). 

Fig. 4(a): Mechanism of asymmetric hydrosilylation by ZnEt2/pybox system. 
(b) Catalytically active species 11 as confirmed by ESI-MS
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	 The proposed mechanism of the asymmetric 
hydrosilylation process (Figure 4a) by Mimoun et 
al.13,14 was confirmed by Junge et al.,12 by confirming 
the presence of 11 (Figure 4b) by ESI-MS studies.

From 1,3-cyclohexadiene
	 Zaidlewicz et al.(15) report conversion 
of 1,3-cyclohexadiene 12 to 1 (94% yield, 68% 
ee) using chiral catalyst – di-(2-isocaranyl)borane 
(2-Icr2-BH) 13 (Scheme 6). Mechanism involves the 
enantioselective hydroboration of 12 in presence of 
bulky dialkylboranes.

CONCLUSION

	 I n  conc lus ion ,  we  p resen t  he re 
enantioselective approaches to (R)-cyclohexanol 

using commercially available reactants such 
as cyclohexene oxide, 1,2-cyclohexenone, and 
1,3-cyclohexadiene. Reactions enantioselecive 
deprotonation of cyclohexene oxide by chiral 
lithium amides, asymmetric hydrosilylation of 
2-cyclohexen-1-one with chiral catalyst followed by 
hydrolysis, and enantioselective hydroboration of 
1,3-cyclohexadiene with chiral dialkylboranes. The 
yields of the aforementioned methods range from 
95 to 80% and the ee’s range from 99 to 26%.
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