Cadmium(II) Complexes Containing the Mixed Ligands Benz-1,3-Imidazoline -2-Thione, Benz-1,3-Oxazoline -2Thione, Benz-1,3-Thiazoline -2-Thione, and Diphosphine $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{PPh}_{2}, \mathrm{n}=1-4$ or Triphenyl Phosphine

AHMED S. M. AL-JANABI ${ }^{* *}$ and SHIHAB A. O. AHMED²
${ }^{1}$ Department of Biochemistry, College of Veterinary Medicine, University of Tikrit, Tikrit, (Iraq). ${ }^{2}$ Department of Chemistry, College of Science, University of Tikrit, Tikrit, (Iraq).
*Corresponding author: E-mail: a_sh200683@yahoo.com

(Received: July 20, 2011; Accepted: September 30, 2011)

Abstract

Cadmium(II) complexes of the types [$\left.\mathrm{CdCl}_{2}(\mathrm{LH})\right]$ ($\mathrm{LH}=$ benz-1,3-imidazoline -2-thione , benz-1,3-oxazoline-2-thione or benz-1,3-thiazoline-2-thione), have been prepared by the reaction of $\left[\mathrm{HgCl}_{2}\right]$ with one mole proportion of the ligands LH. Reaction of $\left[\mathrm{Cd}(\mathrm{OAc})_{2}\right]$ with two mole proportion of LH in the presence $\mathrm{Et}_{3} \mathrm{~N}$ gave complexes of the type $\left[\mathrm{CdL}_{2}\right]$. Treatment of $\left[\mathrm{CdL}_{2}\right]$ with two mole proportion of PPh_{3} or one mole proportion of the diphosphine $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right) n \mathrm{nPh}(\mathrm{n}=1-4)$ gave tetrahedral complexes of the type $\left[\mathrm{CdL}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right],\left[\mathrm{CdL}_{2}(\mu \text {-diphos })\right]_{2}(\mathrm{n}=1)$ or $\left[\mathrm{CdL}_{2}\right.$ (diphos) $] \mathrm{n}=2-4$ receptivity . The prepared complexes were characterized by elemental analysis, i.r., ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. data.

Key words : Cadmium, Thione, Phosphine complexes.

INTRODUCTION

It is well that cadmium is a highly toxic metal and a potent carcinogen. However, its mechanism of action still unclear ${ }^{1}$. Thiolate complexes are of great importance from a bioinorganic point of view, mainly due to the presence of thiolate donors in the coordination sphere of many metal ions in very diverse metalloproteins ${ }^{2,3}$. Heterocyclic thione are among the ligand system used to mimic bio-relevant metal - sulfur interaction ${ }^{4-7}$. Chemical interest of thione lies in the fact that they are potentially ambidentate or multi- functional donors with exocyclic S and heterocyclic N available for coordination, their
biological interest arises from their structural analogy to thiolated nucleosides ${ }^{4-8}$.

Cadmium (II) halides form 1:1 and 1:2 complexes with neutral heterocyclic thione ligands ${ }^{9-}$ ${ }^{12}$. It was reported previously ${ }^{9,11,13}$ that the reaction of (LH); LH= benz-1,3-imidazoline -2-thione, benz-1,3-oxazoline -2-thione or benz-1,3-thiazoline -2thione with $\left[\mathrm{CdCl}_{2}\right]$ gave complexes of the type $\left[\mathrm{CdX}_{2}(\mathrm{LH})\right]_{2}[12]$, the heterocyclic thione (LH) behaves as a monodentate ligand coordinated through sulfur atoms while the halogen ligand was coordinated to cadmium(II) ions as bidentate bridging and monodentate.

However heterocyclic thiones form linear complexes of the type $\left[\mathrm{ML}_{2}\right]$ ($\mathrm{L}=$ deprotonated thione ligands)[5, 10-12]. Mixed ligand complexes of heterocyclic thiones have been reported for several metal ions such as silver and rhodium ${ }^{13-16}$, while mixed ligands heterocyclic thiones(LH) and phosphines have been reported for several metal ions such as mercury, silver and rhodium ${ }^{17-21}$, complexes with cadmium seem unexplored ${ }^{22}$.

In the present work, we report the preparation of cadmium (II) complexes containing mixed ligand of heterocyclic thione (LH) fig. 1 (I) and diphosphines or triphenyl phosphine.

EXPERIMENTAL

General

The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ - n.m.r spectra were recorded on Varian unity 500 and Gemini 2000 spectrometers respectively with CDCl_{3} as solvent and $\mathrm{Me}_{4} \mathrm{Si}$ as internal reference. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r spectra were recorded on Gemini 200 spectrometer with CDCl_{3} as solvent and $\mathrm{H}_{3} \mathrm{PO}_{4}(85 \%)$ as external reference. The n.m.r. spectra were determined at the Institute fur Anorganische chemie, Martin -Lurther-univasitat Halle- Witten-berg, Germany. I.r. spectra were recorded on a Shimadzu FT.IR. 8400 spectrometer in the $200-4000 \mathrm{~cm}^{-1}$ range using Csl discs. Elemental analysis were carried out on a CHN analyzer type 1106 (Carlo-Erba). Melting points were measured on an electro thermal 9300 melting point apparatus.

Starting materials

The compounds $\left[\mathrm{CdX}_{2}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{OAc})$, $\mathrm{PPh}_{3}, d p p m, d p p e, d p p p, d p p b$, benz-1,3imidazoline -2-thione, benz-1,3-oxazoline -2-thione and benz-1,3-thiazoline -2-thione were commercial products and were used as supplied, $\left[\mathrm{Cd}(\mathrm{bztzS})_{2}\right](3),\left[\mathrm{Cd}(\mathrm{bzimSH})_{2}\right](4),\left[\mathrm{Cd}(\mathrm{bzoxS})_{2}\right](5)$, were prepared according literature methods [12,].

Preparation of complexes

$\left[\mathrm{CdCl}_{2}(\mathrm{bztzSH})\right]$ (1)
A solution of bztzSH $(0.137 \mathrm{~g}, 0.82 \mathrm{mmol})$ in $\mathrm{EtOH}\left(10 \mathrm{~cm}^{3}\right)$ was added to a solution of $\left[\mathrm{CdCl}_{2}\right]$ ($0.15 \mathrm{~g}, 0.82 \mathrm{mmol}$) in $\mathrm{EtOH}\left(10 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for 2 h . The yellow solid thus formed was filtered off washed with EtOH ,
dried under vacuum and recrystallized from $\mathrm{Me}_{2} \mathrm{CO}$ (yield 90\%). The following complexes $\left[\mathrm{CdCl}_{2}\left(\mathrm{bzimSH}_{2}\right)\right](2)$, $\left[\mathrm{CdCl}_{2}(\mathrm{bzoxSH})\right](3)$, were prepared and isolated by a similar method.

[Cd (bztzS) ${ }_{2}$] (4)

A solution of dppm $(0.19 \mathrm{~g}, 1.125 \mathrm{mmol})$ in $\mathrm{EtOH}\left(15 \mathrm{~cm}^{3}\right)$ was added to solution of $\left[\mathrm{Cd}(\mathrm{oAc})_{2}\right]$ $(0.15 \mathrm{~g}, 0.563 \mathrm{mmol})$ in $\mathrm{EtOH}\left(10 \mathrm{~cm}^{3}\right)$ in the present $\mathrm{Et}_{3} \mathrm{~N}$ (1.12g, 1.125 mmole) The mixture was stirred at room temperature for 2 h . The solid formed was filtered off washed with $\mathrm{EtOH}, \mathrm{CHCl}_{3}$, dried under vacuum and recrystallized from $\mathrm{Me}_{2} \mathrm{CO}$ (yield 90\%) . The following complexes $\left[\mathrm{Cd}(\mathrm{bzimSH})_{2}\right](5)$, $\left[\mathrm{Cd}(\mathrm{bzoxS})_{2}\right](6)$ were prepared and isolated by a similar method.

$\left[\mathrm{Cd}(\mathrm{bztzS})_{2}(\mu-\mathrm{dppm})\right]_{2}(7)$

A solution of dppm ($0.087 \mathrm{~g}, 0.225 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$ was added to a hot solution of $\left[\mathrm{Cd}(\mathrm{bztzS})_{2}\right](4)(0.1 \mathrm{~g}, 0.225 \mathrm{mmol})$ in $\mathrm{EtOH}\left(15 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for $2 h$. The yellow solid thus formed was filtered off washed with EtOH , dried under vacuum and recrystallized from CHCl_{3} (yield 82%). The following complexes [Cd(bztzS) ${ }_{2}$ dppe] (8), [Cd(bztzS) $\left.)_{2} d p p p\right]$ (9), $\left[\mathrm{Cd}(\mathrm{bztzS})_{2} \mathrm{dppb}\right]$ (10) were prepared and isolated by a similar method.

$\left[\mathrm{Cd}(\mathrm{bzimSH})_{2}(\mu-\mathrm{dppm})\right]_{2}(12)$

A solution of dppm ($0.093 \mathrm{~g}, 0.243 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$ was added to a warm solution of $\left[\mathrm{Cd}(\mathrm{bzimSH})_{2}\right](5)(0.1 \mathrm{~g}, 0.243 \mathrm{mmol})$ in EtOH $\left(15 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for 1.5 h . The white solid thus formed was filtered off washed with EtOH , dried under vacuum and recrystallized from CHCl_{3} (yield 79\%). The following complexes $\left[\mathrm{Cd}(\mathrm{bzimSH})_{2} \mathrm{dppe}\right](13)$, [Cd(bzimSH) $\left.{ }_{2} \mathrm{dppp}\right](14),\left[\mathrm{Cd}(\mathrm{bzimSH})_{2} \mathrm{dppb}\right]$ (15) were prepared and isolated by a similar method.

$\left[\mathrm{Cd}(\mathrm{bzoxS})_{2}(\mu-\mathrm{dppm})\right]_{2}(17)$

A solution of dppm ($0.093 \mathrm{~g}, 0.242 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$ was added to a hot solution of $\left[\mathrm{Cd}(\mathrm{bzoxS})_{2}\right](4)(0.1 \mathrm{~g}, 0.242 \mathrm{mmol})$ in $\mathrm{EtOH}\left(15 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for 1h. The white solid thus formed was filtered off washed with EtOH , dried under vacuum and recrystallized from CHCl_{3} (yield 78%). The following complexes $\left[\mathrm{Cd}(\mathrm{bzoxS})_{2} \mathrm{dppe}\right]$ (18),
[Cd(bzoxS) $)_{2}$ dppp] (19), [Cd(bzoxS) $)_{2}$ dppb] (20) were prepared and isolated by a similar method.

$\left[\mathrm{Cd}(\mathrm{bztzS})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (11)

A solution of $\mathrm{PPh}_{3}(0.21 \mathrm{~g}, 0.450 \mathrm{mmol})$ in $\mathrm{EtOH}\left(10 \mathrm{~cm}^{3}\right)$ was added to a warm solution of $\left[\mathrm{Cd}(\mathrm{bztzS})_{2}\right](4)(0.1 \mathrm{~g}, 0.225 \mathrm{mmol})$ in $\mathrm{EtOH}\left(10 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for 1h. The yellow solid thus formed was filtered off washed with EtOH , dried under vacuum and recrystallized from CHCl_{3} (yield 90%). The following complexes $\left[\mathrm{Cd}(\mathrm{bzimSH})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](16),\left[\mathrm{Cd}(\mathrm{bzoxS})_{2}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right](21)$ were prepared and isolated by a similar method.

RESULTS AND DISCUSSION

Synthesis of complexes

Mercapto-1,3-azole ligand (1) exist as two toutomeric conformations exhibiting thiol - thione isomers involving ($-\mathrm{N}=\mathrm{C}-\mathrm{SH}$) and ($-\mathrm{NH}-\mathrm{C}=\mathrm{S}$) group in the thiol - thione equilibrium. On deprotonation the resulting anions can also have thiol - thione isomerism (II) with negative charge is either on the thiol sulfur atom or the amide nitrogen atom.

Reaction of $\left[\mathrm{CdCl}_{2}\right]$ with heterocyclic thione ligands in ethanol solution (1:1) molar ratio gave tetrahedral complexes of the type $\left[\mathrm{CdX} \mathrm{X}_{2}(\mathrm{LH})\right]_{2}$ [12]. The halogen was coordinated as a bidentate bridging and monodentate to cadmium (II) ions , while the heterocyclic thione (LH) behaves as monodentate ligand coordinated via sulfur atoms to cadmium(II) ion.

The deprotonated complexes of the type $\left[\mathrm{CdL}_{2}\right]$ were readily precipitated by reaction of $\left[\mathrm{Cd}(\mathrm{OAc})_{2}\right]$ with two mole proportion of LH in the presence $\mathrm{Et}_{3} \mathrm{~N}$ as a base. The thionate were coordinated as bidentate ligands to cadmium through sulfur atom of thiol group and nitrogen atom of the amide group [22].

Treatment of the cadmium(II) complexes of the type $\left[\mathrm{CdL}_{2}\right](4),(5),(6)$ [12] with one mole proportion of the diphosphines $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{PPh}_{2}$ (n = 1-4) or two mole proportion of PPh_{3} gave tetrahedral complexes of the $\left[\mathrm{CdL}_{2}\left(\mu-\mathrm{Ph}_{2}\right.\right.$ $\left.\left.\mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\right]_{2}(7),(12),(17)$ or the $\left[\mathrm{CdL}_{2}\left(\mathrm{Ph}_{2} \mathrm{P}\right.\right.$ $\left.\left.\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2}\right)\right]_{2} \mathrm{n}=2-4$ (8),(9),(10),(13), (14),(15),(18),
(19),(20) or the $\left[\mathrm{CdL}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2}$ (11),(16),(21). The anionic thionato ligands are coordinated as monodentate ligands, via sulfur atoms to cadmium(II) ion, while $\mathrm{Ph}_{2}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2}(\mathrm{n}=2-4)$ were coordinated as bidentate chelates, but $\mathrm{Ph}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$ behaves as a bidentate bridging ligand, PPh_{3} coordinated as monodentate ligands.

Characterization of complexes

The prepared complexes were identified by elements analysis, i.r. spectra and some of them by ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra and their data are listed in Tables 1-3.

Nuclear magnetic resonance

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. data of some the prepared complexes are given in Table 3. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra of complexes $\left[\mathrm{CdL}_{2}(\mu-\right.$ dppm)] \{ L=bztzS(7) and bzimSH(12)\}, showed a singlet for each at $\delta \mathrm{P}=25.97$ and 9.85 p.p.m respectively suggestion a single product. The positive values of the dP indicate that dppm behaves as a bidentate bridging ${ }^{23-24}$. This has been supported by ${ }^{1} \mathrm{Hn}$.m.r. spectra of complexes (7) and (12) which showed a singlet at $\delta \mathrm{H}=2.8$ and 2.78 p.p.m respectively for the methylene group of the bridging dppm ${ }^{25}$. On the bases of the above n.m.r. data and other identification data given in tables 1 and 2, the structure shown in Fig. 4 has been suggested

Reaction of [CdL_{2}] complexes one mole proportion of the $\mathrm{Ph}_{2}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2} \quad(\mathrm{n}=2-4)$ gave a mononuclear chelate - diphosphines complexes of the types $\left[\mathrm{CdL}_{2}\left(\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2}\right)\right]_{2}(\mathrm{n}=2-4)$ (10), (13), (15), (18) and (19). The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra of complexes (10), (13), (15), (18) and (19). given a singlet each (table 3) indicating the presence of single chelated isomer for each. These conclusions have been supported by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. data are shown in tables 3 . On the basis of these data and other identification data given in Tables 1 \& 2 the tetrahedral structures shown in Fig. 5 have been suggested for these complexes.

Infrared spectra

The infrared spectra of compounds (1) (21) recorded in the $4000-250 \mathrm{~cm}^{-1}$ range showed the usual four thionamide bands required by the presence of the heterocyclic thione ligands. The shifts observed for these bands due to coordination
Table 1: Color, yield, m.p. and elemental analysis for complexes (1-21)

Seq.	Complexes	Color	M.p. (${ }^{\circ} \mathrm{C}$)	Yield \%	Found (calc. \%)		
					C	H	N
1	[$\mathrm{CdCl}_{2}(\mathrm{bztzSH})$]	Yellow	$240^{\text {a }}$	90	25.21 (25.23)	1.52(1.55)	3.91 (3.92)
2	[$\mathrm{CdCl}_{2}($ bzoxSH)]	White	$240{ }^{\text {a }}$	87	26.40(26.42)	1.56(1.63)	4.06(4.11)
3	[$\mathrm{CdCl}_{2}\left(\right.$ bzimSH $\left._{2}\right)$]	White	$250{ }^{\text {a }}$	79	25.21 (25.23)	1.93(1.82)	8.14(8.24)
4	$\left[\mathrm{Cd}(\mathrm{bztzS})_{2}\right]$	Yellow	179-181	90	25.21 (25.23)	1.92(1.81)	6.25(6.30)
5	[Cd(bzoxS $\left.)_{2}\right]$	White	187-190	76	25.21 (25.23)	1.64(1.95)	6.39(6.76)
6	$\left[\mathrm{Cd}(\mathrm{bzimSH})_{2}\right]$	White	159-161	72	25.21 (25.23)	$2.36(2.45)$	13.65(13.64)
7	[Cd(bztzS) $\left.{ }_{2}(\mathrm{dppm})\right]_{2}$	Yellow	192-193	82	67.11(67.02)	4.73(4.79)	3.99 (3.86)
8	[Cd(bztzS) $)_{2}(\mathrm{dppe})$]	Yellow	166-168	90	57.21(57.37)	4.13(4.11)	3.25(3.26)
9	[Cd(bztzS) ${ }_{2}(\mathrm{dppp})$]	Yellow	211-213	72	57.80(57.82)	4.33(4.27)	3.29(3.21)
10	[$\left.\mathrm{Cd}(\mathrm{bztzS})_{2}(\mathrm{dppb})\right]$	Yellow	162-164	79	60.01(60.04)	4.93(4.90)	1.99(1.94)
11	[$\left.\mathrm{Cd}(\mathrm{bztzS})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	Yellow	231-233	90	62.21 (62.22)	4.21(4.20)	2.59(2.58)
12	$\left[\mathrm{Cd}(\mathrm{bzoxS})_{2}(\mathrm{dppm})\right]_{2}$	White	210-211	78	64.11(64.14)	4.53(4.59)	3.79(3.70)
13	$\left[\mathrm{Cd}(\mathrm{bzoxS})_{2}(\right.$ dppe $\left.)\right]$	White	$225{ }^{\text {a }}$	91	59.60(59.60)	4.20(4.27)	3.36(3.39)
14	$\left[\mathrm{Cd}(\mathrm{bzoxS})_{2}(\mathrm{dppp})\right]$	White	204-205	82	60.20(60.04)	4.43(4.44)	3.39(3.33)
15	[Cd(bzoxS) ${ }_{2}$ dppb)]	White	132-134	90	61.43(61.41)	5.03(5.01)	2.01(1.99)
16	[$\left.\mathrm{Cd}(\mathrm{bzoxS})_{2}\left(\mathrm{PPH}_{3}\right)_{2}\right]$	White	171-174	93	65.81(65.88)	4.67(4.65)	1.79(1.75)
17	$\left[\mathrm{Cd}(\mathrm{bzimSH})_{2}(\mathrm{dppm})\right]_{2}$	White	234-236	79	64.55(64.36)	4.88(4.87)	7.11(7.41)
18	$\left[\mathrm{Cd}(\mathrm{bzimSH})_{2}(\mathrm{dppe})\right]$	White	201-204	81	59.74(59.74)	4.53(4.52)	6.83(6.80)
19	$\left[\mathrm{Cd}(\mathrm{bzimSH})_{2}(\mathrm{dppp})\right]$	White	128-131	89	60.22(60.18)	4.70(4.69)	6.69(6.68)
20	$\left[\mathrm{Cd}(\mathrm{bzimSH})_{2}(\mathrm{dppb})\right]$	White	124-126	85	61.51(61.50)	5.20(5.16)	3.97(3.98)
21	[C(bzimSH) $\left.{ }_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	White	145-146	72	65.91(65.96)	4.73(4.78)	3.59(3.50)

[^0]Table 2: I.R. spectra data (cm^{-1}) of the ligands and complexes ($1-21$)

$v(C-O-C) s y, ~ a s y$	$v(P-C)$	$v(C d-S)$	v (C-H)	$\mathrm{v}(\mathrm{N}-\mathrm{H})$	Thioamide bands				Seq.
					I	II	III	IV	
1090m, 820m			3072 w, 3022 w	3112w	667s	1015s	1319s	1490s	bztzSH
			3062w, 2970w	3199 w	740m	1010m	1240 m	1504m	bzoxSH
			3080w	3152w	650m	1362s	1460s	1505s	bzimSH2
			3083 w, 2927 w	3134w,br	720m	1029s	1334m	1498s	1
1093s, 825m			3109w	3168w	742s	1005m	1245m	1508s	2
		280 m	3078 w, 2983 w	3182 w	690m	1352m	1460s	1518s	3
			3052 w, 2989 w		665s	1010s	1289s	1470s	4
1095m, 815m			3054w, 2987w		740m	1010m	1240 m	1504m	5
			3095w, 2974w	3159w	675m	1352s	1421s	1519s	6
	500 s	270 m	3052 w		725 m	1025s	1338s	1490m	7
	500 s	270 m	3058 m		692 s	1018s	1300m	1486 m	8
	505 s		3056 w		700m	1020s	1350m	1480m	9
	500 s	275m	3058 w		690s	1018s	1352 w	1487 m	10
	505 m		3060 m		704m	1023m	1324m	1478s	11
1085m, 825m	505m		3056 w		734 m	1000m	1228m	1475m	12
1090s, 830m	505s		3048 m		742s	1003s	1242s	1475m	13
1095m, 825m	500s		3053 w, 2891m		746s	1000m	1240m	1470m	14
1095m, 815m	505s		3058 w, 2972w		747s	1010s	1240m	1475m	15
1080s, 820m	500s		3057 m, 2987w		740s	1010s	1240m	1475m	16
	490m		3056 w	3125w	650m	1367w	1425m	1510m	17
	505s		3062 w, 2990 w	3115w	657m	1379m	1429s	1510m	18
	500s		3054w, 2967w	3165w	650w	1360m	1430m	1505m	19
	500s	277 m	3093w, 2974w	3137w	650m	1352s	1425s	1500s	20
	505s		3063 m	3130w	622m	1370m	1435m	1515m	21

[^1]Table 3: The ${ }^{31} \mathrm{P}-\{1 \mathrm{H}\}, 1 \mathrm{H}$ and $13 \mathrm{C}-\{1 \mathrm{H}\}$ n.m.r. data(?P p.p.m) of some the prepared complexes a

$\delta \mathrm{C}_{1}{ }^{\text {b }}$	$\delta \mathrm{C}_{9}$	δC_{8}	$\delta \mathrm{C}_{7}$	$\delta \mathrm{C}_{6}$	$\delta \mathrm{C}_{5}$	$\delta \mathrm{C}_{4}$	$\delta \mathrm{C}_{2}$	δ Phenyl	$\delta \mathrm{CH}_{2}$	SP	Seq.	Complexes
	141.3	129.4	112.4	124.2	127.1	121.7	189.9					bztzSH
C	132.7	131.7	c	127.0	128.3	123.7		7.2-7.45	2.8	25.97	7	$\left[\mathrm{Cd}(\mathrm{bztzS})_{2}(\mathrm{dppm})\right]_{2}$
$27.343^{\text {d }}$	132.8	131.6	112.1	126.7	128.4	124.4	c	7.2-7.54	$\begin{aligned} & 1.553(4 \mathrm{H}) \\ & 2.0(4 \mathrm{H}) \end{aligned}$	-14.914	10	[Cd(bztzS) $\left.{ }_{2}(\mathrm{dppb})\right]^{\text {a }}$
								7.05-7.65	2.6	33.78	13	[Cd(bzoxS) $)_{2}$ (dppe) $]$
								7.07-7.67	$\begin{aligned} & 1.57(2 \mathrm{H}) \\ & 2.5(4 \mathrm{H}) \end{aligned}$	33.4	14	[Cd(bzoxS) $\left.2_{2}(\mathrm{dppp})\right]$
								$7.2-7.73$	2.78	29.85	17	$\left[\mathrm{Cd}(\mathrm{bzimSH})_{2}(\mathrm{dppm})\right]_{2}$
								6.74-7.63	2.88	33.52	18	[Cd(bzimSH) $)^{(d p p e)]}$
								7.18-7.7	1.54(4H)	-14.24	20	[Cd(bzimSH) 2 (dppb)]
									2.0 (4H)			

[^2]
$\mathrm{X}=\mathrm{NH}, \mathrm{S}, \mathrm{O}$

$\mathrm{X}=\mathrm{NH}, \mathrm{S}, \mathrm{O}$

$\mathrm{X}=\mathrm{NH}, \mathrm{S}, \mathrm{O}$
(I)
(II)
$\mathrm{LH}=$ bzimSH $_{2}, \mathrm{X}=\mathrm{NH}$; bzoxSH X=O ; bztzSH X=S.
Fig. 1: The structure of thione ligands (LH)

LH= bzimSH ${ }_{2}$, X=NH ; bzoxSH X=O ; bztzSH X=S.
Fig. 2: The structure formula of the complexes $\left[\mathrm{CdL}_{2}(\mathrm{LH})\right]_{2}$

LH= bzimSH ${ }^{-}$X=NH ; bzoxS' X=O ; bztzS' X=S.
Fig. 3: The structure formula of the complexes[$\left.\mathrm{CdL}_{2}\right]$

LH= bzimSH ${ }_{2}$, X=NH ; bzoxSH X=O ; bztzSH X=S
Fig. 4: The structure formula of the complexes $\left[\mathrm{CdL}_{2}(\mu-\mathrm{dppm})\right]_{2}$

(A)

(B)

(C)

(D)
LH= bzimSH ${ }_{2}$, X=NH ; bzoxSH X=O ; bztzSH X=S.
(A) $\left[\mathrm{CdL}_{2}(\mathrm{dppe})\right]$ (B) $\left[\mathrm{CdL}_{2}(\mathrm{dppp})\right]$ (C) $\left[\mathrm{CdL}_{2}(\mathrm{dppb})\right]$ (D) $\left[\mathrm{CdL}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$

Fig. 5: The structure formula of the complexes
in comparison with the uncoordinated ligands with the lack of the $v(\mathrm{SH})$ bands at ca 2500-2600 cm^{-1}, singlet the exclusive S- coordination mode of thione ligands. The ligand bzoxSH showed $v(\mathrm{COC})_{\text {sy }}$ and $v(C O C)_{\text {asy }}$ at 1080 and $820 \mathrm{~cm}^{-1}$ respectively. These bands were unaffected on complex formation ${ }^{16}$.

Moreover the spectra of compounds under investigation contain $v(C d-S)$ stretching vibrations observed in the $270-280 \mathrm{~cm}^{-1}$ range [23] and v (P C) streaching vibrations observed in the 490-505
cm^{-1} range [24] singlet the coordination of phosphines ligands

ACKNOWLEDGEMENTS

We thank Prof. Subhi A. Al-Jibori (Department of Chemistry, College of Science, University of Tikrit) and the NMR department of the Institute of Chemistry; Martin-Luther-University; Halle Germany for measuring the NMR spectra.

REFERENCES

1. Ochoa P.A., Rodriguiz-Tapiador M.I., Alxexadre S.S., Pastor C., Zamora F., J. Inorg. Biochem., 99:1540 (2005).
2. Fleischer H., Coord. Chem. Rev. 249: 799 (2005).
3. Ahmed S., Isad A. A., Ali S., Al-Arfaj A. R., Polyhedron, 25: 1646 (2006).
4. Lobanna T. S., Butcher R. J., Hunter A. D., Zeller M., Polyhedron, 25: 2775 (2006).
5. Raper E. S., Coord. Chem. Rev., 61: 115 (1985).
6. Raper E.S., Coord. Chem. Rev., 129, 91(1997) .
7. Raper E.S., Coord. Chem. Rev., 213: 181 (2001).
8. Beheshti A., Brooks N.R., Clegg W., Hyvadi R. Acta. Crystallogr. Sec., E 61: 1383 (2005).
9. Popovic Z., Soldin Z., Calogovic D.M.,

Povlovic C.G., Giester G., Rajic M. Europon J. Inorg. Chem., 2002: 171 (2001).
10. Dean P.A., Prog. Inorg. Chem., 24:109(1978).
11. Graddon D.P., Rev. Inorg. Chem., 4: 211 (1982).
12. Bell N.A., William C., Constable C.P., Siman J.C., Ross H.W., Michael B., Mark E.L., Raper E.S., Sammon C.S., Inorg. Chim. Acta. 357: 2091 (2004).
13. Wazeer M.I.M., Isab A.A., Fettouhi M. Polyhedron., 26: 1725 (2007).
14. Pert C., Tosi G., Can. J. Chem., 55: 1407 (1977).
15. Popovic Z., Matkovic - Galogolvic D., Soldin Z., Povlovic G., Davidovic N. Vikic- Topic D., Inorg. Chem. Acta., 72: 360 (2001).
16. Zugaj Z, Popovic Z., Mrvos-Seemek D., BellCzech., Crysalloger. Association, 5: 322 (1998).
17. Al-Janabi A.S.M., Abdullah B.H., Al-Jibori
S.A., Orient. J. Chem., 25(2): 277 (2009).
18. Mitchell R.W., Ruddirck J.D., Wilkinson G.A., J. Chem. Soc., A: 3224 (1971) .
19. Al-Jibori S.A., Al-Zaubi A.S.S., Mahammed M.Y., Al-Allaf T.A.K., Trans. Met. Chem., 27: 281 (2007) .
20. Hadjikakou S.K., Kubicki M., Polyhedron, 19: 223 (2000).
21. Kamei T., Fujli T., Saotome M., Jap. Appl. Chem. Abst., 107: 220333d (1987).
22. Hunt C. T., Balch A. L., Inorg. Chem., 20: 2267 (1981).
23. Al-Jibori S. A., Abdullah I.A., Al-Allaf T.A.K., Trans. Met. Chem., 32: 398 (2007).
24. AI-Hayaly L. J., Abdullah B. H., AI-Dulaimi A. A. N., Al-Jibori S. A., Orient. J. Chem. 24(2): 38 (2008).
25. Chatt .J, Duncanson L. A., Nature, 97: 178 (1956).

[^0]: a: decomposition

[^1]: $\mathrm{S}=$ Strong, $\mathrm{W}=$ Weak, $\mathrm{M}=$ Medium, $\mathrm{br}=$ broad

[^2]: a-Measured in CDCI3 unless stated otherwise, b - methylene carbon of the diphosphine
 c - singlet was very weak, d - singlet

