

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

ISSN: 0970-020 X CODEN: OJCHEG 2011, Vol. 27, No. (4): Pg. 1563-1571

www.orientjchem.org

Cadmium(II) Complexes Containing the Mixed Ligands Benz-1,3-Imidazoline -2-Thione, Benz-1,3-Oxazoline -2-Thione, Benz-1,3-Thiazoline -2-Thione, and Diphosphine $Ph_2P(CH_2)_nPPh_2$, n = 1-4 or Triphenyl Phosphine

AHMED S. M. AL-JANABI^{1*} and SHIHAB A. O. AHMED²

¹Department of Biochemistry, College of Veterinary Medicine, University of Tikrit, Tikrit, (Iraq). ²Department of Chemistry, College of Science, University of Tikrit, Tikrit, (Iraq). *Corresponding author: E-mail: a_sh200683@yahoo.com

(Received: July 20, 2011; Accepted: September 30, 2011)

ABSTRACT

 $\label{eq:complexes} \begin{array}{l} Cadmium(II) \mbox{ complexes of the types } [CdCl_2(LH)] \mbox{ (LH= benz-1,3-imidazoline -2-thione , benz-1,3-oxazoline-2-thione or benz-1,3-thiazoline-2-thione), have been prepared by the reaction of <math display="inline">[HgCl_2] \mbox{ with one mole proportion of the ligands LH. Reaction of } [Cd(OAc)_2] \mbox{ with two mole proportion of LH in the presence Et}_3N gave complexes of the type } [CdL_2]. Treatment of <math display="inline">[CdL_2] \mbox{ with two mole proportion of LH in the presence Et}_3N \mbox{ gave complexes of the type } [CdL_2]. Treatment of } [CdL_2] \mbox{ with two mole proportion of the diphosphine } Ph_2P(CH_2)nPPh_2 \ (n=1-4) \ gave \mbox{ tetrahedral complexes of the type } [CdL_2(PPh_3)_2], \ [CdL_2(\mu-diphos)]_2 \ (n=1) \ or \ [CdL_2(diphos)] \ n=2 \ -4 \ receptivity \ . The prepared \ complexes \ were \ characterized \ by \ elemental \ analysis, \ i.r., \ ^1H, \ ^{13}C-\{^1H\} \ and \ ^{31}P-\{^1H\} \ n.m.r. \ data. \end{array}$

Key words : Cadmium, Thione, Phosphine complexes.

INTRODUCTION

It is well that cadmium is a highly toxic metal and a potent carcinogen. However, its mechanism of action still unclear¹. Thiolate complexes are of great importance from a bioinorganic point of view, mainly due to the presence of thiolate donors in the coordination sphere of many metal ions in very diverse metalloproteins^{2,3}. Heterocyclic thione are among the ligand system used to mimic bio-relevant metal - sulfur interaction⁴⁻⁷. Chemical interest of thione lies in the fact that they are potentially ambidentate or multi- functional donors with exocyclic S and heterocyclic N available for coordination, their biological interest arises from their structural analogy to thiolated nucleosides⁴⁻⁸.

Cadmium (II) halides form 1:1 and 1:2 complexes with neutral heterocyclic thione ligands⁹⁻¹². It was reported previously^{9,11,13} that the reaction of (LH); LH= benz-1,3-imidazoline -2-thione, benz-1,3-oxazoline -2-thione or benz-1,3-thiazoline -2-thione with [CdCl₂] gave complexes of the type [CdX₂(LH)]₂ [12], the heterocyclic thione (LH) behaves as a monodentate ligand coordinated through sulfur atoms while the halogen ligand was coordinated to cadmium(II) ions as bidentate bridging and monodentate.

However heterocyclic thiones form linear complexes of the type $[ML_2]$ (L = deprotonated thione ligands)[5, 10 - 12]. Mixed ligand complexes of heterocyclic thiones have been reported for several metal ions such as silver and rhodium¹³⁻¹⁶, while mixed ligands heterocyclic thiones(LH) and phosphines have been reported for several metal ions such as mercury, silver and rhodium¹⁷⁻²¹, complexes with cadmium seem unexplored²².

In the present work, we report the preparation of cadmium (II) complexes containing mixed ligand of heterocyclic thione (LH) fig. 1 (I) and diphosphines or triphenyl phosphine.

EXPERIMENTAL

General

The ¹H- and ¹³C- n.m.r spectra were recorded on Varian unity 500 and Gemini 2000 spectrometers respectively with CDCl₃ as solvent and Me₄Si as internal reference. ³¹P-{¹H} n.m.r spectra were recorded on Gemini 200 spectrometer with CDCl₃ as solvent and H₃PO₄(85%) as external reference. The n.m.r. spectra were determined at the Institute fur Anorganische chemie, Martin – Lurther-univasitat Halle- Witten-berg, Germany. I.r. spectra were recorded on a Shimadzu FT.IR. 8400 spectrometer in the 200 – 4000 cm⁻¹ range using CsI discs. Elemental analysis were carried out on a CHN analyzer type 1106 (Carlo-Erba). Melting points were measured on an electro thermal 9300 melting point apparatus.

Starting materials

The compounds $[CdX_2]$ (X= CI, OAc), PPh₃, dppm, dppe, dppp, dppb, benz-1,3imidazoline -2-thione, benz-1,3-oxazoline -2-thione and benz-1,3-thiazoline -2-thione were commercial products and were used as supplied, $[Cd(bztzS)_2](3)$, $[Cd(bzimSH)_2](4)$, $[Cd(bzoxS)_2]$ (5), were prepared according literature methods [12,].

Preparation of complexes [CdCl₂(bztzSH)] (1)

A solution of bztzSH (0.137g, 0.82mmol) in EtOH (10cm³) was added to a solution of $[CdCl_2]$ (0.15g, 0.82mmol) in EtOH(10cm³). The mixture was stirred at room temperature for 2h. The yellow solid thus formed was filtered off washed with EtOH, dried under vacuum and recrystallized from Me_2CO (yield 90%). The following complexes $[CdCl_2(bzimSH_2)](2)$, $[CdCl_2(bzoxSH)](3)$, were prepared and isolated by a similar method.

[Cd (bztzS)₂] (4)

A solution of dppm (0.19g, 1.125mmol) in EtOH (15cm³) was added to solution of $[Cd(oAc)_2]$ (0.15g, 0.563mmol) in EtOH(10cm³) in the present Et₃N (1.12g, 1.125mmole) The mixture was stirred at room temperature for 2h. The solid formed was filtered off washed with EtOH, CHCl₃, dried under vacuum and recrystallized from Me₂CO (yield 90%). The following complexes $[Cd(bzimSH)_2](5)$, $[Cd(bzoxS)_2](6)$ were prepared and isolated by a similar method.

[Cd(bztzS)₂(µ-dppm)]₂(7)

A solution of dppm (0.087g ,0.225mmol) in CHCl₃(10cm³) was added to a hot solution of $[Cd(bztzS)_2](4)$ (0.1g, 0.225mmol) in EtOH (15cm³). The mixture was stirred at room temperature for 2h. The yellow solid thus formed was filtered off washed with EtOH, dried under vacuum and recrystallized from CHCl₃(yield 82%). The following complexes [Cd(bztzS)_2dppe] (8), [Cd(bztzS)_2dppe] (9), [Cd(bztzS)_2dppb] (10) were prepared and isolated by a similar method.

[Cd(bzimSH)₂(µ-dppm)]₂(12)

A solution of dppm (0.093g ,0.243mmol) in $CHCl_3(10cm^3)$ was added to a warm solution of $[Cd(bzimSH)_2](5)(0.1g, 0.243mmol)$ in EtOH $(15cm^3)$. The mixture was stirred at room temperature for 1.5h. The white solid thus formed was filtered off washed with EtOH, dried under vacuum and recrystallized from $CHCl_3$ (yield 79%). The following complexes $[Cd(bzimSH)_2dppe](13)$, $[Cd(bzimSH)_2dppp](14)$, $[Cd(bzimSH)_2dppb]$ (15) were prepared and isolated by a similar method.

[Cd(bzoxS)₂(µ-dppm)]₂(17)

A solution of dppm (0.093g ,0.242mmol) in $CHCl_3(10cm^3)$ was added to a hot solution of $[Cd(bzoxS)_2](4)$ (0.1g, 0.242mmol) in EtOH (15cm³). The mixture was stirred at room temperature for 1h. The white solid thus formed was filtered off washed with EtOH, dried under vacuum and recrystallized from CHCl_3(yield 78%). The following complexes $[Cd(bzoxS)_2dppe]$ (18), $[Cd(bzoxS)_2dppp]$ (19), $[Cd(bzoxS)_2dppb]$ (20) were prepared and isolated by a similar method.

[Cd(bztzS)₂(PPh₃)₂] (11)

A solution of PPh₃ (0.21g , 0.450mmol) in EtOH (10cm³) was added to a warm solution of $[Cd(bztzS)_2](4)$ (0.1g , 0.225mmol) in EtOH(10cm³). The mixture was stirred at room temperature for 1h. The yellow solid thus formed was filtered off washed with EtOH, dried under vacuum and recrystallized from CHCl₃ (yield 90%). The following complexes $[Cd(bzimSH)_2(PPh_3)_2](16)$, $[Cd(bzoxS)_2(PPh_3)_2](21)$ were prepared and isolated by a similar method .

RESULTS AND DISCUSSION

Synthesis of complexes

Mercapto-1,3-azole ligand (I) exist as two toutomeric conformations exhibiting thiol – thione isomers involving (-N=C-SH) and (-NH-C=S) group in the thiol – thione equilibrium. On deprotonation the resulting anions can also have thiol – thione isomerism (II) with negative charge is either on the thiol sulfur atom or the amide nitrogen atom.

Reaction of $[CdCl_2]$ with heterocyclic thione ligands in ethanol solution (1 :1) molar ratio gave tetrahedral complexes of the type $[CdX_2(LH)]_2$ [12]. The halogen was coordinated as a bidentate bridging and monodentate to cadmium (II) ions , while the heterocyclic thione (LH) behaves as monodentate ligand coordinated via sulfur atoms to cadmium(II) ion.

The deprotonated complexes of the type $[CdL_2]$ were readily precipitated by reaction of $[Cd(OAc)_2]$ with two mole proportion of LH in the presence Et₃N as a base. The thionate were coordinated as bidentate ligands to cadmium through sulfur atom of thiol group and nitrogen atom of the amide group [22].

Treatment of the cadmium(II) complexes of the type $[CdL_2](4)$, (5),(6) [12] with one mole proportion of the diphosphines $Ph_2P(CH_2)_nPPh_2$ (n = 1-4) or two mole proportion of PPh₃ gave tetrahedral complexes of the $[CdL_2(\mu-Ph_2 PCH_2PPh_2)]_2$ (7),(12),(17) or the $[CdL_2(Ph_2PCH_2PPh_2)]_2$ (7),(12),(17) or the $[CdL_2(Ph_2PCH_2PPh_2)]_2$ n=2-4 (8),(9),(10),(13), (14),(15),(18), (19),(20) or the $[CdL_2(PPh_3)_2]_2$ (11),(16),(21). The anionic thionato ligands are coordinated as monodentate ligands, via sulfur atoms to cadmium(II) ion, while $Ph_2(CH_2)_n PPh_2$ (n=2-4) were coordinated as bidentate chelates, but $Ph_2CH_2PPh_2$ behaves as a bidentate bridging ligand, PPh_3 coordinated as monodentate ligands.

Characterization of complexes

The prepared complexes were identified by elements analysis, i.r. spectra and some of them by ³¹P-{¹H}, ¹H and ¹³C-{¹H} n.m.r. spectra and their data are listed in Tables 1-3.

Nuclear magnetic resonance

The ³¹P -{¹H}, ¹H and ¹³C-{¹H} n.m.r. data of some the prepared complexes are given in Table 3. The ³¹P-{¹H} n.m.r. spectra of complexes [CdL₂(µ– dppm)] { L=bztzS(7) and bzimSH(12)}, showed a singlet for each at δP = 25.97 and 9.85 p.p.m respectively suggestion a single product. The positive values of the dP indicate that dppm behaves as a bidentate bridging²³⁻²⁴. This has been supported by ¹Hn.m.r. spectra of complexes (7) and (12) which showed a singlet at δH = 2.8 and 2.78 p.p.m respectively for the methylene group of the bridging dppm²⁵. On the bases of the above n.m.r. data and other identification data given in tables 1 and 2, the structure shown in Fig. 4 has been suggested

Reaction of $[CdL_2]$ complexes one mole proportion of the $Ph_2(CH_2)_nPPh_2$ (n=2-4) gave a mononuclear chelate – diphosphines complexes of the types $[CdL_2(Ph_2P(CH_2)_nPPh_2)]_2$ (n=2-4) (10), (13), (15), (18) and (19). The ³¹P-{¹H} n.m.r. spectra of complexes (10), (13), (15), (18) and (19). given a singlet each (table 3) indicating the presence of single chelated isomer for each. These conclusions have been supported by ¹H and ¹³C-{¹H} n.m.r. data are shown in tables 3. On the basis of these data and other identification data given in Tables 1 & 2 the tetrahedral structures shown in Fig. 5 have been suggested for these complexes.

Infrared spectra

The infrared spectra of compounds (1) - (21) recorded in the 4000 – 250 cm⁻¹ range showed the usual four thionamide bands required by the presence of the heterocyclic thione ligands. The shifts observed for these bands due to coordination

Seq.	Complexes	Color	M.p.	Yield	Fc	ound (calc. %)	
			(°C)	%	U	н	z
-	[CdCl ₃ (bztzSH)]	Yellow	240ª	06	25.21 (25.23)	1.52(1.55)	3.91(3.92)
0	[CdCl ₂ (bzoxSH)]	White	240ª	87	26.40(26.42)	1.56(1.63)	4.06(4.11)
Ю	[CdCl ₂ (bzimSH ₂)]	White	250 ª	79	25.21 (25.23)	1.93(1.82)	8.14(8.24)
4	[Cd(bztzS),]	Yellow	179 – 181	06	25.21 (25.23)	1.92(1.81)	6.25(6.30)
5	[Cd(bzoxS),]	White	187 – 190	76	25.21 (25.23)	1.64(1.95)	6.39(6.76)
9	[Cd(bzimSH),]	White	159 – 161	72	25.21 (25.23)	2.36(2.45)	13.65(13.64)
7	[Cd(bztzS),(dppm)],	Yellow	192 – 193	82	67.11(67.02)	4.73(4.79)	3.99(3.86)
œ	[Cd(bztzS),(dppe)]	Yellow	166-168	06	57.21(57.37)	4.13(4.11)	3.25(3.26)
6	[Cd(bztzS) ₂ (dppp)]	Yellow	211-213	72	57.80(57.82)	4.33(4.27)	3.29(3.21)
10	[Cd(bztzS) ₂ (dppb)]	Yellow	162 – 164	79	60.01 (60.04)	4.93(4.90)	1.99(1.94)
11	[Cd(bztzS) ₂ (PPh ₃) ₂]	Yellow	231 – 233	06	62.21 (62.22)	4.21(4.20)	2.59(2.58)
12	[Cd(bzoxS),dppm)]	White	210 – 211	78	64.11(64.14)	4.53(4.59)	3.79(3.70)
13	[Cd(bzoxS) ₂ (dppe)]	White	225ª	91	59.60(59.60)	4.20(4.27)	3.36(3.39)
14	[Cd(bzoxS) ₂ (dppp)]	White	204-205	82	60.20(60.04)	4.43(4.44)	3.39(3.33)
15	[Cd(bzoxS) ₂₍ dppb)]	White	132 – 134	06	61.43(61.41)	5.03(5.01)	2.01(1.99)
16	[Cd(bzoxS),(PPh ₃),]	White	171 – 174	93	65.81 (65.88)	4.67(4.65)	1.79(1.75)
17	[Cd(bzimSH] ₂ (dppm)] ₂	White	234 – 236	79	64.55(64.36)	4.88(4.87)	7.11(7.41)
18	[Cd(bzimSH) _o (dppe)]	White	201 -204	81	59.74(59.74)	4.53(4.52)	6.83(6.80)
19	[Cd(bzimSH) ₆ (dppp)]	White	128 – 131	89	60.22(60.18)	4.70(4.69)	6.69(6.68)
20	[Cd(bzimSH) ₂ (dppb)]	White	124 - 126	85	61.51(61.50)	5.20(5.16)	3.97(3.98)
21	$[C(bzimSH)_2(PPh_3)_2]$	White	145 - 146	72	65.91 (65.96)	4.73(4.78)	3.59(3.50)

Table 1: Color, yield, m.p. and elemental analysis for complexes (1-21)

1566

a: decomposition

v(C-O-C)sy, asy	v(P-C)	v(Cd-S)	v(C-H)	۷(H-N)		Thioamic	de bands		Seq.
					_	=	=	≥	
			3072 w, 3022 w	3112w	667s	1015s	1319s	1490s	bztzSH
1090m, 820m			3062w, 2970w	3199 w	740m	1010m	1240 m	1504m	bzoxSH
			3080w	3152w	650m	1362s	1460s	1505s	bzimSH ₂
			3083 w , 2927 w	3134w,br	720m	1029s	1334m	1498s	, -
1093s,825m			3109w	3168w	742s	1005m	1245m	1508s	2
		280 m	3078 w , 2983 w	3182 w	690m	1352m	1460s	1518s	ი
			3052 w, 2989 w		665s	1010s	1289s	1470s	4
1095m, 815m			3054w, 2987w		740m	1010m	1240 m	1504m	5
			3095w , 2974w	3159w	675m	1352s	1421s	1519s	9
	500 s	270m	3052 w		725 m	1025s	1338s	1490m	7
	500 s	270m	3058 m		692 s	1018s	1300m	1486m	8
	505 s		3056 w		700m	1020s	1350m	1480m	6
	500 s	275m	3058 w		690s	1018s	1352 w	1487m	10
	505 m		3060 m		704m	1023m	1324m	1478s	11
1085m, 825m	505m		3056 w		734m	1000m	1228m	1475m	12
1090s, 830m	505s		3048 m		742s	1003s	1242s	1475m	13
1095m, 825m	500s		3053 w, 2891m		746s	1000m	1240m	1470m	14
1095m, 815m	505s		3058 w, 2972w		747s	1010s	1240m	1475m	15
1080s, 820m	500s		3057 m, 2987w		740s	1010s	1240m	1475m	16
	490m		3056 w	3125w	650m	1367w	1425m	1510m	17
	505s		3062 w, 2990 w	3115w	657m	1379m	1429s	1510m	18
	500s		3054w, 2967w	3165w	650w	1360m	1430m	1505m	19
	500s	277m	3093w,2974w	3137w	650m	1352s	1425s	1500s	20
	505s		3063 m	3130w	622m	1370m	1435m	1515m	21
S = Strong , W = Weak	, M = Medium ,	br = broad							

Table 2: I.R. spectra data (cm⁻¹) of the ligands and complexes (1-21)

AL-JANABI & OTHMAN, Orient. J. Chem., Vol. 27(4), 1563-1571 (2011)

1567

δC₁⊳	စွင	ŠČ	δ C ₇	စ ငိ	δC	δ C₄	δC₂	8 Phenyl	8CH ₂	8p	Seq.	Complexes
	141.3	129.4	112.4	124.2	127.1	121.7	189.9					bztzSH
U	132.7	131.7	с	127.0	128.3	123.7		7.2 - 7.45	2.8	25.97	7	[Cd(bztzS), (dppm)],
27.343ª	132.8	131.6	112.1	126.7	128.4	124.4	U	7.2 – 7.54	1.553 (4H)	-14.914	10	[Cd(bztzS) ₂ (dppb)]
									2.0 (4H)			I
								7.05 – 7.65	2.6	33.78	13	[Cd(bzoxS),(dppe)]
								7.07-7.67	1.57 (2H)	33.4	14	[Cd(bzoxS) ₂ (dppp)]
									2.5 (4H)			I
								7.2 – 7.73	2.78	29.85	17	[Cd(bzimSH),(dppm)],
								6.74 – 7.63	2.88	33.52	18	[Cd(bzimSH) _c (dppe)]
								7.18 – 7.7	1.54(4H)	-14.24	20	[Cd(bzimSH)_(dppb)]
									2.0 (4H)			I

a- Measured in CDCI3 unless stated otherwise, b- methylene carbon of the diphosphine

d- singlet

c- singlet was very weak ,

S

2

ΙZ

σ

Ś

6

4

AL-JANABI & OTHMAN, Orient. J. Chem., Vol. 27(4), 1563-1571 (2011)

1568

(II)

LH= bzimSH₂, X=NH ; bzoxSH X=O ; bztzSH X=S.

Fig. 1: The structure of thione ligands (LH)

LH= $bzimSH_{2}$, X=NH ; bzoxSH X=O ; bztzSH X=S.

Fig. 2: The structure formula of the complexes[CdL₂(LH)]₂

LH= bzimSH⁻, X=NH ; bzoxS⁻ X=O ; bztzS⁻ X=S.

Fig. 3: The structure formula of the complexes[CdL₂]

LH= bzimSH₂, X=NH ; bzoxSH X=O ; bztzSH X=S

Fig. 4: The structure formula of the complexes $[CdL_2(\mu-dppm)]_2$

 $\label{eq:LH} \begin{array}{l} LH= bzimSH_2, X=NH \ ; \ bzoxSH \ X=O \ ; \ bztzSH \ X=S. \end{array}$

Fig. 5: The structure formula of the complexes

in comparison with the uncoordinated ligands with the lack of the υ (SH) bands at ca 2500-2600 cm⁻¹, singlet the exclusive S- coordination mode of thione ligands. The ligand bzoxSH showed υ (COC)_{sy} and υ (COC)_{asy} at 1080 and 820 cm⁻¹ respectively. These bands were unaffected on complex formation¹⁶.

Moreover the spectra of compounds under investigation contain υ (Cd-S) stretching vibrations observed in the 270 - 280 cm $^{-1}$ range [23] and υ (P-C) streaching vibrations observed in the 490 –505

cm⁻¹ range [24] singlet the coordination of phosphines ligands

ACKNOWLEDGEMENTS

We thank Prof. Subhi A. Al-Jibori (Department of Chemistry, College of Science, University of Tikrit) and the NMR department of the Institute of Chemistry; Martin-Luther-University; Halle Germany for measuring the NMR spectra.

REFERENCES

5.

- 1. Ochoa P.A., Rodriguiz-Tapiador M.I., Alxexadre S.S., Pastor C., Zamora F., *J. Inorg. Biochem.*, **99**:1540 (2005).
- Fleischer H., Coord. Chem. Rev. 249: 799 (2005).
- Ahmed S., Isad A. A., Ali S., Al-Arfaj A. R., Polyhedron, 25: 1646 (2006).
- 4. Lobanna T. S., Butcher R. J., Hunter A. D., Zeller M., *Polyhedron*, **25**: 2775 (2006).
- Raper E. S., *Coord. Chem. Rev.,* **61**: 115 (1985).
- 6. Raper E.S., *Coord. Chem. Rev.*, **129**, 91(1997) .
- Raper E.S., *Coord. Chem. Rev.*, **213**: 181 (2001).
- Beheshti A., Brooks N.R., Clegg W., Hyvadi R. Acta. Crystallogr. Sec., E 61: 1383 (2005).
- 9. Popovic Z., Soldin Z., Calogovic D.M.,

1570

Povlovic C.G., Giester G., Rajic M. Europon *J. Inorg. Chem.*, **2002**: 171 (2001).

- 10. Dean P.A., Prog. Inorg. Chem., 24:109(1978).
- 11. Graddon D.P., *Rev. Inorg. Chem.*, **4**: 211 (1982).
- Bell N.A., William C., Constable C.P., Siman J.C., Ross H.W., Michael B., Mark E.L., Raper E.S., Sammon C.S., *Inorg. Chim. Acta.* 357: 2091 (2004).
- Wazeer M.I.M., Isab A.A., Fettouhi M. Polyhedron., 26: 1725 (2007).
- 14. Pert C., Tosi G., *Can. J. Chem.*, **55**: 1407 (1977).
- Popovic Z., Matkovic Galogolvic D., Soldin Z., Povlovic G., Davidovic N. Vikic- Topic D., *Inorg. Chem. Acta.*, **72**: 360 (2001).
- Zugaj Z, Popovic Z., Mrvos-Seemek D., Bell-Czech., *Crysalloger. Association*, 5: 322 (1998).
- 17. Al-Janabi A.S.M., Abdullah B.H., Al-Jibori

S.A., Orient. J. Chem., 25(2): 277 (2009).

- Mitchell R.W., Ruddirck J.D., Wilkinson G.A., J. Chem. Soc., A: 3224 (1971).
- Al-Jibori S.A., Al-Zaubi A.S.S., Mahammed M.Y., Al-Allaf T.A.K., *Trans. Met. Chem.*, 27: 281 (2007) .
- 20. Hadjikakou S.K., Kubicki M., *Polyhedron*, **19**: 223 (2000).
- 21. Kamei T., Fujli T., Saotome M., *Jap. Appl. Chem. Abst.*, **107**: 220333d (1987).
- 22. Hunt C. T., Balch A. L., *Inorg. Chem.*, **20**: 2267 (1981).
- 23. Al-Jibori S. A., Abdullah I.A., Al-Allaf T.A.K., *Trans. Met. Chem.*, **32**: 398 (2007).
- Al-Hayaly L. J., Abdullah B. H., Al-Dulaimi A. A. N., Al-Jibori S. A., *Orient. J. Chem.* 24(2): 38 (2008).
- 25. Chatt .J, Duncanson L. A., *Nature*, **97**: 178 (1956).