

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

www.orientjchem.org

ISSN: 0970-020 X CODEN: OJCHEG 2011, Vol. 27, No. (4): Pg. 1763-1766

Spectrophotometric Determination of Fe(II) as a Complex with 1, 2 -propanedione, 1-phenyl-1(2-hydroxybenzylideneazine)-2-oxime (PDPHBAO)

RAMA S. LOKHANDE, SUSHAMA M. LELE and POONAM P. SHEVDE

Department of Chemistry, University of Mumbai, Vidyanagri, Santacruz (E), Mumbai - 400 098 (India). *Corresponding author: E-mail: poonam_p_shevde@yahoo.co.in

(Received: August 05, 2011; Accepted: September 15, 2011)

ABSTRACT

The reagent was synthesized and characterization was carried out by FTIR, NMR, elemental analysis as well as Mass spectrometry. This reagent was then applied for the development of the analytical method for the extractive spectrophotometric determination of Iron (II). Iron metal forms faint yellowish green coloured complex, which can be extracted in chloroform at pH 10.0 having absorption maxima at 536 nm. Beer's law is obeyed in the concentration range 1-10 μ g. The molar absorptivity and Sandell's Sensitivity of the extracted species are found to be 5.465×10^3 Lit mol⁻¹ cm⁻¹ and 9.3087×10^{-4} μ g / cm² respectively.

The developed method is highly sensitive, selective, simple, rapid, accurate, and has been satisfactorily applied for the determination of iron in the synthetic mixtures, pharmaceutical samples, and alloys.

Key words: Characterization; Iron; Extractive Spectrophotomertic determination.

INTRODUCTION

Iron is essential to nearly all known organisms. In cells, iron is generally stored in the centre of metalloproteins. The use of iron metal filings in organic synthesis is mainly for the reduction of nitro compounds¹. Additionally, iron has been used for desulfurizations², reduction of aldehydes³, and the deoxygenation of amine oxides⁴. Knowing the importance of Iron, a method highly sensitive, selective, simple, rapid, accurate and superior to reported methods in the literature⁽⁵⁻³⁰⁾ has been

developed for its extractive spectrophometric determination. The developed method has been satisfactorily applied for the determination of iron in the synthetic mixtures, pharmaceutical samples, and alloys.

EXPERIMENTAL

The **PDPHBAO** was synthesized³¹⁻³³, characterized³⁴ and used for extractive spectrophotometric determination of Fe(II) A stock solution of PDPHBAO was prepared by dissolving

0.1~g of the reagent in $100~cm^3$ methanol to give 0.1% reagent solution of PDPHBAO.

Iron (II) Solution

A weighed quantity of ferous sulphate was dissolved in double distilled water containing dilute sulphuric acid and then diluted to the desired volume using double distilled water. The iron solution was then standardized by o-phenanthroline method⁽³⁵⁾.

Recommended procedure

Mix 1cm³ aqueous solution containing 1-100μg of iron and 1 cm³ of 0.1 % methanolic solution of PDPHBAO in 25 cm³ beaker. Adjust the pH of the solution to required value with dilute solution of $\rm H_2SO_4$ and NaOH. Make the final aqueous volume up to 10 cm³. Transfer the solution into 125 cm³ separating funnel and equilibrate for 1min with 10 cm³ chloroform. Allow the two phases to separate and measure the absorbance of the organic extract containing the complex at 536 nm against reagent blank.

RESULTS AND DISCUSSION

Effect of foreign ions

The effect of diverse ions on the iron (II) determination was studied, in presence of a definite

Table 1.

Condition	Results
Absorption Maxima Solvent pH range Equilibration time Stability of Iron-PDPHBAO Beer's range Molar absorptivity Sandell's sensitivity	536 nm Chloroform 9.5 to10.5. 1.5min 24 h 1 to 10 μg/ cm³ 5.465 X 10³ Lit mol⁻¹ cm⁻¹ 9.3087 X 10⁻⁴ μg / cm²
Mole Ratio of Fe : PDPHBAO	1 :3

Table 2: Effect of foreign ions

Anion added	Amount added in mg.	Cation added	Amount added in mg
Chloride	10	Ca	2
Fluoride	10	Sr	2
Bromide	10	Ва	5
lodide	5	Мо	5
Bromate	5	Mn	5
Iodate	5	Mg	5
Chlorate	5	V	2
Chromate	10	Rh	1
Dichromate	5	TI	2
Carbonate	5	U	2
Phosphate	5	Th	2
Urea	10	Li	5
Thiourea	5	Ce	2
Acetate	10	Zr	2
Thiosulphate	10	Cd	2
Oxalate	10	Al	2
Nitrate	10	Hg	5
Nitrite	10	As	5
Sulphate	10	Zn	2

Table 3: Effect of masking agent

Interfering Ion	Masking agent added	Interfering Ion	Masking agent added
Ag(I)	Potassium iodide	Citrate	Sodium molybdate
Cd(II)	Potassium iodide	Tartarate	Sodium molybdate
Pb(II)	Sodium thiosulphate	EDTA	Boiling with concectrated HNO ₃
Mn(II)	Sodium fluoride	CN-	Boiling with concentrated HNO ₃ and formaldehyde
Ce(IV)	Sodium fluoride	Zr(IV)	Sodium fluoride
Cr(II)	Ammonium acetate	Ni(II)	Thiourea

Table 4: Applications

S.	Sample		Amount of Fe(II)		
No.			Standard Method	Present Meth	nod
1.	Alloy /Ore				
a)	Hematite		35.0%	34.98%	
b)	Steel		67.2%	66.99%	
2.	Capsule/tablet				
a)	Injection Viol		50 mg/ml	49.8 mg/ml	
b)	2B12 (Capsule)		1.5 mg	1.48 mg	
3.	Synthetic Mixture	0.20			
a)	Fe(II)(5)+Zn(II)(5)	0.18		_	
b)	Fe(II)(5)+Mg(II)(5)	0.16		, •	
4.	Industrial Waste Water at Ulhasnagar Cr	0.14			
	<u></u>	0.12	_/	•	_
Every r	result is average of three independent determinetion ខ្លី	0.10			
	result is average of three independent determinetion	0.08	_		
amount	of a foreign ion. various cations and anions	0.06	_		1e
	vestigated in order to find the tolerance limit	0.04	<u>, </u>		ic
	e foreign ions in the extraction of iron (II)	0.02	/		ıg
-	2). The tolerance limit of the foreign ion was	0.00	1 2 3 4 5 6	7 8 9 10 11	
taken a	s the amount required causing an error of		Concentration of Fe(II)	in μg / ml	
				1.2	

-30

Fig. 1: Calibration Plot

Fig. 2: Slope Ratio Method

Applications

The present method was applied for determination of amount of Iron (II) in various samples as alloys, synthetic mixtures, injection vial, tablets and industrial waste water. The results obtained were well in agreement with those of standard methods. Table 4.

CONCLUSION

The results obtained show that the newly developed method in which the reagent PDPHBAO

was used, can be effectively used for quantitative extraction and estimation Fe (II) from aqueous media. The proposed method is quick and requires less volume of organic solvent. The results show good agreement with the standard methods. The method is very precise, faster and simpler than other methods. The method is precise, accurate, less time consuming and easily employed anywhere, even in small laboratories as it requires only uv visible spectrophotometer and not much sophisticated and costly measurement devices or instrumentation.

REFERENCES

- 1. Fox, B. A.; Threlfall, T. L. *Organic Syntheses, Coll.* **5**: 346 (1973); **44**: 34 (1964).
- Blomquist, A. T.; Dinguid, L. I. J. Org. Chem. 12: 718 & 723 (1947).
- 3. Clarke, H. T.; Dreger, E. E. *Org. Syn., Coll.* **1**: 304 (1941); **6**: 52 (1926).
- 4. Den Hertog, J.; Overhoff, *J. Recl. Trav. Chim. Pays-Bas* **69**: 468 (1950).
- 5. Gentry C. H. R. and Sherrington L. S.. *Analyst* **75**: 17 (1950).
- Eve D. J.and Strasheim A. J. S.. Afr. Chem. Inst. 9: 5 (1956).
- 7. Tanaka Y. and Ito. K. *Japan Analyst.* **6**: 728 (1957).
- 8. Oosting M. Anal. Khim acta. 21: 397 (1959).
- 9. Sekine T. and Dryssen D. J, *Inorg. Nuclear Chem.* **26**: 2013 (1964).
- 10. Mttola H. A. H.and Freiser. *Talanta.*, **13**: 55 (1966).
- 11. Jhonston J. R. and Halland. W. J. Mikrochim *Acta*.1: 126 (1972).
- 12. Valcarcel M., Perz D.Bendito and F.Pin. Perez. **25**: 1 (1972).
- 13. Valcarcel M.and Pin F. *Perez. AnQuim.* **68**: 383 (1972).
- 14. Singh R.B., Garg B.S.and Singh R.P., *Talanta*. **26**: 425 (1975).
- 15. Bhaskar C. K. and Devi. S. *Talanta*. **25**: 5449 (1979).
- 16. Reddy T. S. and Rao. S.B., *Curr. Sci.* **48**: 439 (1979).
- 17. Yamakato D., Hirqoka S. and Hikawa M.. Bunseki kagaku **30**: 626 (1981).
- 18. Patil V. R., Kharatand R. B., Deshmukh. B.

- K., J. Inorg. Nucl. Chem. 43: 3397 (1981).
- 19. Novova D., and Stoyanov K., *Anal. Chim. Acta.* **138**: 321 (1982).
- 20. Chakrabarti A. K., *Ind. J. Chem.* **21**: 439 (1982).
- 21. Nakanishi T. and Otomo M.. *Nippon Kagaku Kaishi.***4**: 518 (1983).
- Lal K. and Malhotra S. R., *J. Ind. Chem. Soc.* 60: 308 (1983).
- 23. Ilyes S. Q. R.and Joshi. A. P. *Ind. J. Chem.* **221**: 907 (1983).
- 24. Malik A. K.and Rao A. L., *Ind. J. Chem.* **329**A: 829 (1983).
- 25. Gowda H. S.and Ahmed. S. M. *Ind. J. Chem.* **22**: 1086 (1983).
- 26. Chakrabarti. A. K. *Ind.J. Chem.* **25**: 886 (1986).
- Kuchekar S. K., Aruze M. A.and Chavan. M.
 B. *Ind.J. Chem.* 25: 1041 (1986).
- 28. Sarkar P., Karia P. K.and Muzumdar S. K.. *Ind. J. Chem. Soc.* **26**: 987 (1987).
- 29. Arya. S. P. Talanta. 34: 293 (1987).
- 30. Rao D. M., Reddy K. H., Reddy D. V. and Shrikrishnadevaraya. *Ind.J Chem. SecA* (1989).
- 31. Noyes J., J.Am.Chem.Soc. 55: 388 (1933).
- 32. Hartung W. and Munch J. C.. *J. Am. Chem. Soc.* **51**: 2264 (1929).
- 33. Deshmukh R. G.. Ph. D. Thesis. University of Mumbai. (1992).
- 34. Lele S. M. Ph. D. Thesis. University of Mumbai. (2008).
- 35. Vogel A.I; 'Textbook of Quantitative chemical Analysis', 5th Ed.E.L.B.S.(1991).