
INTRODUCTION

Catalytic reforming is one of the most
important units of refineries. This unit is used to
increase Octane number of gasoline. First catalytic
reforming unit was established in the U.S. in 1939
for producing gasoline with high Octane number1.
The need to upgrade naphthas was recognized
early in the 20th century. Thermal processes were
used first but catalytic processes introduced in the
1940s offered better yields and higher octane. The
first catalysts were based on supported
molybdenum oxide, but were soon replaced by
platinum catalysts. The first platinum-based
reforming process, UOP’s Platforming™ process,
came on-stream in 1949. Since the first Platforming
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ABSTRACT

In this work, a kinetic model was developed for simulation of catalytic reforming process. The
feed of catalytic reforming units is heavy naphtha including paraffin, naphthenic compounds and
aromatics with 6-9 carbons. Major reactions occurred in the catalytic reactor include dehydrogenation,
dehydrocyclization, isomerization, hydrocracking and ring opening. A cylindrical element of catalyst is
considered to obtain conservation equations including mass and energy balances. The derived equations
are solved by numerical method using MATLAB software to simulate catalytic reforming reactors.
Modeling findings involving concentration, temperature and octane number variations were evaluated.
Furthermore, simulation results were compared with experimental data and confirmed the accuracy of
the developed model.
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unit was commercialized, innovations and
advances have been made continuously, including
parameter optimization, catalyst formulation,
equipment design, and maximization of reformate
and hydrogen yields. The need to increase yields
and octane led to lower pressure, higher severity
operations. This also resulted in increased catalyst
coking and faster deactivation rates2-5. Fig. 1 shows
this unit.

Naphtha feed stocks to reformers typically
contain paraffins, naphthenes, and aromatics with
6–12 carbon atoms. Most feed naphthas have to
be hydrotreated to remove metals, olefins, sulfur,
and nitrogen, prior to being fed to a reforming unit.
A typical straight run naphtha from crude distillation
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may have a boiling range of 150–400°F (65–200
°C) [6].

Model development
The main equations that describe the

concentration distribution in the reactors are derived
using mass balance around a cylindrical element in
the catalyst (see figure 2). Material balances (mass
balances) are based on the fundamental “law of
conservation of mass”.

General chemical reactions are as below [5]

Using mass balance1

...(1)

...(2)

Therefore, for all species in the reactors
concentration equations are written as followings:
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The derived equations including mass
and energy equations with appropriate boundary
conditions are solved numerically using codes
developed in MATLAB software. The finite difference
method was applied for the differential equations.

RESULTS AND DISCUSSION

Temperature distribution
Figure 3 illustrates temperature

distribution in radial direction in three reactors of
catalytic reforming process. Exothermic reactions
cause temperature to increase in the reactors. The
temperature increase is the highest in the first
reactor. This could be related to this fact that the
conversion in the first reactor is high and most
reactants converse to products in the first reactor
that causes the highest temperature increase in the

Table 1: Comparison between modeling
predictions and experimental data

Parameter Modeling Experimental Deviation (%)

Octane number 98.8 97.5 1.3
Efficiency 67.4 76.0 11.3

first reactor (see figure 3). The temperature increase
are 50, 20 and 5 K for first, second and third reactor
respectively6.

Concentration distribution
Concentration distribution for all species

is shown in figure 4. As it can bee seen from the
figure, hydrogen concentration decreases in the
reactors. Aromatics concentration increase in the

reactors. Because of high concentration of
naphtenes in the first reactor, dehydrogenation
reaction is fast and the highest concentration
increase is observed in this reactor. Paraffin mole
fraction is almost constant in the first reactor. In the
second and third reactors, paraffin mole fractions
decrease because of isomerization and
hydrocracking reactions.

Fig. 1: Catalytic reforming process1
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Fig. 2: Cylindrical element used for
derivation of conservation equations

Fig. 3: Radial temperature
distribution in the reactors

Fig. 4: Concentration distributions of hydrogen, aromatics and paraffin in the reactors
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Model validation
To verify the model developed here,

modeling findings were compared with the
experimental data obtained from catalytic reforming
unit of Tehran refinery, Iran. Table 1 shows the
comparisons between experimental data and
modeling findings for octane number and efficiency
of catalytic reforming unit. Table 1 reveals that the
model matches the experimental data well and can
predict the performance of catalytic reforming
process.

CONCLUSIONS

In this study a mathematical model was
developed for simulation of catalytic reforming unit.
The model was based on solving the conservation
equations including mass and energy for all species
in the reactors. Three reactors were considered in

series for simulation. Simulation results indicated
that the highest conversion occurs in the first reactor
and most species react in this reactor. Most
reactions were exothermic and caused an increase
in temperature. Fur thermore, the modeling
predictions were compared with the experimental
data and were in good agreement with them.

Nomenclature
N mole (mol)
R reactor radius (m)
L reactor length (m)
V volume (m3)
r radial coordinate (m)
F molar flow rate (mol/s)
Cp heat capacity (j/mol.K)
T temperature (K)
ρ density (kg/m3)
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