

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

www.orientjchem.org

ISSN: 0970-020 X CODEN: OJCHEG 2011, Vol. 27, No. (3): Pg. 1199-1202

Infrared Absorption Studies on Some New Potential Antimicrobial Diazotization Product of 4-aryl-Thiosemicarbazides

A. WAHAB

Department of Chemistry, Shibli National (P.G.) College, Azamgarh (India).

(Received: May 03, 2011; Accepted: June 17, 2011)

ABSTRACT

The infrared absorption spectra of 4-aryl-3-thiosemicarbazides & 5-arylamino-1,2,3,4-thiatriazoles have been studied and structural assignments of importance to these systems made or suggested. Important conclusions drawn from the spectral data are: there in no suggestion of any thiol-thione tautomerism for the solid 4-aryl-3-thiosemicarbazides and that the thione structure predominates for these substances and that the diazotization products of the 4-arylthiosemicrabazides yield, 1,2,34-thiatriazole rather than the isomeric open chain thiocarbamylazides. The C=S, -N-C=S and cyclic -N-N=N- configurational assignments are discussed compounds 5-p-tolyl and 5-o-anisyl amino-1,2,3,4-thiatriazoles have shown antifungal activity against two fungi.

Key words: IR spectra and antifungal activity of 5-p-tolyl/ and 5-o-anisylamino 1,2,3,4-thiatraziles.

INTRODUCTION

In a previous communication Lieber, Pillai and Hites¹ reported that the reaction of 4-aryl-

thiosemicarbazides²⁻³ (I) with nitrous acid as well as the reaction of aryl-isothiocynates (II) with hydrazoic acid leads to the identical 5-arylamino-1,2,3,4-thiatriazoles (III).

$$\begin{array}{c} S\\ Ar-NH-C-NH-NH_2+NHO_2\\ (I) \\ Ar-NCS+H_3N \\ (II) \end{array}$$

The 5-(substituted) amino-1,2,3,4-thiatriazoles (III), or treatment with base (NaOH) gives (II) and NH_3 as well as another produce also.

$$\begin{array}{ccc} N & -N & & & \\ \parallel & \parallel & \parallel & & \\ Ar-NH-C & N & & & & \\ S & & & & & \\ \end{array} \qquad Ar-N=C=S+N_3H$$

EXPERIMENTAL

IR Spectroscopic Studies

The IR spectra were recorded on a Perkin-Elmer single beam spectrometer, Model 12C. with sodium chloride prism. The position of the absorption maxima are listed in Table-1 & 2 with the intensities being indicated by the following symbols: s=strong, m=medium, w=weak; vw=very weak. The compounds studied were those reported upon in the previous communication. The spectra were taken in Nujolmulls & KBr. Disc.

RESULTS AND DISCUSSION

4-substituted thiosemicarbazides

All the important absorption bands of the 4-substituted thiosemicarbazides in the region 1640-780 cm⁻¹. Summarized in Table-1. No SH band was found in these compounds in the region 2600-2500 cm⁻¹, the range in which the SH stretching vibrations are most likely to appear. Thus clearly shows that there is no thiol-thione tautomerism in these compounds in the solid state.

Table 1: Infrared spectra of 4-aryl-thiosemicarbazides

S. No.	Ar group	-NH (cm ⁻¹)	N-C=S (cm ⁻¹)	C=S (cm ⁻¹)	NH (cm ⁻¹)	NH ₂ (cm ⁻¹)
1	Phenyl	1634	1522	1361	1065	960
2	o-Anisyl	1630	1520	1350	1060	955
3	p-Tolyl	1638	1525	1365	1070	970
4	1-Pyridyl	1530	1520	1360	1060	955
5	Cyclohexyl	1640	1527	1368	1068	965
6	α -Naphthyl	1632	1520	1300	6062	955
7	p-Hydroxyphenyl	1630	1520	1360	1068	965
8	p-chlorophenyl	1632	1520	1300	1058	958

Hence IR confirms the presence of C=S instead of C-SH groups.

A similar conclusion has been drown by Bogomolov & Co-workers. All the compounds studied showed N-H stretching models of vibrations. In general, the important infrared absorption frequencies of the 4-substituted thiosemicarbazides can be summarized in Table-1. The bonds due to hydrazino, -NHNH₂, Portion of the structure have been assigned on the basis of studies presented

by Randall & Lieber. The 4-aryl-thiosemicarbazides show weak absorption at 1634 cm⁻¹. In addition to the absorption bonds discussed above, bands due to other functional group and substituted aromatic rings were also observed.

5-(substituted) amino-1,2,3,4-thiatriazoles

The most significant observation arising out of this study of the infrared absorption spectra of a series of eight 5-arylmaino-1,2,3,4-thiatrizoles, summarized in Table-2. In spectra there is absence

of an absorption band in the region 2170-2080 cm⁻¹, this rules out the presence of Azido group, supporting structure No. (III).

In addition to above other common absorbance are as below-

1260 cm⁻¹ : cyclic -N-N=N- stretching vibrations. 1195, 1140, 1060 cm⁻¹ : Aromatic C-H planar bending vibrations.

985, 955, 870 cm-1 : Aromatic C-H out of Plane bending vibrations.

800 cm⁻¹: C-CI stretching vibrations.

Table 2: 5-Arylamino-1,2,3,4-thiatriazoles

				-				
S. No.	Ar group	-NH (cm ⁻¹)	C=N (cm ⁻¹)	Aromatic C=C (cm ⁻¹)	N=N (cm ⁻¹)	C-S (cm ⁻¹)	N-C-S (cm ⁻¹)	Aromatic C-H
1	Phenyl	3380	1595	1600,	1580	1375,	1495,	3130,
				1495		750	1460	3050
2	o-Anisyl	3350	1575	1608,	1585	1370,	1490,	3100,
				1490		700	1460	3010
3	p-Tolyl	3340	1540	1600,	1575	1370,	1490,	3135,
				1490		740	1465	3040
4	1-Pyridyl	3270	1570	1610,	1570	1370,	1490,	3120,
				1480		745	1450	3040
5	p-Hydroxyphenyl	3380	1585,	1605,	1575	1370,	1480,	3170.
			1580	1485		740	1455	3040
6	p-chlorophenyl	3290	1535	1600,	1570	1380	1480	3120,
				1495				3040

Table-3: Antifungal screening of 5-arylamino-1,2,3,4-thiatriazoles

S. No.	Aryl Group	Average Inhibition (5)						
		Aspergillous Niger (ppm)			Fusarium oxyporium (ppm)			
		1000	100	10	1000	100	10	
1	Phenyl	65	36	15	65	32	14	
2	p-Tolyl	82	59	36	81	58	36	
3	1-Pyridyl	68	40	30	67	40	30	
4	Cyclohexyl	57	55	36	59	56	35	
5	o-anisyl	84	50	38	86	50	36	
Dithane M-45		100	81	68	100	80	68	

Antifungal Activity

Test fungi Aspergillous niger and Fusarium oxyporium were obtained from the IARI, New Delhi and maintained on Agar compounds (1 to 5) were screened invitro by Agar Plate Technique⁶ at different concentration (1000, 100 & 10 ppm), Dithane M-45, a commercial fungicide was also tested under similar condition for comparison.

Results of fungicidal activity were

summarized in Table-3. It is evident from the data the most active were 5-p-tolyl and 5-o-anisyl amino –1,2,3,4-thiatriazoles.

ACKNOWLEDGEMENTS

Author is highly thankful to UGC who has financed to execute the work. This work is under the major project entitled "Impact of new pesticide on Agricultural productivity & Human health."

REFERENCES

- Lieber, E., Pillai, C.N. and Hites, R.D., Can. J. Chem. 35: 832 (1957).
- Kazakov, V. Ya and Postovskii, I. Ya, Invest Vysstikh Ucheb. Zavedenii, Khim I. Khim. Tekhnol; 4: 238 (1961); Chem Abstr; 55: 23915 (1961).
- 3. Vogel, A.I., A text book of org. chem. pract.
- (longman, Greem Co., London (1961).
- 4. Lieber, E. and Ramachandran, J., *Can. J. Chem*, **37**: 101 (1959).
- 5. Wahab, A., *Egypl. J.Chem.* **24**(1): 15-21 (1981).
- 6. J.G. Horsfall, Bot. Rev., 11: 357 (1945).