

ISSN: 0970-020 X; CODEN: OJCHEG Oriental Journal of Chemistry 2011, Vol. 27, No. (2): Pg. 771-774

http://www.orientjchem.org

Debromination of Aurone Dibromide with Sodium Hydrogen Sulphide

S.K. DOIFODE, M.P. WADEKAR and SURESH REWATKAR

Department of Chemistry, Government Engineering College, Amravati - 444 604 (India).

(Received: March 10, 2011; Accepted: April 21, 2011)

Key words: Debromination, Aurone Dibromide, Sodium Hydrogen Sulphide.

INTRODUCTION

Debromination of Vicinal-dihaloakanes and dibromoketones have been studied by earlier workers using the debrominating agents like potassium iodide in acetone¹, stannous chloride in different solvent², sodium hydrogen selenide³, thiourea in ethanol^{4,5} and also by some workers using hydrated sodium sulphide under phase transfer condition^{6,7}. Photochemical and chemical reduction of vicinal dihalides via phase transfer of 4,4¹ bipyridinium radical⁸ for solar energy conversion, use of cobalt octacarbonyl on alumina have been reported for selective dehalogenation of <-bromo sulphoxides⁹. Chromium (II) acetate also brings reductive debromination in vicinal dihaloalkanes¹⁰ and chalcone dibromide¹¹. Sodium sulphide with vicinal dibromo derivative of certain oximes is reported to give sulphoxide derivatives.12 Chalcone with anhydrous sodium sulphide in acetyl acetone at room temperature is reported to give (Ph-CO -CH₂-CO -Ph) Thiourea with 2-hydroxy Chalcones gives 1,3 thiamine derivatives in alkaline ethanol on refluxing for 3 hours while in 10 min in DMSO.¹⁴ Sodium polysulphide with chalcone is reported to form 2,4-dibenzoyl -3,5-diphenyl thiolanes¹⁵.

Recently sodium hydrogen sulphide reacts with chalcone dibromide and stibene dibromide in methanol to give chalcone and stibene respectively¹⁶.

It was thought interesting to use sodium hydrogen sulphide for debromination of aurone dibromide in methanol.

Aurone dibromide (0.01 mole) was treated with freshly prepared sodium hydrogen sulphide (0.02 mole) in dry methanol (30 ml.). The reaction mixture was heated for 20 mins, diluted with water and the product was crystallized form ethanol. The product was found to be identical with aurone on the basis of m.p., m.m.p. (mixed melting point) and cO-TLC and spectral data of uv-vis, IR and NMR 2, α (4' methoxy benzyl)coumaran -3- one mp 158 °C.It is white powdery solid compound having m.p.-158°C. It does not give any colouration with nautral ferric chloride solution. From the analytical data, the molecular formula was found to be C₁₇ H₁₄ Br₂

The molecular wt is 426 TLC

Rf value was found to be 0.36 for benzene as a solvent on silica gel G plate with a layer thickness of 0.3 mm. elemental analysis.

C : found 47.627	C : Calculated (47.88%)
H : found 3.10%	H: Calculated (3.28%)
Br found 38.15%	Br : Calculated (37.55%)

UV Spectra

UV spectrum was recorded in methanol and is reproduced on plate no. 4 (0). λ max value are recorded 203.8 nm, 252.2 nm, 363.2 nm and 395.4 nm corres ponding II – II* and n - II* in aurone dibromide

IR spectrum

IR spectrum was recorded in Nujol and reproduced on plate No 4b

Region	Frequency	Co-rotation
1750-1725	1730 (s)	C = O stretching in 5-
		membered ring
1300-1200	1280 (s)	Ar-O stretching in
		aromatic ether
1350-1100	1180 (s)	C-O stretching
1050-1010	1010(s)	-OCH ₃ stretching in
		aromatic ether
750-500	750 (s)	C-Br stretching

NMR spectrum

P.M.R. spectrum who recorded in CDCl_3 with TMS as an internal standard and in reproduced on plate No 4c

The observed chemical shift can be correlated as follows.

1.6 🦨	S	1H	C-H
2.44 🞜	S	3H	Ar-CH ₃
3.94 J	S	3H	- OCH_3
6.92 – 8.1 🕻	m	7H	Ar-H

The white powder having m.p.=112. It gave blood red colouration with $conH_2So_4$ from analytical data, the molecular formula was found to br C_{17} H_{14} O_3 and molecular mass being 266(by mass spectra.)

Elemental Analysis

C: found 75.82%	Calculated 76.13%
H: found 5.324%	Calculated 5.66%

TLC studies

The RF values was found to br 0.64 – 0.67 for CCL4 as a solvent on silica gel .G plate with layer thickness of 0.3mm. The UV spectrum it is reproduced on plate No.3a. It shows λ max value 403.2, 342.8, 254.0 nm corresponding π – π * and n- π * in the compound.

IR Spectrum

IR Spectrum recorded in nujol and is reproduced on flate No.3b. The imp correlation are as follows.

Region	Frequency	Co-rotation
1750-1550	1700 (s)	C = O stretching in
		cydic ketone
1700-1550	1210 (s)	C=C Stretching
1310-1210	1210 (s)	Ar-O strtching in
		aromatic rung
1280-1200	1200(s)	C-O-Cstretching in 5-
		membered cyclic ring
1050-1010	1020 (s)	-OCH ₃ stretching in
		aromatic ether

In addition to after mentioned peaks spectrum also consist peaks coversponding to other common bending, stretching vibration.

PMR spectrum

The PMR spectrum was recorded in CDCL_3 in TMS a internal standard and is reproduced on plate No 36.

The observed chemical shift can be correlated as follows.

1.6 🦨	S	1H	= CH
2.35 🞜	S	3H	$Ar - CH_3$
3.8 🦨	S	3H	$Ar - OCH_3$
6.87 TO 8 ,1	m	7H	Ar – H
6.67 🦨	S	1H	= CH

772

Scheme

Та	ble	1.
	~	

S. No	Aurone dibromide	Aurone	m.p.°C
1	2 , <xj-dibromo-2-(4' methoxy<="" td=""><td>2-(4'-methoxy benzylidene)</td><td>154</td></xj-dibromo-2-(4'>	2-(4'-methoxy benzylidene)	154
	benzyIA—5-methyl-coumaran-3-one	-5-methyl coumaran-3-one	
2	2, <-dibromoe-2- benzyl 5-	2-benzylidene-5-methyl	112
	methyl-coumaran-3-one	coumaran-3-one	
3	2,<-dibromo-2 (4' methoxy-	2-(4'methoxy benzylidene)-	140
	benzyl) coumaran-3-one	4-methoxy-coumaran-3-one	
4	2 ,o-dibromo-2-(4' methoxy	2-(4'-methoxy benzylidene-	180
	benzyl) 4-tnethoxy coumaran-3-one	3-nitro-5-methyl coumaran-3-one	
5	2 ,o<-dibromo-2{4' methoxy	2-(4'-methoxy benzylidene)	230
	benzyl)-3-nitro-5-methyl	-3-nitro-5-methyl coumaran	
	coumaran-3-one	-3-one	
6	2,°(-dibromo-2- benzyl -3-	2-(41-methoxy benzylidene)-	226
	nitro-5-methyl coumaran-3-one	3-bromo-5-methylcoumaran-3-one	
7	2X-di.bromo-2(4 ¹ methoxy-	2-(4'-methoxy benzylidene)	176
	benzyl)-3-bromo-5-methyl	coumaran-3-one	
	coumaran-3-one		
8	2.0(-dibromo-2— benzyl —3-	2- benzylidene -3-bromo-5-	160
	bromo-5-methyl coumaran-3-one	methyl coumaran-3-one	

REFERENCES

- 1. T.S. Wheeley and M.P. Dodwadna-lh, *Proc. Ind. Acad, Sci. India, Sect.* A **2**: 438 (1955).
- 2. P.A. Soni and B.J. Ghiya, *Cury. Sci* **41**: 137 (1972).
- 3. T.K. Raja, *Indian J. Chem, Sect* **137**B: 812 (1976).
- 4. T.C. Sharma and M.M. Bokadia, Indiain

J.Chem. Sect. B, 14: 65 (1976).

- R .5. Raghavan, M. Govindrajan and K.G. Sanjeev Babu, *Curr. Sci*, **48**: 1072 (1979).
- D. Landini, L., Mi lest, M.L., Quadri and F. Rolla, *J. Org. Chem.*49: 152 (1984).
- 7. J. Nakayama, H. Machida and' M. Hoshino, *Tetrahedron Let.* **24**: 3001 (1983).

- Z. Goren and I, WMiner, J. Am. Chem. Soc., 165: 7764 (1983).
- H. Alper and M, Copal, J. Org. Chem. 48: 4390 (1983).
- 10. K, Fukunaga and M. YamagucM, *Synthesis*, 879 (1981).
- 11. S,W. Sat he and B.J., Ghiya, unpub I shed work.
- V.P. Tashchi, A.F. Rukasov, T.I. Orlova, Yu. G. Putsykin and Yu. A. Baskakov, Khim, Geterotsikl. Soediri, 6: 75 (1982). (Chemabst S7: 109794 (1982).
- 13. R.T. Lalonde J, *Chem. Soc. Chem. Commun* 7: 401 (1982).
- 14. V.S. Jamode, *Indian J. Chem. Sect*, B **17**: 629 (1979).
- R.T. Lalonde, B.A. Horenstein, K. Schwandler, R.C. Fritz and R.A. Florence, *J. Org. Chem* 48: 4049 (1983).
- 16. A.G. Doshi and B.J. Ghiya *J. Indian Chem. Soc.* LX III: 404-405 (1986).
- 17. A.G. Doshi, Ph.D. thesis, Amravat i University, Amravati.