

ISSN: 0970-020 X; CODEN: OJCHEG Oriental Journal of Chemistry 2011, Vol. 27, No. (1): Pg. 209-214

http://www.orientjchem.org

Adsorption of Acid Dyes from Aqueous Solution onto the Surface of Acid Activated Jaswand Leaf Powder: A Case Study

MILIND UBALE^{1*}, RATNA SHELKE², JAGDISH BHARAD¹ and BALAJI MADJE¹

¹PG Department of Chemistry, Vasantrao Naik Mahavidyalaya, Aurangabad- 431 003 (India) ²Department of Chemistry, Pemraj Sarda College, Ahmednagar (India). E-mail: mbubale@yahoo.com

(Received: August 14, 2010; Accepted: September 23, 2010)

ABSTRACT

The plant powder of Jaswand (Hibiscus rosa-Sinensis) were activated with sulphuric acid and used as low cost easily available and renewable biological adsorbent for the removal of acid dyes (acid blue, acid red and malachite green) from aqueous solution. Batch experiments were carried out for adsorption kinetics and isotherms. Operating variable studied were pH, temperature, adsorbent dose, initial concentration of adsorbate. Adsorption capacity seems to be enhanced by increasing temperature, adsorbent dose and for pH. Maximum dye adsorption was found to be in acidic range. Jaswand leaf powder (JLP) treated with Sulphuric acid (H₂SO₄) solution increased the adsorption efficiency upto 80 percent. Experimental adsorption kinetic data were fitted to be Lagergren first order. Equilibrium data were well represented by the Freundlich Langmuir isotherm model for all tested adsorption systems. Beside these the thermodynamic study has showed that the acid dye adsorption onto the surface of acid adsorber (JLP) was physical adsorption and the process was spontaneous and exothermic.

Key words: Jaswand, Acid dyes, Adsorption isotherms, Freundlich isotherms.

INTRODUCTION

Synthetic dyes have been increasingly used in the textile, paper, rubber, plastic, cosmetic, pharmaceutical and food industries because of their ease of use, inexpensive cost of synthesis, stability and variety of color compared with natural dyes¹⁻³. Today there are more than 10,000 dyes available commercially. Most of which are difficult to biodegrade due to their complex aromatic molecular structure and synthetic origin. The extensive use of dyes often poses pollution problems in the form of colored wastewater discharge into environmental water bodies, which interferes with transmission of sunlight into streams therefore reduces photosynthetic activity⁴. In addition, some dyes or their metabolites are either toxic or mutagenic and carcinogenic. A lot of case throughout the world is reported about the role of dyes in connection with variety of skin, lung, and other respiratory disorders⁵. Use of variety of dyes and chemicals in the dyeing processes causes considerable variation in the wastewater characteristics like pH, color and chemical oxygen demand (COD). The presence of these heat and light stable complex dye molecule in wastewater made the conventional methods of sewage treatment, such as primary and secondary treatment systems unsuitable. The adsorption process provides an attractive alternative treatment, especially if the adsorbent is inexpensive and readily available. Granular activated carbon is the most popular adsorbent and has been used with great success⁶ but is expensive. Consequently, many investigators have studied the feasibility of using low cost substances, such as plum kernels7, rice husk8, peat⁹, banana pith¹⁰, orange peel¹¹, Eichhornia ash¹², saw dust13, wall nut shells charcoal14, etc. as adsorbents for the removal of dyes from wastewater. Critical review of low cost adsorbents for waste and wastewater treatment has been represented by pollard et. al.¹⁵, Mall et. al¹⁶ and Bailey et. al¹⁷.

The purpose of the present work was to investigate the possibility of plant material (Jaswand) which is locally available, free of cost all over India as an adsorbent for the removal of acid dyes from aqueous solution. The acid dyes selected as an adsorbate were acid blue, acid red and malachite green. The effects of various operating parameters on adsorption such as pH, initial concentration, adsorbent dosage, temperature and dye concentration were studied.

MATERIALS AND METHODS

Adsorbent

The adsorbent used in the present investigation were leaves of Jaswand Plants collected from Ahmednagar District of Maharashtra State (India). The leaves of Jaswand were dried in shadow avoiding direct sunlight on them. The dried plant leaves were grinded into powder and were boiled in distilled water to remove the suspended dust for one hour and filtered. The residue left was treated with formaldehyde and finally with very dilute solution of sulphuric acid, stirred for 30 minutes vigorously using mechanical stirrer at room temperature, it was filtered and washed with distilled water repeatedly to remove free acid. After chemical treatment residue was dried first in air and finally in oven at 90-100°C for 8-10 hours and powdered using electric grinder. The homogeneous powder was then passed through mesh for desired particle size (9.8 - 41.8 micron). The adsorbent once prepared were used throughout the experimental work. The particle size selected for these experiments were on the basis of their settlement at the bottom of the system, so that the portion of the solution could be taken out conveniently from the supernatant liquid.

FT - IR Spectrum of Jaswand Leaf Powder (JLP)

The surface chemistry of JLP was determined by the type, quantity and bonding of oxygen containing functional groups such as hydroxyl, carbonyl, carboxyl, nitro groups¹⁸⁻¹⁹.

The FT - IR spectrum of JLP adsorbent can be summarized from the bands observed as:

- Medium based overlapping bands at 3310.21cm⁻¹ may be attributed to -OH group stretching present in secondary alcohol of JLP.
- 2. The bands at 2917.77cm⁻¹ indicates C-H stretching assigned to secondary asymmetric carbon.
- The bands at 1730.8 cm⁻¹ indicates C=O stretching in a b unsaturated Ketones.
- The bands range of 668.21cm⁻¹ ascribed to N-H deformation (out of plane band) in primary, secondary amines of JLP.

Preparation of Adsorbate Solution

Acid blue, acid red and malachite green were the acid dyes selected for the present investigation. The chemicals used were of Analar grade and used without further purifications. The solutions were prepared in doubly distilled water. A distilled water prepared by using first metal distillation unit and then all quick fit glass assembly in permangantic condition, wherever necessary the prepared solutions were standardized as per literature²⁰.

Batch Adsorption Experiments

Each batch adsorption study was carried out by contacting acid activated Jaswand leaf powder (JLP) with acid dyes. i.e. acid blue, acid red and malachite green under different conditions for 60 minutes in a glass tube. Stock solutions (1.0x10⁻ ³M) were prepared by dissolving weighed quantities of dyes in double distilled water. The concentration of dye solution were determined from calibration curve spectrophotometrically (Shimatzu-1211) at their respective wavelength, i.e. Acid blue (λ max = 664nm) Acid Red (λ max = 548) and for Malachite Green (λ max = 616nm).

RESULTS AND DISCUSSION

Effect of Temperature

The data of dye adsorption onto JLP at different temperature indicates a change in the dye removal efficiency. This effect is shown in Fig. 1. The increase in the equilibrium adsorption capacity of acid dyes indicates that a high temperature favors dye removal. Indeed by increasing the temperature of the reaction from 308.15 K to 318.15 K, The percentage removal of all three acid dyes average increased range was from 67 % to 77 %. Consequently it is clear that adsorption equilibrium is a thermo-dependent process. This effect may be due to the fact that at higher temperature, an increase in the movement of the solute occurs.

Fig. 1: Effect of temperature on removal of dyes

Fig. 3: Effect of adsorbent dose on removal of dyes

Similar findings are also reported by other researchers ²¹⁻²².

Effect of pH solution

The initial pH value of the solution can significantly influence the adsorption of dyes. In the present study the effect of pH on the amount of dye removal was analyzed over the pH range from 3.5 to 7.2 and is presented in graphical form as given in Fig. 2. The adsorption at lower pH may be attributed to the increase in the concentration of hydrogen ion in dye solution which neutralizes hydroxyl group in the vicinity of adsorbent surface and facilitates the diffusion of dye molecule towards the surface of adsorbent. Similar diminishing adsorption was also reported by Bahadur et.ap3, at higher pH which may be due to the availability of large number of OH (hydroxyl ions) and consequently the diffusion barrier is increased which results in poor adsorption. Our findings are in good agreement with Prasad et.al²⁴. The study restricted at higher pH level upto 7.2 which may be attributed to the adsorbent which is a plant material and

Fig. 2: Effect of pH on removal of dyes

Fig. 4: Effect of initial concentration on removal of dyes

consists of various organic acid components and may lead to the aqua complex formation and thus retards dye adsorption onto the surface of JLP. Our findings are supported by Mohan $et.aP^{5}$.

Effect of adsorbent dose

Effect of adsorbent dose plays an important role in standardizing the adsorption process with quantification of adsorbate solution and the adsorbent. In our present investigation with increase in the amount of JLP adsorbent i.e. from 0.5gms to 0.8gms the removal efficiency of all three acid dyes increase rapidly (figure-3) which may be attributed to the greater availability of the exchangeable sites or surface areas at higher concentration of the adsorbent. Our findings are in good support with Hussein et. al²⁶.

Effect of Initial Concentration

The adsorption of all three acid dyes onto the surface of JLP were rapid initially, slow down later on and finally reached towards equilibrium (figure-4) indicating saturated adsorption as also reported by McKay *et.al.*²⁷⁻²⁸. The increased adsorption of the acid dyes onto the JLP may be attributed to increase in surface activity and due to micelle formation or the aggregation of dye molecule in the concentration range studied. Similar results have been also reported by several researchers²⁹.

Adsorption Kinetics

Kinetics of adsorption describes the solute uptake rate which in turn governs residence time or adsorption reaction. It is one of the important characteristics in defining the efficiency of

adsorption³⁰. A simple analysis of adsorption is the pseudo-first order rate expression of the Lagergren equation³¹⁻³². The kinetic data reveals that adsorption follows the first order reaction kinetics. From the pH study it can be concluded that in acidic media the dye removal percentage is maximum. Our findings are in good agreement with Mumin et al.33. The decrease in adsorption rate may be explained on the basis of aqua complex formation and subsequent acid-base dissociation at solid-solution interface³⁴. The increase in adsorbent dose from 0.5gm to 0.8gm the rate constant increases i.e. the removal efficiency of dye increases. The available adsorption site increase which furnishes more adsorption and, therefore rate constant (K,) also increases. Similar finding were also reported by other workers³⁵. The rate constant K, at different temperature were applied to estimate the activation energy of the adsorption of dyes onto JLP by Arrhenius equation,

Ink = In A - Ea/RT

Where Ea, R and A refers to Arrhenius activation energy, the gas constant and Arrhenius factor respectively. The slope of the plot K_1 versus 1/T were found to be 8576.810 J, 8148.810 J and 7958.610 J respectively for acid blue, acid red and malachite green. The minimum value of 7958.610 J was for malachite green – JLP system which is an indicative of higher adsorption and which may be attributed to lesser energy barrier.

Adsorption Isotherm

The adsorption isotherm is a graphical

Adsorbate	Temperature /K	-∆G /KJ	∆H /KJ	-∆S / J.
Acid Blue	308	3.138	6.82	12.698
	313	3.472		
	318	3.265		
Acid Red	308	3.599	18.80	49.625
	313	3.127		
	318	3.103		
Malachite Gree	n 308	3.240	17.44	5.0208
	313	3.415		
	318	3.291		

 Table 1: Thermodynamic Parameters at different temperature

representation of amount of substance adsorbed against the residual concentration of the adsorbate in the solution³⁶. The adsorption data for a wide range of adsorbate concentration and adsorbent doses were analyzed using Langmuir and Freundlich isotherm in order to find the adsorption capacity of JLP adsorbate.

Freundlich Theory

Freundlich theory suggested that the ratios of the amount of solute adsorbed onto a given mass of adsorbent to the concentration of the solute in the solutions are not constant at different concentration of solution³⁷. The Freundlich isotherm was verified by using least square fit and regression analysis and computer programming in EXCEL. The value of regression coefficient r² found to be very close to one which indicates the good correlation exists between log x/m and log C. The Langmuir model³⁸ represents monolayer adsorption on a set of distinct localized adsorption sites having the same adsorption energies no interaction between adsorbed molecules. The essential characteristic of Langmuir isotherm is expressed in terms of dimensionless constant separation factor or equilibrium factor R, , which is indicative of the nature of the isotherm and is enlisted below as:

Types of Isotherm
Unfavorable
Linear
Favorable
Irreversible

The adsorption of all three acid dyes are favorable onto the surface of JLP as R_L value in the present study falls in the type $O < R_L < 1$ and the range found to be 0.009 to 0.010 and is in good agreement with the findings of Lodha et. al³⁹.

Thermodynamic Parameters

Thermodynamic parameters such as free energy (ΔG°) enthalpy (ΔH°) and entropy (ΔS°) of adsorption were calculated from the binding constant K¹ which is obtained from Langmuir equation using following relations:

$$G^{\circ} = -RT \ Ink$$
 ...(1)
Ink = $-\Delta H^{\circ} / RT + constant$...(2)

The ΔH° values were calculated from the slopes of linear variation of In K vs 1/T; furthermore, the values of ΔS° were calculated using the relation $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$. The negative value of ΔG° indicates high affinity of dye to the surface of JLP, also negative value of ΔH° indicates exothermic process and the randomness of adsorption phenomena can be explained on the basis of entropy (ΔS°) which is also negative (Table 1). The values demonstrate a spontaneous and favourable adsorption process and are in good agreement with Saleem *et al.*,⁴⁰.

CONCLUSIONS

The adsorption mechanism of dyes onto the surface of JLP adsorbent and the calculated $\ddot{A}G^{\circ}$ (free energy) found to be below –15KJ which is indicative of physical adsorption. The calculated dimensionless equilibrium parameter R_L found to be in the range between 0 to 1 is indicative of favorable adsorption onto the surface of JLP. Adsorption of acid dyes onto JLP was first order kinetic process with low activation energy which is an indicative of rapid adsorption process.

REFERENCES

- 1. Ramkrishna, K.R. and Viraraghavan, T., *Water Sci. Technol.,* **36**: 189 (1997).
- Chagas, E. P. and Durrant, L. R., *Enzybe* Microb. Technol., **29**: 473 (2001).
- 3. Malik, P. K., *Dyes pigments.* **56**: 239 (2003).
- 4. Namasivayam, C., Radhika, R. and Suba, S., *Waste Manage.* **21**: 381 (2001).
- 5. Mickay, G., Allen, S. J., Meconney, I. F.and

Ottrburn, M. S., *J. Colloid. interface Sci.* **80(2)**: 323 (1981).

- Mckay, G., J. Chem. Technol. Biotechnol, 32: 759 (1982).
- Mckay, G., Ottrburn, M. S.and Sweeney, A. G. *Water Res.* 14: 15 (1980).
- 8. Malik, P. K., *Dyes pigments*, **56**: 239 (2003).
- 9. Allen, S. J., *Fuel.* **66**: 1171 (1987).

- Namasivayam, C., Muniasami, N., Gayathri, K., Rani, M. and Rananathan, K. *Bioresor. Technol.*, 64: 77 (1998).
- Namasivayam, C., Muniasami, N., Gayathri, K., Rani, M. and Rananathan, K. *Bioresour. Technol.*, **57**: 37 (1996).
- 12. Sumanjit Kaur and Prabhpreet Singh, *Colourage.* **54(3**): 52 (2007).
- 13. Sumanjit Kaur and Kamaldeep Paul, *Poll* .*Res.* **2(4)**: 557 (2001).
- 14. Sumanjit Kaur and Manpreet Kaur, *J. Environ. Poll.*, **6**: 173 (1999).
- 15. Pollard, S. J., Fowler, G. D., Sollars, C. J. and Perry, R. *Total Environ.* **116**: 31(1992).
- 16. Mall, I D., Upadhyay, S. N. and Sharma, Y. C. *Int. J. Environ. Stud.* **51**: 77 (1996).
- 17. Bailey, S. E., Olin, T. J., Bricka, R. M. and Adrian, D. D. *Water Res.* **33(11**): 2469 (1999).
- Wang, S., Zhu, Z. H., Coomes, A. and Haghsereshi, F. *J. Colloid and Interface Sci.*, 284: 440 (2005).
- Collin, G. J., Awang, B., Duduku, K. and Kok, Onn. J. Mater. Science, 13(1): 83 (2007).
- Jeffery, G. H., Bassett Mendnam, J. and Denny, R. C. Vogels Text book of Quantitative Chemical Analysis. 5th Edition ELBS with Longman Group U.K (1999).
- 21. Ncibi, M.C. Mahjoub, B. and Seffen, M, Int. J.Environ. Sci. Tech., 4(4): 433 (2007).
- Chakraborty, S., Basu, J. K., De, S. and DasGupta, S. *Chemosphere*, **58**: 1079 (2005).
- Bahadur, P. Desai, M. Dogra, A. Vora, S. and Ram, R. N. *Indian J. Chem.*, **36A**: 938 (1997).
- 24. Prasad Sumanjit, N., *Indian J. Chem.*,**40**: 388 (2001).

- 25. Mohan, S. V., Rao, N. C. and Karthikeyan, J. *J. Hazard Mater.*, **90**: 189 (2002).
- Hussein, M. Nahala, A. and Amer, A. A. J. Appl. Sci. Res., 3(11): 1352 (2007).
- Mekay, G. Blair, H. S. and Garden, J. R. J. App. pol. sci., 27: 3043 (1982).
- Shelke, R. S, Bharad, J. V, Madje, B. R. and Ubale, M. B. Arch. Appl. Sci. Res., 2(3): 260 (2010).
- 29. Stephen, J. A., Mekay, G. and Kadar, K. Y. *J. Chem. Tech. Bio. Tech.*, **45**: 291 (1989).
- Arivoli, S. and Thenkuzhali, M., *E. J. Chem.*, 2: 187 (2008).
- Dogen, M. and Alkan, M., *Chemosphere* 50: 517 (2003).
- Sreelatha, G. and Padmaja, P., J. Env.Prot. Sci., 2: 63 (2008).
- Mumim, M. A., Khan, M. M. R, Akhtar, K. F. and Uddin, M. J., *Int. J. Environ. Sci. Tech.*, 4(4): 525 (2007).
- Netpradita, S., Thiravetyanb, P. and Towprayoon, S., Water Res., 37: 763 (2003).
- Degs, Al., Kharaisheh, Y. and Ahmed, M. A., Jordan. Inter. Chem. Engg. Conference, 1: 159 (2000).
- Collin Joseph, Awang, B. and Duduku, K., Materials Sci., (MedZiagotyra) 13(1): 83 (2007).
- Freundlich, H., Colloidal and Capillary Chemistry Methner London, UK, 397-414 (1926).
- 38. Langmuir, J. Am. Chem., 38: 221 (1916).
- Lodha, A., Gupta, A. B., Bohra, K. and Singh, S. V., Indian J. Env. Proct., 17(9): 675 (1997).
- Saleem, M., afzad, M., Mahmood, F. and Hameed, A., *J. Chem. Soc. Pak.*, **16(2)**: 83 (1994).